
algorithms

Article

New and Efficient Algorithms for Producing Frequent
Itemsets with the Map-Reduce Framework

Yaron Gonen 1, Ehud Gudes 1,2,* and Kirill Kandalov 2

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
yaron.gonen@gmail.com

2 Department of Computer Science, Open University, Ra’anana 4353701, Israel; kirill.kandalov@gmail.com
* Correspondence: ehud@cs.bgu.ac.il; Tel.: +972-50-583-1907

Received: 26 September 2018; Accepted: 23 November 2018; Published: 28 November 2018 ����������
�������

Abstract: The Map-Reduce (MR) framework has become a popular framework for developing new
parallel algorithms for Big Data. Efficient algorithms for data mining of big data and distributed
databases has become an important problem. In this paper we focus on algorithms producing
association rules and frequent itemsets. After reviewing the most recent algorithms that perform this
task within the MR framework, we present two new algorithms: one algorithm for producing closed
frequent itemsets, and the second one for producing frequent itemsets when the database is updated
and new data is added to the old database. Both algorithms include novel optimizations which are
suitable to the MR framework, as well as to other parallel architectures. A detailed experimental
evaluation shows the effectiveness and advantages of the algorithms over existing methods when it
comes to large distributed databases.

Keywords: apriori; map reduce; big data; frequent itemsets; closed itemsets; incremental computation

1. Introduction

The amount of information generated in our world has grown in the last few decades at an
exponential rate. The rise of the internet, growth of the number of internet users, social networks
with user generated data and other digital processes contributed to petabytes of data being generated
and analyzed. This process resulted in a new term: Big Data. Classical databases (DB) are unable to
handle such size and velocity of data. Therefore, special tools were developed for this task. One of the
common tools that is in use today is the Map-Reduce (MR) framework [1]. It was originally developed
by Google, but currently the most researched version is an open source project called Hadoop [2].
MR provides a parallel distributed model and framework that scales to thousands of machines.

While today there are more recent parallel architectures like Spark [3], arguably, in terms
of developed algorithms, MR is the most popular framework for contemporary large-scale data
analytics [4]. The MR original paper has been cited more than twenty-five thousand times. Therefore,
MR is the focus of the present paper. In addition, the algorithms presented in this paper include
optimizations which can be applied to any parallel architecture that processes large distributed
databases where each node processes one chunk of data; thus, their applicability is beyond the
MR framework.

Association Rules Mining (ARM) is an important problem in Data Mining and has been heavily
researched since the 1990s. It is being solved in two steps: firstly, by finding all Frequent Itemsets (FI)
by a process called Frequent Itemsets Mining (FIM), and then generating the rules themselves from FI.
FIM is the most computationally intensive part of ARM [5–7]. Solving FIM efficiently allows for efficient
solving of the ARM problem. Most of the studies were done thoroughly in centralized static dataset [8]
and data stream [9] settings. With data growth, classical FIM/ARM algorithms that were designed to

Algorithms 2018, 11, 194; doi:10.3390/a11120194 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/11/12/194?type=check_update&version=1
http://dx.doi.org/10.3390/a11120194
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 194 2 of 32

be used on a single machine had to be adapted to a parallel environment. Recently, a few solutions
were proposed for running classical FIM/ARM algorithms in the Map-Reduce framework [10–13].
These algorithms find frequent itemsets for a given static database. Our goal in this paper is to improve
these algorithms in some common and important scenarios.

There are several strategies to handle FIM more efficiently. One of the strategies, which is a
major branch in this research field, is mining closed frequent itemsets instead of frequent itemsets in
order to discover non-redundant association rules. A set of closed frequent itemsets is proven to be a
complete yet compact representation of the set of all frequent itemsets [14]. Mining closed frequent
itemsets instead of frequent itemsets saves computation time and memory usage, and produces a
compacted output. Many algorithms, like Closet, Closet+, CHARM and FP-Close [8], have been
presented for mining closed frequent itemsets in centralized datasets. Handling very large databases is
more challenging than mining centralized data in the following aspects: (1) the distributed settings are
in a shared-nothing environment (one can of course share data, however it is very expensive in terms
of communication), meaning that assumptions like shared memory and shared storage, that lie at the
base of most algorithms, no longer apply; (2) data transfer is more expensive than data processing,
meaning that performance measurements change; (3) the data is huge and cannot reside on a single
node. This paper will describe our scheme for distributed mining of closed frequent itemsets which
overcomes the drawbacks of existing algorithms.

Another strategy for efficiently handling FI is to mine FI and then always keep FI up-to-date.
There is a need for an algorithm that will be able to update the FI effectively when the database
is updated, instead of re-running the full FIM algorithm on the whole DB from scratch. There are
incremental versions of FIM and ARM algorithms [15,16] for single machine execution. Some of these
algorithms can even suit a distributed environment [17], but not the MR model. Because the MR
model is more limited than general distributed or parallel computation models, the existing algorithms
cannot be used in their current form. They must be adjusted and carefully designed for the MR model
to be efficient.

Our contributions in this paper are:

1. A novel algorithm for mining closed frequent itemsets in big, distributed data settings, using
the Map-Reduce paradigm. Using Map-Reduce makes our algorithm very pragmatic and
relatively easy to implement, maintain and execute. In addition, our algorithm does not require
a duplication elimination step, which is common to most known algorithms (it makes both the
mapper and reducer more complicated, but it gives better performance).

2. A general algorithm for mining incremental frequent itemsets for general distributed
environments with additional optimizations of the algorithm. Some of the optimizations are
unique for the Map-Reduce environment but can be applied to other similar architectures.

3. We conducted extensive experimental evaluation of our new algorithms and show their behavior
under various conditions and their advantages over existing algorithms.

The rest of the paper is structured as follows. Section 2 presents the closed frequent itemset
mining algorithm. Section 3 discusses the incremental frequent itemset algorithm. Section 5 is the
conclusions section. A preliminary short presentation of the algorithms has appeared in [18,19].

2. Background and Related Work

In this section, we present the necessary background and describe the existing MR based
algorithms. Some of them will be used for comparison in the evaluation sections.

2.1. Association Rules and Frequent Itemsets

Association rule mining was introduced in [5,6] as a market basket analysis for finding items that
were bought together—if a customer bought item(s) X, then with high probability item(s) Y will be
also purchased (X =⇒ Y) (e.g., 98% of customers who purchase tires and auto accessories also get

Algorithms 2018, 11, 194 3 of 32

an automotive service done). A pre-requisite to finding association rules is the mining of frequent
itemsets (FIM) (itemsets that appear in at least some percentage of the transactions).

One of the most well-known algorithms for association rules is the Apriori algorithm described
in [5,6]. This algorithm uses a pruning rule called Apriori, which states that an itemset may be frequent
if all its subsets are also frequent. The algorithm is based on iteratively generating candidates for
frequent itemsets and then pruning them. The algorithm starts with candidates of size one, which
includes all possible items, and every iteration increases the length of the candidates by one. At the
end of each iteration, the candidates are pruned by their count in the DB and those who survive (their
count is larger than the minimal threshold) are added to the final set of frequent itemsets. Candidates
for the next iteration are being generated based on the survivors. The algorithm stops when it cannot
generate longer candidates, and then it generates all association rules from the frequent itemsets.

There are several versions of implementing Apriori in the distributed environment [20,21].
The most important idea is that if an itemset is frequent in a union of distributed databases, it must be
frequent in at least one of them. A simple proof by contradiction goes like this:

Assume that itemset x is frequent in union DB (D = ∪Di), then supD(x) (count of x in the D) is
at least minSup∗|D| times. Assume also that x is not frequent in any partial Di, then:

supDi (x)< minSup∗|Di|.

Then:

supD(x) = ∑ supDi (x) < ∑ minSup∗|Di|= minSup∗∑|Di|= minSup∗|D|

and we get a contradiction of x being frequent in the D.
A similar idea will be used by us in the incremental case.

2.2. Mining Closed Frequent Itemsets Algorithms

An itemset is closed if there is no super itemset that has the same support count as the original
itemset. Closed itemsets are more useful since they convey meaningful information, and their number
is much smaller than standard itemsets.

The first algorithm for mining closed frequent itemsets, A-Close, was introduced in [14]. It presents
the concept of a generator—a set of items that generates a single closed frequent itemset. A-Close
implements an iterative generation-and-test method for finding closed frequent itemsets. On each
iteration, generators are tested for frequency, and non-frequent generators are removed. An important
step is duplication elimination: generators that create an already existing itemset are also removed.
The surviving generators are used to generate the next candidate generators. A-Close was not designed
to work in a distributed setting.

MT-Closed [22] is a parallel algorithm for mining closed frequent itemsets. It uses a divide-and-
conquer approach on the input data to reduce the amount of data to be processed during each iteration.
However, its parallelism feature is limited. MT-Closed is a multi-threaded algorithm designed for
multi-core architecture. Though superior to single-core architecture, multi-core architecture is still
limited in its number of cores and its memory is limited in size and must be shared among the threads.
In addition, the input data is not distributed, and an index-building phase is required.

D-Closed [23] is a shared-nothing environment distributed algorithm for mining closed frequent
itemsets. It is similar to MT-Closed in the sense that it recursively explores a sub-tree of the search space:
in every iteration, a candidate is generated by adding items to a previously found closure, and the
dataset is projected by all the candidates. It differs from MT-Closed in providing a clever method to
detect duplicate generators: it introduces the concepts of pro-order and anti-order, and proves that
among all candidates that produce the same closed itemset, only one will have no common items with
its anti-order set. However, there are a few drawbacks to D-Closed: (1) it requires a pre-processing
phase that scans the data and builds an index that needs to be shared among all the nodes; (2) the

Algorithms 2018, 11, 194 4 of 32

set of all possible items also needs to be shared among all the nodes; and (3) the input data to each
recursion call is different, meaning that iteration-wise optimizations, like caching, cannot be used.

Sequence-Growth by Liang and Wu [24] is an algorithm for mining frequent itemsets based on
Map-Reduce. The algorithm cleverly applies the idea of lexicographical order to construct the candidate
sequence subsets to avoid expensive scanning. It does so by building a lexicographical sequence tree
that finds all frequent itemsets without an exhaustive search over the transaction database. However,
this algorithm does not directly mine closed itemsets, which is our goal. Closed itemsets can be derived
from the output, however this requires further processing that makes it less efficient.

Wang et al. [25] have proposed a parallelized AFOPT-close algorithm [26] and have implemented
it using Map-Reduce. AFOPT-close is a frequent itemset mining algorithm that uses a pattern growth
approach. It uses dynamic ascending frequency order and three different structures to represent
conditional databases, depending on the sparsity of the database. To prune non-closed itemsets, it uses
a patterns tree data structure.

Like the previous algorithms, it also works in a divide-and-conquer way: first, a global list
of frequent items is built, then a parallel mining of local closed frequent itemsets is performed,
and finally, non-global closed frequent itemsets are filtered out, leaving only the global closed frequent
itemsets. However, they still require that the final step (checking the globally closed frequent itemsets,
which might be very heavy depending on the number of local results).

2.3. Incremental Frequent Itemsets Mining

The idea of maintenance of association rules and frequent itemsets during database update
has been discussed shortly after the first algorithms for FIM appeared. The reason for it is that the
updated part is usually much smaller than the full DB, and this fact could be used for faster algorithms.
A well-known efficient algorithm for it is “Fast Update” (FUP) [15]. It is based on the fact that for
an item to be frequent in the updated database (D+), it must be frequent in the old DB (or simply
D), and/or the new added transactions (∆). Table 1 describes the options for an itemset to become
frequent or not frequent in D+ (it is based on the same observation discussed in the previous chapter).

Table 1. Cases for item to be frequent and the outcome.

Frequent in D Not Frequent in D
Frequent in ∆ Frequent in D+ Unknown

Not frequent in ∆ Unknown Not frequent in D+

FUP is working iteratively by mining only new ∆ by a method similar to Apriori. At the end of
each iteration, for each FI, the algorithm decides if it is frequent, not frequent or needs to be counted in
the old D. The transactions being recounted in the old D are pruned away as necessary. The survivors
are used to create candidates for the next iteration. By performing most of the work only on ∆,
the algorithm achieves better time compared to re-running the full mining algorithm on the whole D+.

ARMIDB [7] is based on FUP but tries to minimize scans over the original D while still calculating
the incremented FI. It tries to use data from the original FI, update them and then uses a technique
called “Look Ahead for Promising Items” (LAPI). It then scans for candidates in ∆ only for those items
that may be frequent in D+ (early pruning of candidates that cannot be frequent in D+ during the
scan of ∆). However, it is not a distributed algorithm like ours.

2.4. Map-Reduce Model

Map-Reduce is a parallel model and framework introduced in [1]. The abstract model requires
defining two functions (algorithms):

map (k1, v1)→ list(k2, v2)

Algorithms 2018, 11, 194 5 of 32

reduce (k2, list(v2))→ list(v2)

Map is applied to all input elements and transforms them to a key/value pair. Reduce is applied
to all elements with the same key (after transformation by “map”) and generates the final output.
Reduce has access to all the values that are associated with some key, so it can output one, many or no
values at all.

The framework takes care of everything else—reading the physical input, splitting it into
distributed nodes, executing the worker processes on the remote machines for handling logical tasks,
running the map function tasks on all the records from the input, sending the results to reduce function
tasks, output of the final results from reducers, fault tolerance, and recovery if required, etc. The flow
is shown in Figure 1. Each map and reduce combination that is executed on some input is called a job.
Some algorithms may require multiple consecutive jobs of the same or different Map-Reduce functions
to accomplish the algorithm goal (e.g., iterative algorithms like Apriori may require K iterations
before finishing—one Map-Reduce for a candidate of length K—that would generate K Map-Reduce
jobs). Data for Map-Reduce is saved in a distributed file system. In Hadoop [2], it is called Hadoop
Distributed File System (HDFS) [27]. Data is kept in blocks of constant size. The most common values
for block sizes that are being used are 32 megabytes (MB), 64 MB and 128 MB.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 34

Map is applied to all input elements and transforms them to a key/value pair. Reduce is applied
to all elements with the same key (after transformation by “map”) and generates the final output.
Reduce has access to all the values that are associated with some key, so it can output one, many or
no values at all.

The framework takes care of everything else—reading the physical input, splitting it into
distributed nodes, executing the worker processes on the remote machines for handling logical tasks,
running the map function tasks on all the records from the input, sending the results to reduce
function tasks, output of the final results from reducers, fault tolerance, and recovery if required, etc.
The flow is shown in Figure 1. Each map and reduce combination that is executed on some input is
called a job. Some algorithms may require multiple consecutive jobs of the same or different Map-
Reduce functions to accomplish the algorithm goal (e.g., iterative algorithms like Apriori may require
K iterations before finishing—one Map-Reduce for a candidate of length K—that would generate K
Map-Reduce jobs). Data for Map-Reduce is saved in a distributed file system. In Hadoop [2], it is
called Hadoop Distributed File System (HDFS) [27]. Data is kept in blocks of constant size. The most
common values for block sizes that are being used are 32 megabytes (MB), 64 MB and 128 MB.

Figure 1. Map-Reduce Framework [1].

In Map-Reduce, each chunk of split input is called simply a “Split”. The standard way for Map-
Reduce to split the input is by using a constant size. MR does this by using the HDFS file system
blocks, so the sizes are mostly similar to HDFS or its multiplier. The MR framework makes sure not
to split the logical input in the middle of an information unit. By default, information from a Split is
being provided to a Mapper line-by-line. There is a strong correlation between a Split and a Mapper:
each Split is related to a single Mapper and vice versa. The data from the Split is processed exactly
once. The exceptions to it are in fault/recovery scenarios and speed optimization (if we have more
than one idle machine, we can do the same computation twice and use the results of the fastest
machine).

The Map-Reduce framework may have more stages in a job that supports executing map and
reduce functions, e.g., Combiner can perform local “reduce” just after the Mapper on the same
machine and the Partitioner is responsible for sending data from the Mapper/Combiner output to the
Reducer input. Most of the steps could be customized to support more advanced scenarios via
configuration, code or changing the source code of Hadoop itself, i.e., Input Reading: instead of
reading input line-by-line, the whole file could be read and provided to the map stage as one large

Figure 1. Map-Reduce Framework [1].

In Map-Reduce, each chunk of split input is called simply a “Split”. The standard way for
Map-Reduce to split the input is by using a constant size. MR does this by using the HDFS file system
blocks, so the sizes are mostly similar to HDFS or its multiplier. The MR framework makes sure not
to split the logical input in the middle of an information unit. By default, information from a Split is
being provided to a Mapper line-by-line. There is a strong correlation between a Split and a Mapper:
each Split is related to a single Mapper and vice versa. The data from the Split is processed exactly once.
The exceptions to it are in fault/recovery scenarios and speed optimization (if we have more than one
idle machine, we can do the same computation twice and use the results of the fastest machine).

The Map-Reduce framework may have more stages in a job that supports executing map and
reduce functions, e.g., Combiner can perform local “reduce” just after the Mapper on the same machine
and the Partitioner is responsible for sending data from the Mapper/Combiner output to the Reducer
input. Most of the steps could be customized to support more advanced scenarios via configuration,
code or changing the source code of Hadoop itself, i.e., Input Reading: instead of reading input

Algorithms 2018, 11, 194 6 of 32

line-by-line, the whole file could be read and provided to the map stage as one large input. Another
example is providing a custom partitioning function that would send input to the reducer by some
algorithm logic instead of doing it by simple hash of the key.

2.5. Incremental Computation in Map-Reduce

Most of the time, when data is changed or added, the result of the algorithm also changes.
Map-Reduce doesn’t provide built-in tools in the model or framework to support result updates.
There are some attempts by researchers to enhance the Map-Reduce model to support it.

One of the attempts is the Incoop system [28]. This paper proposes a way (that is almost
transparent to the user of Map-Reduce) to keep the results of the algorithm updated as new data is
added. The system treats the computations as a Directed Acyclic Graph (DAG) of data that flows
from input to output, and on the way, it is transformed by user functions. When data is updated,
the system re-runs only the part of the graph that has some new input. This system uses a Memoization
technique to keep the data–algorithm–result dependencies. This works well for the Mapper (map
job), as only a few data records affect a small number of Mappers. In the case where a new key–value
pair is generated for the Reducer (reduce job), then it will need to re-run its function on the whole
previous input (new value and all old values). To treat this problem, Incoop also has a new stage called
Contraction, which allows the user to supply additional functions that can combine several reducer
input/outputs. It allows for dividing larger inputs into smaller parts and re-running the algorithm
only on the updated part.

A similar approach can be found in DryadInc [29]. The idea was developed for a system called
Dryad, which is a more general version of Map-Reduce. The main difference is that Dryad allows any
DAG of computations, not only Map and Reduce. In the incremental version, there’s also a Cache
server that keeps input/output relations and a new Merge function which can merge outputs of any
function (and not only of Map as in Incoop).

Since Memoization and incremental caching of Incoop are not part of the standard Map-Reduce,
and since their source code is not publicly available, we decided to do our experimental evaluation
using the standard Map-Reduce framework only. Yet, we can assume that these enhancements may not
work well for FIM (especially Apriori) algorithms. The basis for this claim is that new input records
for Apriori may generate new frequent itemsets of any length, and in the following iterations the new
input records generate even more frequent itemsets based on them. So, a small change in the input
may propagate to a very large part of the output. Another reason is that each step requires a recount of
frequent itemsets over the whole D+ (with new records), so none of the above systems would be able
to use their Memoization/Caching data and will have to run all calculations from the beginning.

2.6. Map-Reduce Communication–Cost Model

In general, there may be several performance measures for evaluating the performance of an
algorithm in the Map-Reduce model (see below). In this study, we follow the communication–cost
model as described in [30]: a task is a single map or reduce process, executed by a single computer in
the network. The communication cost of a task is the size of the input to this task. Note that the initial
input to a map task (the input that resides in a file) is also counted as an input. Also note that we do
not distinguish between map tasks and reduce tasks for this matter. The total communication cost is the
sum of the communications costs of all the tasks in the Map-Reduce job.

Other proposed cost models, which we will not focus on, are total response time and the Amazon
total cost. Total response time refers to the elapsed time from the start of the Map-Reduce job to
the end of it, without considering the number of nodes that have participated in the job, the nodes’
specifications or the number of messages passed from node to node during the computation process.
This model is practical because the most significant drive for the development of the Map-Reduce
framework is the need to finish big tasks fast. However, it is difficult under these uncertain conditions
to compare performance between different algorithms.

Algorithms 2018, 11, 194 7 of 32

The Amazon total cost is the cost in dollars of the execution of this job over the Amazon Elastic
Map-Reduce [31,32] service. This model considers all factors participating in the job: combined
running time of all nodes that participated in the job weighted by the specifications of each node
(a single time unit of a node with a fast CPU costs more than a single time unit of a node with a slow
CPU), size of data communicated and the use of storage during the execution. This may be the most
effective cost model, but it is bound to Amazon.

2.7. Apriori Map-Reduce Algorithms

There are several known Map-Reduce Apriori algorithms. The PApriori algorithm [11] is a
porting of the classical algorithm to Map-Reduce. Everything is done inside the main program in
a sequential way, except for the frequency count which is done in parallel with the Map-Reduce
algorithm. This algorithm is depicted in Figure 2. Apriori-Map/Reduce [12] is similar to PApriori but
also performs the candidate generation in parallel by using another Map-Reduce job. Both of these
algorithms require K steps to find the frequent itemsets of length K, with one or two MR jobs per
candidate length/step.

Algorithms 2018, 11, x FOR PEER REVIEW 7 of 34

running time of all nodes that participated in the job weighted by the specifications of each node (a
single time unit of a node with a fast CPU costs more than a single time unit of a node with a slow
CPU), size of data communicated and the use of storage during the execution. This may be the most
effective cost model, but it is bound to Amazon.

2.7. Apriori Map-Reduce Algorithms

There are several known Map-Reduce Apriori algorithms. The PApriori algorithm [11] is a
porting of the classical algorithm to Map-Reduce. Everything is done inside the main program in a
sequential way, except for the frequency count which is done in parallel with the Map-Reduce
algorithm. This algorithm is depicted in Figure 2. Apriori-Map/Reduce [12] is similar to PApriori but
also performs the candidate generation in parallel by using another Map-Reduce job. Both of these
algorithms require K steps to find the frequent itemsets of length K, with one or two MR jobs per
candidate length/step.

Figure 2. Map-Reduce Apriori Algorithm [11].

MRApriori [13] is different and presents a two-step algorithm. The first step is to divide 𝒟 into
Splits (done by the MR framework) and run the classical Apriori on each Split inside the Mapper (it
reads the whole input into the memory of the Mapper as one chunk) to find “locally” frequent
itemsets. After that, the Reducer joins the results of all Mappers and they become candidates for final
frequent itemsets (if the itemset is frequent in 𝒟, then it must be frequent in at least one of its Splits).
The second job/step is just counting of all candidates’ appearance in each Split and filtering only the
frequent itemsets that pass the minimum support level. Figure 3 demonstrates the algorithm’s block
diagram for clarification.

IMRApriori [10] works similarly to MRApriori with one add-on/observation that an itemset may
become a candidate itemset only if it appeared locally frequent in “enough” Splits. More precisely,
let S1,…, Sm be Splits of 𝒟 in step 1. Denote their sizes to be |Si| if itemset 𝑥 is locally frequent in
k (k ≤ m) Splits without loss of generality, called S1,…, Sk. Let Ci be the count of occurrence of X in
Split Si. Let minSup be the minimum support. Then:

Figure 2. Map-Reduce Apriori Algorithm [11].

MRApriori [13] is different and presents a two-step algorithm. The first step is to divide D into
Splits (done by the MR framework) and run the classical Apriori on each Split inside the Mapper
(it reads the whole input into the memory of the Mapper as one chunk) to find “locally” frequent
itemsets. After that, the Reducer joins the results of all Mappers and they become candidates for final
frequent itemsets (if the itemset is frequent in D, then it must be frequent in at least one of its Splits).
The second job/step is just counting of all candidates’ appearance in each Split and filtering only the
frequent itemsets that pass the minimum support level. Figure 3 demonstrates the algorithm’s block
diagram for clarification.

IMRApriori [10] works similarly to MRApriori with one add-on/observation that an itemset may
become a candidate itemset only if it appeared locally frequent in “enough” Splits. More precisely,

Algorithms 2018, 11, 194 8 of 32

let S1, . . . , Sm be Splits of D in step 1. Denote their sizes to be |S i| if itemset x is locally frequent in k
(k ≤ m) Splits without loss of generality, called S1, . . . , Sk. Let Ci be the count of occurrence of X in
Split Si. Let minSup be the minimum support. Then:

sup(x) ≤
k

∑
1

Ci +
m

∑
k+1

(|Si| ∗minSup− 1)

If this number is less than minSup ∗ |D|, then there is no need to calculate the occurrence of x in
D in step 2 as it does not have a chance to be frequent any more (early pruning). This observation
is applied in the first Reducer (“Union of all local FI”) of IMRApriori and can be seen in the block
diagram in Figure 3. This algorithm is shown to outperform all previous ones and a variation of it will
be used by us.

Algorithms 2018, 11, x FOR PEER REVIEW 8 of 34

𝑠𝑢𝑝(𝑥) ≤ 𝐶 + (⌈|𝑆 | ∗ 𝑚𝑖𝑛𝑆𝑢𝑝⌉ − 1)

If this number is less than 𝑚𝑖𝑛𝑆𝑢𝑝 ∗ |𝒟|, then there is no need to calculate the occurrence of 𝑥
in 𝒟 in step 2 as it does not have a chance to be frequent any more (early pruning). This observation
is applied in the first Reducer (“Union of all local FI”) of IMRApriori and can be seen in the block
diagram in Figure 3. This algorithm is shown to outperform all previous ones and a variation of it
will be used by us.

Figure 3. MRApriori and IMRApriori Block Diagram.

2.8. Join Operation and Map-Reduce

The “join” operation on two or more datasets is one of the standard operations in relational DBs
and it is part of the SQL standard. The operation combines records from input datasets by some rule
(predicate), so the output may contain information in a single record from any or all datasets. It is
used in some steps of our algorithm and therefore it is relevant here.

Standard Map-Reduce does not provide built-in functions to join datasets, so several algorithms
were proposed [30,33,34]. One of the strategies for join is called repartition join. The idea is that data
from all datasets are being distributed across all Mappers. Each Mapper identifies which dataset is
responsible for its Split and outputs the input line together with a dataset “tag”. The key of the map
output is the predicate value (in case of equi-join, it would be the value by which the join is being
done). Then the Reducer collects records and groups them by the input key. For each input key, it

Figure 3. MRApriori and IMRApriori Block Diagram.

2.8. Join Operation and Map-Reduce

The “join” operation on two or more datasets is one of the standard operations in relational DBs
and it is part of the SQL standard. The operation combines records from input datasets by some rule
(predicate), so the output may contain information in a single record from any or all datasets. It is used
in some steps of our algorithm and therefore it is relevant here.

Algorithms 2018, 11, 194 9 of 32

Standard Map-Reduce does not provide built-in functions to join datasets, so several algorithms
were proposed [30,33,34]. One of the strategies for join is called repartition join. The idea is that data
from all datasets are being distributed across all Mappers. Each Mapper identifies which dataset is
responsible for its Split and outputs the input line together with a dataset “tag”. The key of the map
output is the predicate value (in case of equi-join, it would be the value by which the join is being done).
Then the Reducer collects records and groups them by the input key. For each input key, it extracts
the dataset tag that is associated with each record from all the records of the different datasets and
generates all possible join combinations. It is used in our algorithm and is therefore relevant here.

3. Mining Closed Frequent Itemsets with Map-Reduce

3.1. Problem Definition

Let I = {i1, i2, . . . , im} be a set of items with lexicographic order. An itemset x is a set of items such
that x ⊆ I. A transactional database D = {t1, t2, . . . , tn} is a set of itemsets, each called a transaction.
Each transaction in D is uniquely identified with a transaction identifier (TID) and assumed to be
sorted lexicographically. The difference between a transaction and an itemset is that an itemset is an
arbitrary subset of I, while a transaction is a subset of I that exists in D and identified by its TID, tid.
The support of an itemset x in D, denoted supD(x), or simply sup(x) when D is clear from the context,
is the number of transactions in D that contain x (sometimes it is the percentage of transactions).

Given a user-defined minimum support denoted minSup, an itemset x is called frequent if
sup(x) ≥ minSup× |D|.

Let T ⊆ D be a subset of transactions from D and let x be an itemset. We define the following two
functions f and g:

f (T) = {i ∈ I|∀t ∈ T, i ∈ t}

g(x) = {t ∈ D|∀i ∈ x, i ∈ t}

Function f returns the intersection of all the transactions in T, and function g returns the set of all
the transactions in D that contain x. Notice that g is antitone, meaning that for two itemsets x1 and x2:
x1 ⊆ x2 → g(x2) ⊆ g(x1) . It is trivial to see that sup(x) = |g(x)|. The function h = f ◦ g is called the
Galois operator or closure operator.

An itemset x is closed in D if h(x) = x. It is equivalent to say that an itemset x is closed in D if no
itemset, that is a proper superset of x has the same support in D, exists.

Given a databaseD and a minimum support minSup, the mining closed frequent itemsets problem
is finding all frequent and closed itemsets in D.

Let I = {a, b, c, d, e, f }, let minSup = 3 (minSup = 60%) and let D be the transaction database
presented in Table 2. Consider itemset {c}. It is a subset of transactions t1, t3, t4 and t5, meaning
that sup({c}) = 4, which is greater than minSup×|D|. However, {c, f }, which is a proper superset of
{c}, is also a subset of the same transactions. {c} is not a closed itemset since sup({c, f }) = sup({c}).
The list of all closed frequent itemsets is: {a}, {c, f }, {e} and {c, e, f }.

Table 2. D Example. TID = transaction identifier.

TID Transaction

t1 {a, c, d, e, f }
t2 {a, b, e}
t3 {c, e, f }
t4 {a, c, d, f }
t5 {c, e, f }

We now present an algorithm for mining frequent closed itemsets in a distributed setting, using the
Map-Reduce paradigm. It uses the generator idea mentioned in Section 2.2.

Algorithms 2018, 11, 194 10 of 32

3.2. The Algorithm

3.2.1. Overview

Our algorithm is iterative, where each iteration is a Map-Reduce job. The inputs for iteration i are:

1. D, the transaction database
2. Ci−1, the set of the closed frequent itemsets found in the previous iteration (Co, the input for the

first iteration, is the empty set).

The output of iteration i is Ci, a set of closed frequent itemsets that have a generator of length i.
If Ci 6= φ, then another iteration, i + 1, is performed. Otherwise, the algorithm stops. As mentioned
earlier, each iteration is a Map-Reduce job (line 7 in Algorithm 1, see details in algorithms 2, 3 and 4),
comprised of a map phase and a reduce phase. The map phase, which is equivalent to the g function,
emits sets of items called closure generators (or simply generators). The reduce phase, which is equivalent
to the f function, finds the closure that each generator produces, and decides whether or not it should
be added to Ci. Each set added to Ci is paired with its generator. The generator is needed for the
next iteration.

The output of the algorithm, which is the set of all closed frequent itemsets, is the union of all Cis.
Before the iteration begins, we have discovered that a pre-process phase which finds only the

frequent items greatly improves performance, even though another Map-Reduce job is executed,
and this data must be shared among all mapper tasks. This Map-Reduce job simply counts the support
of all items and keeps only the frequent ones.

The pseudo-code of the algorithm is presented below (Algorithm 1). We provide explanations of
the important steps in the algorithm.

Algorithms 2018, 11, x FOR PEER REVIEW 10 of 33

2. 𝐶𝑖−1, the set of the closed frequent itemsets found in the previous iteration (𝐶𝑜, the input for the
first iteration, is the empty set).

The output of iteration 𝑖 is 𝐶𝑖, a set of closed frequent itemsets that have a generator of length 𝑖 . If 𝐶𝑖 𝜙 , then another iteration, 𝑖 + 1 , is performed. Otherwise, the algorithm stops. As
mentioned earlier, each iteration is a Map-Reduce job (line 7 in Algorithm 1, see details in
algorithms 2, 3 and 4), comprised of a map phase and a reduce phase. The map phase, which is
equivalent to the 𝑔 function, emits sets of items called closure generators (or simply generators). The
reduce phase, which is equivalent to the 𝑓 function, finds the closure that each generator produces,
and decides whether or not it should be added to 𝐶𝑖 . Each set added to 𝐶𝑖 is paired with its
generator. The generator is needed for the next iteration.

The output of the algorithm, which is the set of all closed frequent itemsets, is the union of all 𝐶𝑖s.
Before the iteration begins, we have discovered that a pre-process phase which finds only the

frequent items greatly improves performance, even though another Map-Reduce job is executed, and
this data must be shared among all mapper tasks. This Map-Reduce job simply counts the support of
all items and keeps only the frequent ones.

The pseudo-code of the algorithm is presented below (Algorithm 1). We provide explanations
of the important steps in the algorithm.

 Algorithm 1. Main: Mine Closed Frequent Itemsets.

3.2.2. Definitions

To better understand the algorithm, we need some definitions:

Definition 1. Let 𝑝 be an itemset, and let 𝑐 be a closed itemset, such that ℎ(𝑝) = 𝑐, then 𝑝 is called a
generator of 𝑐.

Note, that a closed itemset might have more than one generator: in the example above, both {𝑐}
and {𝑓} are the generators of {𝑐, 𝑓}.

Definition 2. An execution of a map function on a single transaction is called a map task.

Definition 3. An execution of a reduce function on a specific key is called a reduce task.

3.2.3. Algorithm Steps

Map Step

3.2.2. Definitions

To better understand the algorithm, we need some definitions:

Definition 1. Let p be an itemset, and let c be a closed itemset, such that h(p) = c, then p is called a generator
of c.

Note, that a closed itemset might have more than one generator: in the example above, both {c}
and { f } are the generators of {c, f }.

Algorithms 2018, 11, 194 11 of 32

Definition 2. An execution of a map function on a single transaction is called a map task.

Definition 3. An execution of a reduce function on a specific key is called a reduce task.

3.2.3. Algorithm Steps

Map Step

A map task in iteration i gets three parameters as an input: (1) a set of all the closed frequent
itemsets (with their generators) found in the previous iteration, denoted Ci−1 (which is shared among
all the mappers in the same iteration); (2) a single transaction denoted t; and (3) the set of all frequent
items in D (again, this set is also shared among all the mappers in the same iteration and in all
iterations). Note that in the Hadoop implementation, the mapper gets a set of transactions called Split
and the mapper object calls the map function for each transaction in its own Split only.

For each c ∈ Ci−1, if c ⊆ t, then t holds the potential of finding new closed frequent itemsets by
looking at the complement of c in t (line 3). For each item ∈ (t\c), we check if item is frequent (line 5).
If so, we concatenate item to the generator of c (denoted c.generator), thus creating g (we denote that
added item as g.item), a potential new generator for other closed frequent itemsets (line 6). The function
emits a message where g is the key and the tuple (t, 1) is the value (line 7). The “1” is later summed up
and used to count the support of the itemset.

Notice that g is not only a generator, but it is always a minimal generator. Concatenating an
item not in its closure guarantees to reach another minimal generator. More precisely, it generates
all minimal generators that are supersets of g with one additional item, and such, that t supports it.
Since all transactions are taken, every minimal generator with a support of at least one is emitted at
some point (this is proven later). The pseudo-code of the map function is presented in Algorithm 2.

Algorithms 2018, 11, x FOR PEER REVIEW 11 of 33

A map task in iteration 𝑖 gets three parameters as an input: (1) a set of all the closed frequent
itemsets (with their generators) found in the previous iteration, denoted 𝐶𝑖−1 (which is shared
among all the mappers in the same iteration); (2) a single transaction denoted 𝑡; and (3) the set of all
frequent items in 𝐷 (again, this set is also shared among all the mappers in the same iteration and
in all iterations). Note that in the Hadoop implementation, the mapper gets a set of transactions called
Split and the mapper object calls the map function for each transaction in its own Split only.

For each 𝑐 ∈ 𝐶 , if 𝑐 ⊆ 𝑡, then 𝑡 holds the potential of finding new closed frequent itemsets
by looking at the complement of 𝑐 in 𝑡 (line 3). For each 𝑖𝑡𝑒𝑚 ∈ (𝑡 ∖ 𝑐), we check if 𝑖𝑡𝑒𝑚 is
frequent (line 5). If so, we concatenate 𝑖𝑡𝑒𝑚 to the generator of c (denoted c.generator), thus creating
g (we denote that added item as g.item), a potential new generator for other closed frequent itemsets
(line 6). The function emits a message where g is the key and the tuple (𝑡, 1) is the value (line 7). The
“1” is later summed up and used to count the support of the itemset.

Notice that g is not only a generator, but it is always a minimal generator. Concatenating an item
not in its closure guarantees to reach another minimal generator. More precisely, it generates all
minimal generators that are supersets of g with one additional item, and such, that t supports it. Since
all transactions are taken, every minimal generator with a support of at least one is emitted at some
point (this is proven later). The pseudo-code of the map function is presented in Error! Reference
source not found..

 Algorithm 2. Mapper.

Combine Step

A combiner is not a part of the Map-Reduce programming paradigm, but a Hadoop
implementation detail that minimizes the data transferred between map and reduce tasks. Hadoop
gives the user the option of providing a combiner function that is to run on the map output on the
same machine running the mapper, and the output of the combiner function is the input for the
reduce function.

In our implementation, we have used a combiner, which is quite similar to the reducer but much
simpler. The input to the combiner is a key and a collection of values: the key is the generator g (which
is an itemset), and the collection of values is a collection of tuples, composed of transactions T, all
containing g and a number s indicating the support of the tuple. Since the combiner is “local” by
nature, it has no use of the minimum support parameter, which must be applied in a global point of
view. The combiner sums the support of the input tuples, stores it in the variable sum, and then
performs an intersection on the tuples to get 𝑡′.

Combine Step

A combiner is not a part of the Map-Reduce programming paradigm, but a Hadoop
implementation detail that minimizes the data transferred between map and reduce tasks. Hadoop
gives the user the option of providing a combiner function that is to run on the map output on the
same machine running the mapper, and the output of the combiner function is the input for the
reduce function.

Algorithms 2018, 11, 194 12 of 32

In our implementation, we have used a combiner, which is quite similar to the reducer but much
simpler. The input to the combiner is a key and a collection of values: the key is the generator g
(which is an itemset), and the collection of values is a collection of tuples, composed of transactions
T, all containing g and a number s indicating the support of the tuple. Since the combiner is “local”
by nature, it has no use of the minimum support parameter, which must be applied in a global point
of view. The combiner sums the support of the input tuples, stores it in the variable sum, and then
performs an intersection on the tuples to get t′.

The combiner emits a message where g is the key and the tuple (t′, sum) is the value.
The pseudo-code of the combiner function is presented in Algorithm 3.

Algorithms 2018, 11, x FOR PEER REVIEW 12 of 33

The combiner emits a message where g is the key and the tuple (𝑡 , 𝑠𝑢𝑚) is the value. The
pseudo-code of the combiner function is presented in Error! Reference source not found..

 Algorithm 3. Combiner.

Reduce Step

The reduce task gets a key as input, a collection of values and the minimum support. The key is
the generator g (which is an itemset), a collection (𝑡 , 𝑠), . . . , (𝑡 , 𝑠) of n tuples, composed of a set
of items 𝑡𝑖 (an intersection of transactions from the combiner), all containing g and a number 𝑠𝑖
indicating the support of the tuple. In addition, it gets, as a parameter, the user-given minimum
support, minSup. The reducer is depicted in Error! Reference source not found..

At first, the frequency property is checked: 𝑠𝑢𝑝(𝑔) = ∑ 𝑠 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 ∗ |𝒟|. If so, then an

intersection of 𝑡1, . . . , 𝑡𝑛 is performed and a closure, denoted c, is produced. If the item that was
added in the map step is lexicographically greater than the first item in 𝑐 ∖ 𝑔, then c is a duplication
and can be discarded. Otherwise, a new closed frequent itemset is discovered and is added to 𝐶𝑖.

In other words, if the test in line 7 passes, then it is guaranteed that the same closure c is found
(and kept) in another reduce task—the one that will get c from its first minimal generator in the
lexicographical order (as is proven later).

The pseudo-code of the reduce function is presented below.
In line 5 in the algorithm, we apply the f function, which is actually an intersection of all the

transactions in T. Notice that we do not need to read all of T and store in the RAM. T can be treated
as a stream, reading transactions one at a time and performing the intersection.

 Algorithm 4. Reducer.

Reduce Step

The reduce task gets a key as input, a collection of values and the minimum support. The key is
the generator g (which is an itemset), a collection (t1, s1), . . . , (tn, sn) of n tuples, composed of a set of
items ti (an intersection of transactions from the combiner), all containing g and a number si indicating
the support of the tuple. In addition, it gets, as a parameter, the user-given minimum support, minSup.
The reducer is depicted in Algorithm 4.

At first, the frequency property is checked: sup(g) =
n
∑

i=1
si ≥ minSup ∗ |D|. If so, then an

intersection of t1, . . . , tn is performed and a closure, denoted c, is produced. If the item that was added
in the map step is lexicographically greater than the first item in c\g, then c is a duplication and can be
discarded. Otherwise, a new closed frequent itemset is discovered and is added to Ci.

In other words, if the test in line 7 passes, then it is guaranteed that the same closure c is found
(and kept) in another reduce task—the one that will get c from its first minimal generator in the
lexicographical order (as is proven later).

The pseudo-code of the reduce function is presented below.
In line 5 in the algorithm, we apply the f function, which is actually an intersection of all the

transactions in T. Notice that we do not need to read all of T and store in the RAM. T can be treated as
a stream, reading transactions one at a time and performing the intersection.

Algorithms 2018, 11, 194 13 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 12 of 33

The combiner emits a message where g is the key and the tuple (𝑡 , 𝑠𝑢𝑚) is the value. The
pseudo-code of the combiner function is presented in Error! Reference source not found..

 Algorithm 3. Combiner.

Reduce Step

The reduce task gets a key as input, a collection of values and the minimum support. The key is
the generator g (which is an itemset), a collection (𝑡 , 𝑠), . . . , (𝑡 , 𝑠) of n tuples, composed of a set
of items 𝑡𝑖 (an intersection of transactions from the combiner), all containing g and a number 𝑠𝑖
indicating the support of the tuple. In addition, it gets, as a parameter, the user-given minimum
support, minSup. The reducer is depicted in Error! Reference source not found..

At first, the frequency property is checked: 𝑠𝑢𝑝(𝑔) = ∑ 𝑠 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 ∗ |𝒟|. If so, then an

intersection of 𝑡1, . . . , 𝑡𝑛 is performed and a closure, denoted c, is produced. If the item that was
added in the map step is lexicographically greater than the first item in 𝑐 ∖ 𝑔, then c is a duplication
and can be discarded. Otherwise, a new closed frequent itemset is discovered and is added to 𝐶𝑖.

In other words, if the test in line 7 passes, then it is guaranteed that the same closure c is found
(and kept) in another reduce task—the one that will get c from its first minimal generator in the
lexicographical order (as is proven later).

The pseudo-code of the reduce function is presented below.
In line 5 in the algorithm, we apply the f function, which is actually an intersection of all the

transactions in T. Notice that we do not need to read all of T and store in the RAM. T can be treated
as a stream, reading transactions one at a time and performing the intersection.

 Algorithm 4. Reducer.

3.2.4. Run Example

Consider the example database D in Table 2 with a minimum support of two transactions
(minSup = 40%). To simulate a distributed setting, we assume that each transaction ti resides on a
different machine in the network (mapper node), denoted mi.

1st Map Step. We track node m1. Its input is the transaction t1, and since this is the first
iteration then Ci−1 = C0 = φ. For each item in the input transaction, we emit a message
containing the item as a key and the transaction as a value. So, the messages that m1 emits are the
following: < {a}, {a, c, d, e, f } >, < {c}, {a, c, d, e, f } >, < {d}, {a, c, d, e, f } >, < {e}, {a, c, d, e, f } >,
and < { f }, {a, c, d, e, f } >. A similar mapping process is done on other nodes.

1st Reduce Step. According to the Map-Reduce paradigm, a reducer task is assigned to every key.
We follow the reducer tasks assigned to keys {a}, {c} and { f }, denoted Ra, Rc, and R f respectively.

First, consider Ra. According to the Map-Reduce paradigm, this reduce task receives in addition
to the key {a}, all the transactions in {D} that contain that key: t1, t2 and t4. First, we must test the
frequency: there are three transactions containing the key. Since minSup∗|D| = 2, we pass the frequency
test and go on. Next, we intersect all the transactions, producing the closure {a}. The final check is
whether the closure is lexicographically larger than the generator. In our case it is not (because the
generator and closure are equal), so we add {a} to C1.

Next, consider Rc. This reduce task receives the key {c}, and transactions t1, t3, t4 and t5. Since the
number of transactions is four, we pass the frequency test. The intersection of the transactions is the
closure {c, f }. Finally, {c} is lexicographically smaller than {c, f }, so we add {c, f } to C1.

Finally, consider R f . The transactions that contain the set { f } are t1, t3, t4 and t5. We pass the
frequency test, but the intersection is {c, f }, just like in reduce task Rc, so we have a duplicate result.
However, { f } is lexicographically greater than {c, f }, so this closure is discarded.

The final set of all closed frequent itemsets found on the first iteration is: C1 =

{{a : a}, {c, f : c}, {e : e}} (the itemset after the semicolon is the generator of this closure).
2nd Map Step. As before, we follow node m1. This time the set of closed frequent itemsets is not

empty, so according to the algorithm, we iterate over all c ∈ C1. If the input transaction t contains

Algorithms 2018, 11, 194 14 of 32

c, we add to c all the items in t\c, each at a time, and emit it. So, the messages that m1 emits are
the following:

< {a, c}, {a, c, d, e, f } >,
< {a, d}, {a, c, d, e, f } >,
< {a, e}, {a, c, d, e, f } >,
< {a, f }, {a, c, d, e, f } >,
< {c, d}, {a, c, d, e, f } >,
< {c, e}, {a, c, d, e, f } >,
< {c, f }, {a, c, d, e, f } >,
< {e, f }, {a, c, d, e, f } >.

2nd Reduce Step. Consider reduce task Rac. According to the Map-Reduce paradigm,
this reduce task receives all the messages containing the key {a, c}, which are transactions t1 and t4.
Since minSup = 2, we pass the frequency test. Next, we consider the key {a, c} as a generator and
intersect all the transactions getting the closure {a, c, d, f }. The final check is whether the added item
c is lexicographically larger than the closure minus the generator. In our case it is not, so we add
{a, c, d, f } to the set of closed frequent itemsets.

The full set of closed frequent itemsets is shown in Table 3. Next, we prove the soundness and
completeness of the algorithm.

Table 3. Closed Frequent Itemsets of D.

Closed Item Set Generator Support

{a} {a} 3
{c, f } {c} 4
{e} {e} 4

{a, c, d, f } {a, c} 2
{a, e} {a, e} 2
{c, e, f } {c, e} 3

3.2.5. Soundness

The mapper phase makes sure that the input to the reducer is a key which is a subset of items p,
and a set of all transactions that contain p, denoted by definition T = g(p). The reducer first checks
that sup(p) ≥ minSup ∗ |D| by checking |T| ≥ minSup ∗ |D| and then performs an intersection of all
the transactions in T, which by definition is the result of the function f (T), and outputs the result. So,
by definition, all outputs are the result of f ◦ g, which is a closed frequent itemset.

3.2.6. Completeness

We need to show that the algorithm outputs all the frequent closed itemsets. Assume negatively,
considering that c = i1, . . . , in is a closed frequent itemset (that we assume was not produced).
Suppose, that c has no proper subset that is a closed frequent itemset. Therefore, for all items ij ∈ c,
sup

(
ij
)
= sup(c) and g

(
ij
)
= g(c). Therefore h

(
ij
)
= h(c) = c. Since h

(
ij
)
= c, then ij is a generator

of c, and the algorithm will output c at the first iteration.
Suppose that c has one or more proper subsets and each is a closed frequent itemset. We examine

the largest one and denote it l. l is generated by the algorithm because its generator is shorter than
the generator of c. We also denote its generator gl , meaning that g(l) = g(gl). Since g is antitone
and since gl ⊂ c, then g(c) ⊂ g(gl). What we show next is that if we add one of the items not
in l to gl , we will generate c. Consider an item i, such that i ∈ c\l. Let g′l = gl ∪ {i}. Therefore,
g
(

g′l
)
= g(gl) ∩ g(i) = g(l) ∩ g(i). Assume that g

(
g′l
)
⊃ g(c). It implies that l′ is a generator of a

closed itemset h
(

g′l
)

that is a proper subset of c in contradiction to l being the largest closed subset
of c, therefore g

(
g′l
)
= g(c), meaning that c will be found by the mapper by adding an item to gl (see

lines 3–4 in Algorithm 2. Mapper).

Algorithms 2018, 11, 194 15 of 32

3.2.7. Duplication Elimination

As we saw in the run example in Section 3.2.4, a closed itemset can have more than one generator,
meaning that two different reduce tasks can produce the same closed itemset. Furthermore, these two
reduce tasks can be in two different iterations. We have to identify duplicate closed itemsets and
eliminate them. The naive way to eliminate duplications is by submitting another Map-Reduce job
that sends all identical closed itemsets to the same reducer. However, this means that we need another
Map-Reduce job for that, which greatly damages performance. Line 7 in Algorithm 4 takes care of that
without the need for another Map-Reduce round. In the run example, we have already seen how it
works when the duplication happens on the same round.

What we would like to show is that the duplication elimination step does not “lose” any closed
itemsets. We now explain the method.

Consider that itemset c = {i1, i2, . . . , in} is a closed, frequent itemset, and its generator
g =

{
ig1 , ig2 , . . . , igm

}
, m < n, such that h(g) = c. According to our algorithm, g was created by

adding an item to a previously found closed itemset. We denote that itemset f , and the added item
igj such that g = f ∪ {igj}. Suppose that igj > c\g. Our algorithm will eliminate c. We should show
that c can be produced by a different generator. Consider ik to be the smallest item in c\g. Since ik ∈ c
is frequent, and since ik /∈ g, then surely ik /∈ f , meaning that the algorithm will add it to f , creating
g′ = f ∪ {ik}. It is possible that h(g′) ⊂ c, however if we keep growing g′ with the smallest items,
we will eventually get c.

3.3. Experiments

We have performed several experiments in order to verify the efficiency of our algorithm and to
compare it with other renowned algorithms.

3.3.1. Data

We tested our algorithm on both real and synthetic datasets. The real dataset was downloaded
from the FIMI repository [35,36], and is called “webdocs”. It contains close to 1.7 million transactions
(each transaction is a web document) with 5.3 million distinct items (each item is a word). The maximal
length of a transaction is about 71,000 items. The size of the dataset is 1.4 gigabytes (GB). A detailed
description of the “webdocs” dataset, that also includes various statistics, can be found in [36].

The synthetic dataset was generated using the IBM data generator [37]. We have generated
six million transactions with an average of ten items per transaction—a total of 100,000 items. The total
size of the input data is 600 MB.

3.3.2. Setup

We ran all the experiments on the Amazon Elastic Map-Reduce [31] infrastructure. Each run was
executed on sixteen machines; each is an SSD-based instance storage for fast I/O performance with a
quad core CPU and 15 GB of memory. All machines run Hadoop version 2.6.0 with Java 8.

3.3.3. Measurement

We used communication–cost (see Section 2.6) as the main measurement for comparing the
performance of the different algorithms. The input records to each map task and reduce task were
simply counted and summed up at the end of the execution. This count is performed on each machine in
a distributive manner. The implementation of Hadoop provides an internal input records counter that
makes the counting and summing task extremely easy. Communication–cost is an infrastructure-free
measurement, meaning that it is not affected by weaker/stronger hardware or temporary network
overloads, making it our measurement of choice. However, we also measured the time of execution.
We ran each experiment three times and gave the average time.

Algorithms 2018, 11, 194 16 of 32

3.3.4. Experiments Internals

We have implemented the following algorithms: (1) an adaptation of Closet to Map-Reduce;
(2) the AFOPT-close adaptation to Map-Reduce; and (3) our proposed algorithm. All algorithms were
implemented in Java 8, taking advantage of its new lambda expressions support.

We ran the algorithms on the two datasets with different minimum supports, and measured the
communication cost and execution time for each run.

3.3.5. Results

The first batch of runs was conducted on the synthetic dataset. The results can be seen in
Figures 4 and 5. In Figure 4, the lines represent the communication cost of each of the three algorithms
for different minimum supports. The bars present the number of closed frequent itemsets found
for each minimum support. The number of closed frequent itemsets depends only on the minimum
support and gets higher when the minimum support gets higher. As can be seen, our algorithm
outperforms the others in terms of communication cost in all the minimum supports. In addition,
the communication raise gradient is lower than the others, meaning that further increases in the
minimum support will make the difference even greater. Figure 5 shows the running time of the
three algorithms for the same minimum supports. Again, as can be seen, our algorithm outperforms
the others.

In the second batch of runs, we run the implemented algorithms on the real dataset with four
different minimum supports, and measured the communication cost and execution time for each
run. The results can be seen in the figures below (Figures 6 and 7). The figures are similar to the two
previous figures, and as can be seen, our algorithm outperforms the existing algorithms.

Algorithms 2018, 11, x FOR PEER REVIEW 17 of 34

In the second batch of runs, we run the implemented algorithms on the real dataset with four
different minimum supports, and measured the communication cost and execution time for each run.
The results can be seen in the figures below (Figure 6 and Figure 7). The figures are similar to the two
previous figures, and as can be seen, our algorithm outperforms the existing algorithms.

Figure 4. Communication–cost of the algorithms on synthetic data.

Figure 5. Running time of the algorithms on the synthetic data.

Figure 4. Communication–cost of the algorithms on synthetic data.

Algorithms 2018, 11, 194 17 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 17 of 34

In the second batch of runs, we run the implemented algorithms on the real dataset with four
different minimum supports, and measured the communication cost and execution time for each run.
The results can be seen in the figures below (Figure 6 and Figure 7). The figures are similar to the two
previous figures, and as can be seen, our algorithm outperforms the existing algorithms.

Figure 4. Communication–cost of the algorithms on synthetic data.

Figure 5. Running time of the algorithms on the synthetic data. Figure 5. Running time of the algorithms on the synthetic data.

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 34

Figure 6. Communication–cost of the algorithms on real data.

Figure 7. Comparing execution time of the algorithms on real data.

4. Incremental Frequent Itemset Mining with Map-Reduce

4.1. Problem Definition

Let 𝒟 be a database of transactions, I a set of items and minSup the minimum support level as
described in Section 3.1. Define FI to be a set of all frequent items in 𝒟 : 𝐹𝐼(𝒟, 𝑚𝑖𝑛𝑆𝑢𝑝) ={𝑥|𝑠𝑢𝑝𝒟(𝑥) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 ∗ 𝒟}. Let PK be some previous knowledge that we produced during the FIM

Figure 6. Communication–cost of the algorithms on real data.

Algorithms 2018, 11, 194 18 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 34

Figure 6. Communication–cost of the algorithms on real data.

Figure 7. Comparing execution time of the algorithms on real data.

4. Incremental Frequent Itemset Mining with Map-Reduce

4.1. Problem Definition

Let 𝒟 be a database of transactions, I a set of items and minSup the minimum support level as
described in Section 3.1. Define FI to be a set of all frequent items in 𝒟 : 𝐹𝐼(𝒟, 𝑚𝑖𝑛𝑆𝑢𝑝) ={𝑥|𝑠𝑢𝑝𝒟(𝑥) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 ∗ 𝒟}. Let PK be some previous knowledge that we produced during the FIM

Figure 7. Comparing execution time of the algorithms on real data.

4. Incremental Frequent Itemset Mining with Map-Reduce

4.1. Problem Definition

Let D be a database of transactions, I a set of items and minSup the minimum
support level as described in Section 3.1. Define FI to be a set of all frequent items in
D: FI(D, minSup) = {x|supD(x) ≥ minSup ∗ D} . Let PK be some previous knowledge that we
produced during the FIM process of the D. Let ∆ be the set of additional transactions. Let D+

be a new database defined as D+ = D ∪ ∆. The problem is to find FI(D+, minSup), the set of all
frequent itemsets in the updated database. We denote FI(∆) deltaFI. We may omit minSup from
functions if the support level is clear from the context. We call any x s.t. x ∈ FI a frequent itemset or
just “frequent”.

4.2. The Algorithms

4.2.1. General Scheme

We first propose a general algorithm (Algorithm 5) for incremental frequent itemset mining.
It can be used for any distributed or parallel framework, but it also suits the model of Map-Reduce.
The algorithm is loosely based on the FUP [15] algorithm and shares similarities with ARMIDB [7] (see
Section 2.3). The idea is to first find all frequent itemsets in the new database (only deltaFI) and then
unite (join) the new frequent itemsets with the old frequent itemsets, and finally revalidate itemsets
which are in the “unknown” state in each of the databases. This algorithm is general because it doesn’t
set any constraints on the FIM algorithm that is used (any Map-Reduce algorithm for finding frequent
itemsets will suit). We show some optimizations of it later.

Brief description of the algorithm (Algorithm 5): Step 1 is the execution of the MR main program
(“driver”). Step 2 is getting all parameters and filling the MR job configuration. Steps 3 and 4 are the
execution of any standard MR FIM algorithm on the incremental DB (∆), and saving its output back
to HDFS (Step 4). For example, the use of IMRApriori as a MR FIM will include running first an MR
job with a mapper that finds FI for each data Split and then its reducer will merge all “local” FI to a
single candidate list. A second MR job will use its mapper to count all candidate occurrences in each

Algorithms 2018, 11, 194 19 of 32

data Split, and the reducer will be used to summarize the candidate occurrences, and to output only
“globally” frequent itemsets.

Algorithms 2018, 11, x FOR PEER REVIEW 18 of 33

process of the 𝒟. Let Δ be the set of additional transactions. Let 𝒟 be a new database defined as 𝒟 = 𝒟⋃Δ. The problem is to find 𝐹𝐼(𝒟 , 𝑚𝑖𝑛𝑆𝑢𝑝), the set of all frequent itemsets in the updated
database. We denote 𝐹𝐼(Δ) deltaFI. We may omit minSup from functions if the support level is clear
from the context. We call any 𝑥 s.t. 𝑥 ∈ 𝐹𝐼 a frequent itemset or just “frequent”.

4.2. The Algorithms

4.2.1. General Scheme

We first propose a general algorithm (Error! Reference source not found.) for incremental
frequent itemset mining. It can be used for any distributed or parallel framework, but it also suits the
model of Map-Reduce. The algorithm is loosely based on the FUP [15] algorithm and shares
similarities with ARMIDB [7] (see Section 2.3). The idea is to first find all frequent itemsets in the new
database (only deltaFI) and then unite (join) the new frequent itemsets with the old frequent itemsets,
and finally revalidate itemsets which are in the “unknown” state in each of the databases. This
algorithm is general because it doesn’t set any constraints on the FIM algorithm that is used (any
Map-Reduce algorithm for finding frequent itemsets will suit). We show some optimizations of it
later.

 Algorithm 5. General incremental frequent itemset mining algorithm.

Brief description of the algorithm (Error! Reference source not found.): Step 1 is the execution
of the MR main program (“driver”). Step 2 is getting all parameters and filling the MR job
configuration. Steps 3 and 4 are the execution of any standard MR FIM algorithm on the incremental
DB (Δ), and saving its output back to HDFS (Step 4). For example, the use of IMRApriori as a MR FIM
will include running first an MR job with a mapper that finds FI for each data Split and then its
reducer will merge all “local” FI to a single candidate list. A second MR job will use its mapper to
count all candidate occurrences in each data Split, and the reducer will be used to summarize the
candidate occurrences, and to output only “globally” frequent itemsets.

Steps 5 and 6 check if it is incremental run or not; in the latter case, the algorithm just stops. If it
is the incremental run, then we need to find “globally” frequent itemsets (GFI) from FI(Δ), and

Steps 5 and 6 check if it is incremental run or not; in the latter case, the algorithm just stops. If it is
the incremental run, then we need to find “globally” frequent itemsets (GFI) from FI(∆), and previous
FI(D), i.e., FI(D+, minSup). As mentioned in Section 2.3, when adding new transactions, locally
frequent itemsets have three options. To determine to which option each itemset applies, we propose
using a MR job for joining itemsets (Steps 7–8). Any join MR algorithm may be used here (during
result evaluation, we have used repartition join for this task). The key of the Join reducer would be
the itemset itself, and the list of values would be occurrences of the itemset in the different DB parts,
together with its count. During our evaluation, Step 7 (Join’s mapper) read itemsets from the databases,
and outputted them together with their database mark. Step 8 (Join’s reducer) read an itemset and all
its database marks, and determined the further processing required for each itemset. It is composed of
three cases:

1. In case that it is locally frequent in ∆ and old D, then it is globally frequent so it may be outputted
immediately (step 9).

2. If it is locally frequent only in ∆, then we need to count it in old D (steps 10–11 by using the
additional count MR job).

3. If it is locally frequent in old D, we need to count it in ∆ (steps 12–13 by using the same MR job
as in steps 10–11 with other input).

All three outputs (9, 11 and 13) are collected in step 14, and represent together FI(D+, minSup).
The proposed scheme contains at least three different kinds of MR jobs:

1. Find deltaFI by using any suitable MR algorithm (may have more than one job inside).
2. Join MR job. Any Join algorithm may be in use. The Mapper output is just a copy of the input

(Identity function); the Reducer should have three output files/directories (instead of just one)
for each case.

Algorithms 2018, 11, 194 20 of 32

3. Count itemsets inside the database. The same MR count algorithm may be used for both old D
and ∆. Counts in both DBs could be executed in parallel on the same MR cluster.

There is (at most) one pass over the old D for counting—Steps 10–13 use the same algorithm for
counting. The mapper reads a list of itemsets for counting and counts them in its data split. The reducer
summarizes each itemset, and leaves only “globally” frequent itemsets. There is no requirement for
any additional input for general FIM (e.g., previous knowledge, PK), but any advanced algorithm may
use any additional acquired knowledge from mining old D as an input to the incremental algorithm.

4.2.2. Early Pruning Optimizations

In the scheme described above, only one step requires accessing the old D, whose size may be
huge compared to ∆. This is the step of recounting local frequent itemsets from ∆, which did not
appear to be in FI(D). To minimize access to the old D, we suggest using early pruning techniques
which consider the relation between the old D size and the ∆ size. These techniques are additions
to the early pruning of the IMRApriori technique but are not unique for Map-Reduce algorithms,
and could be used in every incremental FIM algorithm. All of the following lemmas are trying to
numerically determine the potential of a candidate itemset to be frequent as soon as possible.

Let inc be the size of ∆ relative to the size of D. Let n be the size of D (n =|D|); then, the size of ∆
is inc ∗ n or inc ∗ |D|.

Observation 1:

xεFI
(
D+, minSup

)
→ supD+(x) ≥ minSup ∗ (|D|+ inc ∗ |D|)

Proof.
supD(x) + sup∆(x) = supD+(x) ≥ minSup ∗ |D+| = minSup ∗ (|D|+ |∆|)

= minSup ∗ (|D|+ inc ∗ |D|);

�

Lemma 1. (Absolute Count):

xεFI(D, minSup ∗ (1 + inc))→ xεFI
(
D+, minSup

)
;

Proof of Lemma 1.

x ∈ FI(D, minSup ∗ (1 + inc))→
supD+(x) = supD(x) + sup∆(x) ≥ supD(x) ≥ minSup ∗ (1 + inc) ∗ |D|

= minSup ∗ (|D|+ inc ∗ |D|) = minSup ∗ (|D|+ |∆|)
= minSup ∗ |D+|;

i.e., supD(x) ≥ minSup(1 + inc)n→ IεFI(D+, minSup);
Lemma 1 ensures that if x is “very” frequent in the old D (support of at least minSup∗(1 + inc)),

then it will be frequent in D+ even if it does not appear in ∆ at all. �

Lemma 2. (Minimum Count):

xεFI
(
D+, minSup

)
→ supD(x) ≥ n ∗ (minsup + minsup ∗ inc− inc);

Proof.
sup∆(x) ≤ |∆| = inc ∗ n;

Algorithms 2018, 11, 194 21 of 32

|∆|+ supD(x) ≥ sup∆(x) + supD(x)

≥ minSup ∗
∣∣D+

∣∣ = minSup ∗ (1 + inc) ∗ n;

supD(x) ≥ minSup ∗ (1 + inc) ∗ n− |∆|

= minSup ∗ (1 + inc) ∗ n− inc ∗ n

= n ∗ (minSup + minSup ∗ inc− inc);

For answering if x can be in FI(D+, minSup) without even looking at ∆, we need to know if
xεFI(D, minSup + minSup ∗ inc− inc). Of course, minSup + minSup ∗ inc− inc may be less than zero
(or minSup ≥ inc(inc + 1)), there is no minimum level.

Lemma 2 puts a lower bound of occurrences of itemset x in old D for it to have a possibility to
appear in FI of D+ (even if x appears in 100% of transactions in ∆, it must obey this criterion and
therefore it is a pruning condition). See below for its use for non-frequent itemsets. �

Lemma 3.
sup∆(x) ≥ minSup ∗ (1 + inc) ∗ n→ x ∈ FI

(
D+, minsup

)
;

Proof. Similar to Lemma 1 conclusion:

supD+(x) = sup∆(x) + supD(x) ≥ sup∆(x) ≥ minSup ∗ (1 + inc) ∗ n = minSup ∗
∣∣D+

∣∣;
Lemma 3 tells us that if x is “very” frequent in ∆ and ∆ is large enough or minSup is small enough,

then x will appear in FI of D+ (even if it never appeared in old D). This lemma is also a pruning
condition. If itemset x satisfies it, then there is no need to count it in the old D.

Observation 2 (Absolute Count Delta):

xεFI(∆, minsup ∗ (1 + 1/inc))→ IεFI
(
D+, minSup

)
;

�

Proof.
xεFI

(
∆, minsup ∗

(
1 + 1

inc

))
→ sup∆(x) ≥ minSup ∗

(
1 + 1

inc

)
∗ |∆|

= minSup ∗
(

1 + 1
inc

)
∗ inc ∗ n = minSup ∗ (1 + inc) ∗ n;

To use Lemma 3, minSup∗(1 + inc) must be less than one. �

To use the above lemmas in our algorithm, we modify the FIM algorithm to keep the itemset
together with its potential “minimum count” and “maximal count” (for each Split of ∆ and D).
Each Split that has information about the exact count of itemsets adds the count to the total of
“minimum count” and “maximal count” (potential count is between these values). When there is no
information from the Split about some itemset I, we use observations from IMRApriori, and we update
the “maximal count” to be Ceil(|Split Size|∗minSup)−1 (otherwise it would appear as locally frequent
and we would have exact information about it), and “minimum count” is set to 0 (total “minimum
count” is not updated). This is done in the Reducer of Stage 1 of IMRApriori. Let χi(x) be an indicator
function that is 1 if x was locally frequent in split Si and 0 otherwise. The reducer would output a
triple <x,mincount,maxcount>, where

mincount = ∑|Splits|
i=1 χi(x) ∗ supSi (x)

maxcount = ∑|Splits|
i=1 χi(x) ∗ supSi (x) + (1− χi(x)) ∗ (|Si| ∗minSup− 1)

Algorithms 2018, 11, 194 22 of 32

Note, that when the exact count is known, then mincount equals to maxcount.
If maxcount < minSup∗|D+|, then x is pruned (by the original IMRApriori algorithm). If mincount ≥
minSup∗|D+|, then x is globally frequent, and should not need to be recounted in the missed Splits.
Previously defined lemmas are applied in the algorithm during the Join in Step 8. In this step,
we already know the sizes of D and ∆, and therefore we know n and inc. So, we compare potential
counts of itemsets directly to sizes of databases. The map phase of Join extracts the potential counts for
some DB part (old D or ∆) from the input and outputs it immediately together with the DB “marker”
(variable that determines if it is D or ∆). Algorithm 6 determines the total potential counts and makes
the decision about itemset future processing.

Split size information and totalD size is being passed as “previous knowledge” (PK) input into the
FIM incremental algorithm in “General Scheme” at Step 3, and in our implementation of IMRApriori
in phase 1.

Algorithms 2018, 11, x FOR PEER REVIEW 22 of 33

Algorithm 6. The Reducer phase of Join with Lemmas Applied.

4.2.3. Early Pruning Example

The following is an example of “minimal count” (mincount) and “maximal count” (maxcount) for
a small DB with 1001 transactions (|𝒟| = 1001). In case we have two Mappers, the MR framework
would split the DB to two Splits of roughly equal sizes. Table 4 is a table showing the calculation per
two Splits with the support ratio of 20%. For example, for an itemset to be frequent in 𝒟, it needs to
be contained in at least ⌈1001*0.2⌉ = 201 transactions. This example will examine itemsets A = {a},
and B = {b}, and their possible appearance in 𝒟.

Table 4. Early pruning example values for 𝒟.

 𝐒𝐩𝐥𝐢𝐭1 𝐒𝐩𝐥𝐢𝐭2
Transaction count |𝑆𝑝𝑙𝑖𝑡1| = 501 |𝑆𝑝𝑙𝑖𝑡1| = 500
Min support level ⌈501 ∗ 0.2⌉ = 101 ⌈500 ∗ 0.2⌉ = 100

A Count in the Split as found
by the relevant mapper

101 Unknown (not locally frequent)

mincount of A 101 0 (may not appear at all)
maxcount of A 101 100 - 1 = 99

Total mincount of A 101

Total maxcount of A 200
Less than 𝒟 min support level

(201). Pruned away.
B Count in the Split as found

by the relevant mapper
101 100

4.2.3. Early Pruning Example

The following is an example of “minimal count” (mincount) and “maximal count” (maxcount) for
a small DB with 1001 transactions (|D| = 1001). In case we have two Mappers, the MR framework
would split the DB to two Splits of roughly equal sizes. Table 4 is a table showing the calculation per
two Splits with the support ratio of 20%. For example, for an itemset to be frequent in D, it needs to
be contained in at least 1001∗0.2 = 201 transactions. This example will examine itemsets A = {a},
and B = {b}, and their possible appearance in D.

Algorithms 2018, 11, 194 23 of 32

Table 4. Early pruning example values for D.

Split1 Split2

Transaction count |Split1| = 501 |Split1| = 500
Min support level 501 ∗ 0.2 = 101 500 ∗ 0.2 = 100

A Count in the Split as found by
the relevant mapper 101 Unknown (not locally frequent)

mincount of A 101 0 (may not appear at all)
maxcount of A 101 100 − 1 = 99

Total mincount of A 101

Total maxcount of A 200 Less than D min support level
(201). Pruned away.

B Count in the Split as found by
the relevant mapper 101 100

mincount of B 101 100
maxcount of B 101 100

Total mincount of B 201 Frequent in D
Total maxcount of B 201

Table 4 shows how A is being preemptively pruned inD. Table 5 shows an example of incremental
computation with ∆. If ∆ consists of only five similar transactions {a} (|∆|= 5, minimum support
level is 1), then FI(∆, minSup)= {a}. Also |D+|= 1006, and the new minimum threshold is 202.
The following table shows how decisions for A and B are being made:

Table 5. Early pruning example values for incremental D and ∆.

∆ D
A Count 5 Unknown (was pruned)

mincount A 5 0
maxcount A 5 201− 1 = 200

Total mincount of A 5
Total maxcount of A 205 Could be frequent in D+

B Count 0 201 (was frequent in D)
mincount B 0 201
maxcount B 0 201

Total mincount of B 201
Total maxcount of B 201 Less than minimum support level of D+. Pruned away.

This example shows that B cannot be frequent in D+, so it will not even be resent to ∆ for
recounting (if we would omit this optimization, then we would have to go over ∆ again to count B).

By using early pruning optimization, we are able to reduce the number of candidates
which reduces the output of MR, and saves CPU resources in future jobs that otherwise would
require counting of the non-potential “candidates”. The above optimization is valid for any
distributed framework.

Next, we show an optimization which is tailored specifically to Map-Reduce.

4.2.4. Map-Reduce Optimized Algorithm

There are few known drawbacks of the Map-Reduce framework [4,38] that can harm the
performance of any algorithm. We will concentrate on the overhead of establishing a new
computational job, creation of a physical process for the Mapper and the Reducer, on each of the
distributed machines, and I/O consumption when it needs to read or write data from/to a remote
location, e.g., read input from HDFS.

Our performance evaluation (see Section 4.3) of the General Scheme, even with the early pruning
optimization, showed that the CPU time of the algorithms is lower compared to the full process of D+

Algorithms 2018, 11, 194 24 of 32

from scratch, but parallel run time could be the same. It happens for databases that are small, and that
their delta is also small. The first reason for this is that the Incremental Scheme has many more MR jobs
compared to non-incremental FIM. The overhead of job creation time for each of the jobs is summed,
and if it is of the same degree as the total algorithm time (happens for small databases/deltas), there could
be no benefit for the incremental algorithm run time (although each machine in the cluster runs faster and
consumes less energy). Another reason is that the general scheme needs to read the ∆ several times from
a remote location as it is required as the input for different jobs. In the non-incremental FIM algorithm,
the number of I/O reads of whole D+ (D and ∆) is dependent on the underlying FIM algorithm, and the
later output of FI(D+). In the General Scheme, the same FIM is executed only on ∆ with an output of
FI(∆), but there is also the requirement to read all FI(∆) back from the network disk to join it with FI(D).
Moreover, it is required to read the whole ∆ again for the recounting step.

To work around these limitations of the Incremental Scheme, we suggest reducing the number of
jobs that are used in the General Scheme. It will allow us to reduce start times, and will imply less
I/O communication. We will start with the observation that the Join job (Steps 7–8 of Algorithm 5)
is required to read the output of the previous FIM job (Step 4) immediately. We suggest merging the
FIM output of Step 4 with the Join job. It should receive an additional input (FI(D)), and instead
of writing FI(∆), it will “join” the results. It will still have three outputs like the original Join job.
All optimizations discussed in Section 4.2.2 should be also applied in this combined step.

The next job that would be removed is the recounting step in ∆ (Steps 12–13). The only itemsets
that could be qualified for this output are itemsets that were not frequent in ∆, and were frequent in D.
We suggest counting all itemsets from FI(D) during Step 3 of FIM in ∆, as there is already a pass over
∆ anyway. IMRApriori phase 2 could be enhanced to do the counting not only for new candidates,
but also for FI(D). The updated algorithm is depicted in Figure 8.

Our performance evaluation also revealed additional conditions when the incremental algorithm
performs worse than the non-incremental one. It happens when the input for a Split is very small,
and the minimum support level is also small. Under such conditions, the minimum required
occurrences for an itemset to become candidate for frequent itemset is very low—it may be as low as a
single transaction, and then almost all combinations of items would become candidates. Such a small
job may run longer than mining the whole D+ with non-incremental FIM. To overcome this problem,
we propose few simple but effective techniques:

1. When the ∆ is being split by the MR framework to Splits, it is being split to chunks of equal
predefined sizes. Only the last chunk may be of different size. We need to make sure that the
last chunk is larger than the previous chunk (rather than smaller). Fortunately, MR systems,
like Hadoop, do append the last smaller input part to a previous chunk of predefined size. So,
the last Split is actually larger than the others.

2. If the total input divided by the minimum Split amounts is still too small, it is preferable to
manually control the number of Splits. In most cases, it is better to sacrifice parallel computation
for gaining speed with less workers or even using a single worker. Once again, it is possible to
control the splitting process in Hadoop’s system via the configuration parameters.

3. If ∆ is still very small for a single worker to process it effectively, it is better to use a
non-incremental algorithm for the calculation of D+.

The detection of Split sizes, configuration of Split number, and deciding which algorithm to use
could be implemented in the main driver of the MR algorithm.

Merging MR jobs into one, allowed us to achieve an algorithm that has only two steps. The first
step is the Map-Reduce FIM step for ∆ only. For comparison, the non-incremental algorithm would
have a Map-Reduce FIM calculation for the much bigger D+. The second step is the optional step
of counting candidates in the old D (at most one pass over old D), and it is triggered only when
there is an itemset that must be recounted in the old D. The price for our algorithm is a slightly more
complicated FIM input and output step.

Algorithms 2018, 11, 194 25 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 26 of 34

The detection of Split sizes, configuration of Split number, and deciding which algorithm to use
could be implemented in the main driver of the MR algorithm.

Merging MR jobs into one, allowed us to achieve an algorithm that has only two steps. The first
step is the Map-Reduce FIM step for Δ only. For comparison, the non-incremental algorithm would
have a Map-Reduce FIM calculation for the much bigger 𝒟 . The second step is the optional step of
counting candidates in the old 𝒟 (at most one pass over old 𝒟), and it is triggered only when there
is an itemset that must be recounted in the old 𝒟. The price for our algorithm is a slightly more
complicated FIM input and output step.

.

Figure 8. Optimized incremental algorithm with reduced overhead.

4.2.5. Reuse of Discarded Information

During the MR algorithm, we generate many itemset candidates which were “locally” frequent
in some Splits, but discarded in the end as they were not globally frequent. We propose to keep the
previously discarded itemsets. For this, we keep the non-frequent itemsets (𝑁𝐹𝐼(𝒟)) in another file

Figure 8. Optimized incremental algorithm with reduced overhead.

4.2.5. Reuse of Discarded Information

During the MR algorithm, we generate many itemset candidates which were “locally” frequent
in some Splits, but discarded in the end as they were not globally frequent. We propose to keep the
previously discarded itemsets. For this, we keep the non-frequent itemsets (NFI(D)) in another file that
will be created during the process of FIM on D. In our algorithm from Section 4.2.1, we require this file
as an additional input (Previous Knowledge). The algorithm will “join” FI(∆) with FI(D) ∪ NFI(D).
With this additional information available, there is a higher chance of an itemset to have an exact count
so it will not need to be recounted. As we join itemsets from FI(∆) with NFI(D), we are reducing
the counts over D. As the old D tend to be much larger than ∆, reducing (and possibly eliminating
completely) the count improves the run time of the algorithm. It is important to mention that NFI
tends to be much smaller than all possible itemset combinations of D, and we can keep them as they
were already calculated and saved by at least one mapper anyway.

Algorithms 2018, 11, 194 26 of 32

4.3. Experimental Evaluation

4.3.1. Data

The first tested dataset is synthetically generated T20I10D100000K (will be referenced as T20) [37].
It contains almost 100,000,000 (D100000K) transactions of an average length of 20 (T20), and an
average length of maximal potential itemset of 10 (I10). It is 13.7 GB in size. The second dataset is
“WebDocs” [35,36] (similar to Section 3.3.1).

The datasets were each cut into two equal halves. The first half of each dataset was used as the
baseline of 100% size (D). The other part was used to generate the different ∆. For example, WebDocs
was cut to a file size of 740 MB. Its delta of 5% was cut from the part that was left out, and its size was
then 37 MB. The running time of the incremental algorithms on the 5% delta was compared to the
full process of the 777 MB file (merged the 740 MB base file and the 5% delta of 37 MB as a single file
for the test). Similarly, the T20 baseline of 100% has a size of 6.7 GB with 10% increments of 700 MB.
We used different minSup values for each dataset. For T20, we tested minSup 0.1% and 0.2%. WebDocs
was tested with 15%, 20%, 25%, 30% (although we show graphs only of 15% and 20%).

4.3.2. Setup

We ran all the experiments on the Google Compute Engine Cloud (GCE) by directly spanning
VMs with Hadoop version 1 (old numbering 0.20.XX). We used different cluster sizes with 4 cores,
5 cores, 10 cores and 20 cores, and GCE instance types of n1-standard-1 or n1-standard-2.

4.3.3. Measurement

We measured various times: “run time” is measured by the “Driver” program from the start of
the algorithm until all outputs are ready (“Driver” is responsible for communicating with the MR API).
The “CPU time” is the time that all cluster machines consumed as measured by the MR framework.

During the experiments, we changed the size of ∆, minimal support (the lower the support,
the larger the candidate set size and therefore the algorithm run time should go up), and cluster sizes.

4.3.4. Experiment Internals

We compare the performance of three algorithms described in Section 4.2. We denote the algorithm
from Section 4.2.2, incremental algorithm with IMRApriori and early pruning optimization—as “Delta”.
The algorithm from Section 4.2.4 with minimum steps/jobs is called “DeltaMin”. The algorithm from
Section 4.2.5, that also keeps count of non-frequent itemsets, is called “DeltaMinKeep”. The baseline
for the comparison of the algorithms is the previously published non-incremental FIM algorithm
IMRApriori [10] on D+. It is called “Full”.

4.3.5. Results

Figure 9a,b demonstrate the run and CPU times of each algorithm for dataset T20 on GCE cluster
of size 5 and minSup 0.1%. It shows that incremental algorithms behave better than full in both
parameters. The increase in delta size increases the computation time.

Figure 9c,d are similar to Figure 9a,b, but they depict the algorithm’s behavior for minSup 0.2%.
In this case, the run time of “Delta” is higher than “Full” and “DeltaMin” behaves almost the same as
“Full”. The CPU time of “Delta” and “DeltaMin” is still lower than that of “Full”. “DeltaMinKeep” is
better by all parameters than “Full”. The large difference between “DeltaMinKeep” and “DeltaMin” is
explained by eliminating the need to run the recount Job in old D.

Figure 9e,f show the algorithm’s run, and CPU time behavior for T20, minSup 0.1%, and inc 10%
as the GCE cluster size changes from 5 to 10, and to 20 nodes/cores. We can see that the incremental
algorithms scale well with more cores added to the system, although it is not linear. “Full” recalculation
scaled even worse when the cluster size changed. This is explained by the fact, that as long as the

Algorithms 2018, 11, 194 27 of 32

input data size divided by the number of workers is larger than the HDFS block size, each mapper gets
exactly the same Split, and its work is the same. Once the cluster size scales above this point, the data
split size gets lower than the HDFS block. In most algorithms, the smaller the input, the faster the
algorithm runs. In our case, this is true for the counting jobs (second step of IMRApriori or recounting
in case of old DB check) and the “Join” job. The first step of IMRApriori finds all FI of its data split by
running Apriori on its data Split. This algorithm is not linear in its input size and may perform worse
on a very small input size (see Section 4.2.4).

Figure 9g,h show the algorithm’s run and CPU time behavior for WebDocs, minSup 15% and inc
10% as GCE cluster size changes from 5 to 10 and to 20 nodes/cores. We can see that incremental
algorithms scale well when more cores are added to the system. “Full” recalculation CPU time does
not scale that well when cluster size changes, similar to the previous case.

Figure 9i,j show WebDocs with minSup 20% run, and CPU time as delta size varies. It shows that
run time of “Delta” is no better than “Full”, but its CPU time is better.

Figure 9k,l show similar graphs to Figure 9i,j, but for minSup 15%. As frequent itemset mining for
minSup of 15% is more computationally extensive than 20%, the resulted times are higher. We can see
that in this case, all incremental algorithms behave much better than the full algorithm. In some cases,
a full run takes 2–3 times longer than incremental algorithms.

Figure 9m,n are similar to Figure 9k,l, but show a close up of the incremental algorithms only,
and their run/CPU times. It shows that “Delta” behaves worse than “DeltaMin”, and “DeltaMin”
behaves worse than “DeltaMinKeep”.

Our evaluation shows that the incremental algorithms do similarly or better than full recalculation
on smaller sized datasets with larger support in terms of CPU time, while the Run time was not always
better for less optimized “Delta” and “DeltaMin” algorithms

As the support threshold decreased, all incremental algorithms had better Run and CPU times
than “Full” re-computation. They outperformed the “Full” algorithm several times (in some of the
tests, even by a factor of 10). The explanation for this is that more time is required to mine FI than just
doing candidate counting.

The Run and CPU times of “DeltaMin” is always superior to “Delta”. “DeltaMinKeep” showed
results superior to “DeltaMin” according to Run time and CPU time. The large differences were
observed in execution when the algorithm managed to completely eliminate the counting step of
old D.

Algorithm run time and CPU time showed almost linear growth with an increase in input size
(increase in ∆ size), as long as the Split size stayed constant.

Cluster size change showed that larger clusters improve the run time. It is not always linear,
as there is a limit at which splitting the input into too many small chunks generates too many locally
frequent itemsets, which requires longer recounting steps.

Algorithms 2018, 11, x FOR PEER REVIEW 28 of 34

Figure 9c,d are similar to Figure 9a,b, but they depict the algorithm’s behavior for minSup 0.2%.
In this case, the run time of “Delta” is higher than “Full” and “DeltaMin” behaves almost the same
as “Full”. The CPU time of “Delta” and “DeltaMin” is still lower than that of “Full”. “DeltaMinKeep”
is better by all parameters than “Full”. The large difference between “DeltaMinKeep” and
“DeltaMin” is explained by eliminating the need to run the recount Job in old 𝒟.

Figure 9e,f show the algorithm’s run, and CPU time behavior for T20, minSup 0.1%, and inc 10%
as the GCE cluster size changes from 5 to 10, and to 20 nodes/cores. We can see that the incremental
algorithms scale well with more cores added to the system, although it is not linear. “Full”
recalculation scaled even worse when the cluster size changed. This is explained by the fact, that as
long as the input data size divided by the number of workers is larger than the HDFS block size, each
mapper gets exactly the same Split, and its work is the same. Once the cluster size scales above this
point, the data split size gets lower than the HDFS block. In most algorithms, the smaller the input,
the faster the algorithm runs. In our case, this is true for the counting jobs (second step of IMRApriori
or recounting in case of old DB check) and the “Join” job. The first step of IMRApriori finds all FI of
its data split by running Apriori on its data Split. This algorithm is not linear in its input size and may
perform worse on a very small input size (see Section 4.2.4).

Figure 9g,h show the algorithm’s run and CPU time behavior for WebDocs, minSup 15% and inc
10% as GCE cluster size changes from 5 to 10 and to 20 nodes/cores. We can see that incremental
algorithms scale well when more cores are added to the system. “Full” recalculation CPU time does
not scale that well when cluster size changes, similar to the previous case.

Figure 9i,j show WebDocs with minSup 20% run, and CPU time as delta size varies. It shows that
run time of “Delta” is no better than “Full”, but its CPU time is better.

Figure 9k,l show similar graphs to Figures 9i and 9j, but for minSup 15%. As frequent itemset
mining for minSup of 15% is more computationally extensive than 20%, the resulted times are higher.
We can see that in this case, all incremental algorithms behave much better than the full algorithm.
In some cases, a full run takes 2–3 times longer than incremental algorithms.

Figure 9m,n are similar to Figure 9k,l, but show a close up of the incremental algorithms only,
and their run/CPU times. It shows that “Delta” behaves worse than “DeltaMin”, and “DeltaMin”
behaves worse than “DeltaMinKeep”.

Our evaluation shows that the incremental algorithms do similarly or better than full
recalculation on smaller sized datasets with larger support in terms of CPU time, while the Run time
was not always better for less optimized “Delta” and “DeltaMin” algorithms

As the support threshold decreased, all incremental algorithms had better Run and CPU times
than “Full” re-computation. They outperformed the “Full” algorithm several times (in some of the
tests, even by a factor of 10). The explanation for this is that more time is required to mine FI than just
doing candidate counting.

(a) (b)

Figure 9. Cont.

Algorithms 2018, 11, 194 28 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 28 of 33

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9. Cont.

Algorithms 2018, 11, 194 29 of 32

Algorithms 2018, 11, x FOR PEER REVIEW 29 of 33

(k) (l)

(m) (n)

Figure 9. (a) T20 Run Time minSup 0.1% Cluster 5; (b) T20 CPU Time minSup 0.1% Cluster 5; (c). T20
Run Time minSup 0.2% Cluster 5; (d) T20 CPU Time minSup 0.2% Cluster 5; (e) T20 Run Time minSup
0.1%, inc 10%; (f) T20 CPU Time minSup 0.1%, inc 10%; (g) WebDocs Run time minSup 15% inc 10%;
(h) WebDocs CPU time minSup 15% inc 10%; (i) WebDocs minSup 20% Run Time; (j) WebDocs minSup
20% CPU Time; (k) WebDocs minSup 15% Run Time; (l) WebDocs minSup 15% CPU Time; m.
WebDocs minSup 15% Run Time Close Up; (n) WebDocs minSup 15% CPU Time Close Up.

The Run and CPU times of “DeltaMin” is always superior to “Delta”. “DeltaMinKeep” showed
results superior to “DeltaMin” according to Run time and CPU time. The large differences were observed
in execution when the algorithm managed to completely eliminate the counting step of old 𝒟.

Algorithm run time and CPU time showed almost linear growth with an increase in input size
(increase in Δ size), as long as the Split size stayed constant.

Cluster size change showed that larger clusters improve the run time. It is not always linear, as
there is a limit at which splitting the input into too many small chunks generates too many locally
frequent itemsets, which requires longer recounting steps.

4.3.6. Comparison to Previous Works

The FUP algorithm [15] was the first to provide an Incremental Scheme which is based on mining
the Δ. The algorithm is not distributed or parallel. It mines Δ by iterative steps from candidates of
size 1 to K, and stops when no more candidates are available. At each step, this algorithm scans the
old 𝒟 to check the validity of its candidates. Implementing this algorithm in MR would require K
scans over the old 𝒟, which would generate K-times more I/O than our algorithms and would be
less effective.

Figure 9. (a) T20 Run Time minSup 0.1% Cluster 5; (b) T20 CPU Time minSup 0.1% Cluster 5; (c) T20 Run
Time minSup 0.2% Cluster 5; (d) T20 CPU Time minSup 0.2% Cluster 5; (e) T20 Run Time minSup
0.1%, inc 10%; (f) T20 CPU Time minSup 0.1%, inc 10%; (g) WebDocs Run time minSup 15% inc 10%;
(h) WebDocs CPU time minSup 15% inc 10%; (i) WebDocs minSup 20% Run Time; (j) WebDocs minSup
20% CPU Time; (k) WebDocs minSup 15% Run Time; (l) WebDocs minSup 15% CPU Time; (m) WebDocs
minSup 15% Run Time Close Up; (n) WebDocs minSup 15% CPU Time Close Up.

4.3.6. Comparison to Previous Works

The FUP algorithm [15] was the first to provide an Incremental Scheme which is based on mining
the ∆. The algorithm is not distributed or parallel. It mines ∆ by iterative steps from candidates of size
1 to K, and stops when no more candidates are available. At each step, this algorithm scans the old D
to check the validity of its candidates. Implementing this algorithm in MR would require K scans over
the old D, which would generate K-times more I/O than our algorithms and would be less effective.

ARM IDB [7] provides optimizations on incremental mining by using the TID–list intersection
and its “LAPI” optimization. The algorithm does not deal with a distributed environment (i.e., MR),
so it has no way to scale out.

Incoop and DryadInc do not support more than one input for DAG (and we need to be able to
have DB and the candidate set as an input). As there is no known way to overcome this difference,
it does not allow us a direct comparison. These systems cannot extract useful information from the
knowledge of the algorithm goal or its specific implementation and therefore improve their run time.

4.3.7. The Algorithm Relation to the Spark Architecture

Spark [3] is a distributed parallel system that has recently gathered popularity. The main difference
from Map-Reduce is that it tries to make all computations in memory. Spark uses notation of Resilient
Distributed Datasets (RDDs), which can be recomputed in case of failure. On the contrary, Map-Reduce

Algorithms 2018, 11, 194 30 of 32

saves all intermediate and final results on a local or a distributed file system (DFS). The fact that
Spark uses in-memory computation, and in-memory distributed cache allows Spark to achieve better
performance. It has much less I/O operations as data is being cached in memory. This provides a
significant boost to many algorithms.

Our general algorithm is not going to change due to the switch of the computation framework to
Spark. We still need to assume that there is a way to compute frequent itemsets in Spark (and indeed
Spark’s mllib library contains the FIM algorithm, which is currently based on a FP-Growth–FPGrowth
class). Joining two lists/tables is also easily done in Spark. Spark has many kinds of joins implemented
(“join” function). The last parts are recounting transactions in different datasets, which could be once
again easily done via a set of calls to “map” and “reduceByKey” Spark functions. Broadcasting and
caching datasets of all new potential frequent itemsets on each node will improve the overall run time
(SparkContext.broadcast). This is possible as the amount of potential frequent itemsets tends to be
much lower than all datasets and could be cached in the memory of each partition. As the calculation
of frequent itemsets is a computationally intensive operation, the Spark incremental scheme for FIM
would have better performance than full re-computation in most cases, similar to Map-Reduce.

The early pruning optimization that was introduced in Section 4.2.2 would have a positive effect
in Spark too, as there will be less itemsets to cache in memory, and less itemsets to check against the
different datasets.

Job reduction optimizations from Section 4.2.4 are less effective in Spark because of the following:
Spark does not spawn a new process/VM for each task, but utilizes multi-threading, so it achieves
a better job start time. Spark also encourages writing programs in declarative ways so some “job
merging” is achieved naturally by allowing the SparkContext executors to decide for themselves how
to solve the problem more effectively. If the size of a dataset tends to be much larger than the total
RAM of the cluster, then the cache would be frequently flushed, and data would be re-read from the
disk. In such cases, manually forcing a data read only once would be still beneficial, so joining a few
computations into a single pass on data will be preferable.

The reuse of discarded data from Section 4.2.5 tends to reduce the number of itemsets that need
to be checked in the old dataset. The issue is that the default FIM algorithm in Spark does not produce
any intermediate results as it is based on FP-Growth. If some other algorithm for FIM could be used
that would produce additional itemsets, we suggest using them and this optimization.

Spark streaming is based on re-running the algorithm on “micro batches” of newly arrived data.
Our algorithm could be used to achieve this task. However, the sizes of batches that are suitable for
efficient streaming computation should be further studied.

5. Conclusions

This work presented methods for mining frequent itemsets. For closed frequent itemset mining,
we have presented a new, distributed, and parallel algorithm using the popular Map-Reduce
programming paradigm. Besides its novelty, using Map-Reduce makes this algorithm easy to
implement, relieving the programmer from the work of handling concurrency, synchronization and
node management which are part of a distributed environment, and focus on the algorithm itself.

Incremental frequent itemset mining algorithms, that were presented in this work, range from
a General Scheme that could be used with any distributed environment, to a Map-Reduce heavily
optimized version which mostly works much better than other algorithms in experiments. The lower
the support rate, the harder the computations are, and the more benefit that can be achieved by the
incremental algorithms.

A general direction for future research for both presented schemes involves implementing and
testing them on other distributed environments like Spark. We assume that most of the proposed
algorithms will work effectively, although some methods may become redundant once the distributed
engine becomes more effective with less overhead.

Algorithms 2018, 11, 194 31 of 32

Author Contributions: Y.G. contributed to the research and evaluation of experiments of the closed frequent
itemsets. K.K. contributed to the research and experiments of incremental frequent itemsets. E.G. participated in
the research and supervision of all the article topics. All authors wrote parts of this paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters; ACM: New York, NY, USA,
2008.

2. Apache: Hadoop. Available online: http://hadoop.apache.org/ (accessed on 1 January 2016).
3. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.; Shenker, S.; Stoica, I.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, USA,
25–27 April 2012.

4. Doulkeridis, C.N. A survey of large-scale analytical query processing in MapReduce. VLDB J. Int. J. Very
Large Data Bases 2014, 23, 355–380. [CrossRef]

5. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington,
DC, USA, 25–28 May 1993; pp. 207–216.

6. Agrawal, R.; Srikant, R. Fast Algorithms for Mining Association Rules; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1994.

7. Duaimi, M.G.; Salman, A. Association rules mining for incremental database. Int. J. Adv. Res. Comput.
Sci. Technol. 2014, 2, 346–352.

8. Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent pattern mining: Current status and future directions. Data Min.
Knowl. Discovery 2007, 15, 55–86. [CrossRef]

9. Cheng, J.; Ke, Y.; Ng, W. A survey on algorithms for mining frequent. Knowl. Inf, Syst. 2008, 16, 1–27.
[CrossRef]

10. Farzanyar, Z.; Cercone, N. Efficient mining of frequent itemsets in social network data based on MapReduce
framework. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, Niagara Falls, ON, Canada, 25–28 August 2013; pp. 1183–1188.

11. Li, N.; Zeng, L.; He, Q.; Shi, Z. Parallel implementation of apriori algorithm based on MapReduce.
In Proceedings of the 2012 13th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel & Distributed Computing, Kyoto, Japan, 8–10 August 2012.

12. Woo, J. Apriori-map/reduce algorithm. In Proceedings of the 2012 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2012), Las Vegas, NV, USA, 16–19 July 2012.

13. Yahya, O.; Hegazy, O.; Ezat, E. An efficient implementation of Apriori algorithm based on
Hadoop-Mapreduce model. Int. J. Rev. Comput. 2012, 12, 59–67.

14. Pasquier, N.; Bastide, Y.; Taouil, R.; Lakhal, L. Discovering frequent closed itemsets for association rules.
In Proceedings of the Database Theory ICDT 99, Jerusalem, Israel, 10–12 January 1999; pp. 398–416.

15. Cheung, D.W.; Han, J.; Wong, C.Y. Maintenance of discovered association rules in large databases:
An incremental updating technique. In Proceedings of the Twelfth International Conference on Data
Engineering, New Orleans, LA, USA, 26 February–1 March 1996; pp. 106–114.

16. Thomas, S.; Bodagala, S.; Alsabti, K.; Ranka, S. An efficient algorithm for the incremental updation of
association rules in large databases. In Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining, Newport Beach, CA, USA, 14–17 August 1997; pp. 263–266.

17. Das, A.; Bhattacharyya, D.K. Rule Mining for Dynamic Databases; Springer: Berlin/Heidelberg, Germany, 2004.
18. Gonen, Y.; Gudes, E. An improved mapreduce algorithm for mining closed frequent itemsets. In Proceedings

of the IEEE International Conference on Software Science, Technology and Engineering (SWSTE), Beer-Sheva,
Israel, 23–24 June 2016; pp. 77–83.

19. Kandalov, K.; Gudes, E. Incremental Frequent Itemsets Mining with MapReduce; Springer: Cham, Switzerland,
2017; pp. 247–261.

http://hadoop.apache.org/
http://dx.doi.org/10.1007/s00778-013-0319-9
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1007/s10115-007-0092-4

Algorithms 2018, 11, 194 32 of 32

20. Agrawal, R.; Shafer, J. Parallel mining of association rules. IEEE Trans. Knowl. Data Eng. 1996, 8, 962–969.
[CrossRef]

21. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. New Algorithms for Fast Discovery of Association Rules;
University of Rochester: Rochester, NY, USA, 1997.

22. Lucchese, C.; Orlando, S.; Perego, R. Parallel mining of frequent closed patterns: Harnessing modern
computer architectures. In Proceedings of the Seventh IEEE International Conference on Data Mining,
Omaha, NE, USA, 28–31 October 2007; pp. 242–251.

23. Lucchese, C.; Mastroianni, C.; Orlando, S.; Talia, D. Mining@home: Toward a public-resource computing
framework for distributed data mining. Concurrency Comput. Pract. Exp. 2009, 22, 658–682. [CrossRef]

24. Liang, Y.-H.; Wu, S.-Y. Sequence-growth: A scalable and effective frequent itemset mining algorithm for big
data based on mapreduce framework. In Proceedings of the 2015 IEEE International Congress on Big Data,
New York, NY, USA, 27 June–2 July 2015; pp. 393–400.

25. Wang, S.-Q.; Yang, Y.-B.; Chen, G.-P.; Gao, Y.; Zhang, Y. Mapreduce based closed frequent itemset mining
with efficient redundancy filtering. In Proceedings of the 2012 IEEE 12th International Conference on Data
Mining Workshops, Brussels, Belgium, 10 December 2012; pp. 449–453.

26. Liu, G.; Lu, H.; Yu, J.; Wang, W.; Xiao, X. Afopt: An efficient implementation of pattern growth
approach. In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL,
USA, 19–22 November 2003.

27. Borthakur, D. The Hadoop Distributed File System: Architecture and Design. In: Hadoop Project
Website. 2007. Available online: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf (accessed on
1 January 2016).

28. Bhatotia, P.W.; Rodrigues, R.; Acar, U.A.; Pasquin, R. Incoop: MapReduce for incremental computations.
In Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascals, Portugal, 26–28 October 2011.

29. Popa, L.; Budiu, M.; Yu, Y.; Isard, M. DryadInc: Reusing work in large-scale computations. In Proceedings of
the USENIX Workshop on Hot Topics in Cloud Computing, San Diego, CA, USA, 15 June 2009.

30. Afrati, F.N.; Ullman, J.D. Optimizing joins in a map-reduce environment. In Proceedings of the 13th
International Conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010;
pp. 99–110.

31. Amazon: Elastic Mapreduce (EMR). Available online: https://aws.amazon.com/elasticmapreduce/
(accessed on 1 June 2015).

32. Gunarathne, T.; Wu, T.-L.; Qiu, J.; Fox, G. MapReduce in the Clouds for Science. In Proceedings of the 2010
IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA,
30 November–3 December 2010; pp. 565–572.

33. Blanas, S.; Patel, J.M.; Ercegovac, V.; Rao, J.; Shekita, E.J.; Tian, Y. A comparison of join algorithms for
log processing in mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 975–986.

34. Afrati, F.N.; Ullman, J.D. Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl.
Data Eng. 2011, 23, 1282–1298. [CrossRef]

35. Goethals, B. Frequent Itemset Mining Dataset. Available online: http://fimi.ua.ac.be/data (accessed on
1 June 2015).

36. Lucchese, C.; Orlando, S.; Perego, R.; Silvestri, F. Webdocs: A real-life huge transactional dataset.
In Proceedings of the ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK,
1 November 2004; p. 2.

37. Agrawal, R.; Srikant, R. Quest Synthetic Data Generator IBM Almaden Research Center, San Jose, California.
In: Mirror: http://sourceforge.net/projects/ibmquestdatagen/. Available online: http://www.almaden.
ibm.com/cs/quest/syndata.html (accessed on 1 January 2016).

38. Ekanayake, J.; Li, H.; Zhang, B.; Gunarathne, T.; Bae, S.; Qiu, J.; Fox, G. Twister: A runtime for iterative
mapreduce. In Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing, Chicago, IL, USA, 21–25 June 2010; pp. 810–818.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/69.553164
http://dx.doi.org/10.1002/cpe.1545
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://aws.amazon.com/elasticmapreduce/
http://dx.doi.org/10.1109/TKDE.2011.47
http://fimi.ua.ac.be/data
http://sourceforge.net/projects/ibmquestdatagen/
http://www.almaden.ibm.com/cs/quest/syndata.html
http://www.almaden.ibm.com/cs/quest/syndata.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Association Rules and Frequent Itemsets
	Mining Closed Frequent Itemsets Algorithms
	Incremental Frequent Itemsets Mining
	Map-Reduce Model
	Incremental Computation in Map-Reduce
	Map-Reduce Communication–Cost Model
	Apriori Map-Reduce Algorithms
	Join Operation and Map-Reduce

	Mining Closed Frequent Itemsets with Map-Reduce
	Problem Definition
	The Algorithm
	Overview
	Definitions
	Algorithm Steps
	Run Example
	Soundness
	Completeness
	Duplication Elimination

	Experiments
	Data
	Setup
	Measurement
	Experiments Internals
	Results

	Incremental Frequent Itemset Mining with Map-Reduce
	Problem Definition
	The Algorithms
	General Scheme
	Early Pruning Optimizations
	Early Pruning Example
	Map-Reduce Optimized Algorithm
	Reuse of Discarded Information

	Experimental Evaluation
	Data
	Setup
	Measurement
	Experiment Internals
	Results
	Comparison to Previous Works
	The Algorithm Relation to the Spark Architecture

	Conclusions
	References

