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Abstract: Aimed at the issue of estimating the fault component from a noisy observation, a novel
detection approach based on augmented Huber non-convex penalty regularization (AHNPR) is
proposed. The core objectives of the proposed method are that (1) it estimates non-zero singular
values (i.e., fault component) accurately and (2) it maintains the convexity of the proposed objective
cost function (OCF) by restricting the parameters of the non-convex regularization. Specifically,
the AHNPR model is expressed as the L1-norm minus a generalized Huber function, which avoids the
underestimation weakness of the L1-norm regularization. Furthermore, the convexity of the proposed
OCF is proved via the non-diagonal characteristic of the matrix BTB, meanwhile, the non-zero
singular values of the OCF is solved by the forward–backward splitting (FBS) algorithm. Last,
the proposed method is validated by the simulated signal and vibration signals of tapered bearing.
The results demonstrate that the proposed approach can identify weak fault information from the
raw vibration signal under severe background noise, that the non-convex penalty regularization can
induce sparsity of the singular values more effectively than the typical convex penalty (e.g., L1-norm
fused lasso optimization (LFLO) method), and that the issue of underestimating sparse coefficients
can be improved.

Keywords: sparse regularization; augmented Huber non-convex penalty regularization (AHNPR);
L1-norm regularization; weak fault detection; tapered rolling bearing

1. Introduction

Condition maintenance and health management (CMHM) of rotating machines are of great
significance to prevent machinery breakdown and increase system reliability in modern industrial
applications [1–3]. Vibration signals processing represents the most commonly used technique for
monitoring the condition of rotating machines. However, in practice, such vibration signals are often
contaminated and submerged by severe background noises and other interfering components, which
results in a very low detection accuracy. Therefore, to accurately extract the useful weak information
from the measured vibration signal becomes a hotspot issue in the area of mechanical fault diagnosis.

A number of state-of-the-art methodologies including wavelet/wavelet packet transform
(W-WPT) [4,5], adaptive signal decomposition (ASD) [6–8] and high-order cyclic spectral analysis
(HOCS) [9,10], have been developed for detecting weak fault information of rotating machinery under
strong noise. Recently, sparse low-rank matrix regularization (SLMR) methods, that estimate the fault
signal through solving optimization problems (or inverse problems), have attracted significant attention
because of their ability to induce sparsity of the fault signal (or singular values) more effectively than the
traditional sparse over-complete dictionaries (SODs) such as step-impulse dictionary and unit-impulse
response dictionary [11–15]. For the SLMR, in particular, we consider the problem of estimating fault signal
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x from the acquired signal y, i.e., y = Ax + w, where signal w represents additive noise. To estimate the fault
signal x, the optimization problem can be expressed by minimizing the objective cost function (OCF) F(x),
i.e., x̂ == argmin

x
{ 1

2‖y−Ax‖2
2 + λθ(x)}, λ > 0, where θ(x) is a penalty function that induces sparsity of

the approximating value of x and λ is the regularization term parameter.
Methodologies for SLMR can be roughly categorized as convex and non-convex penalty regularization

approaches. Among convex penalty functions, L1-norm penalty function is commonly used to regularize
linear inverse problems, i.e., penalty function θ(x) = ‖x‖1. In that case, the OCF F(x) is trivially convex and
the global optimum can be obtained. Unfortunately, the L1-norm may underestimate the sparse coefficients
of the underlying signal [16,17]. In contrast, numerous non-convex penalties (e.g., LP pseudo-norm
with p < 1 [18], reweighted L2/L1 norm [19]) and non-convex algorithms (e.g., orthogonal matching
pursuit, OMP) have been proposed [20–25], which estimate non-zero components more accurately than
convex regularization. However, the previous non-convex penalties were considered based on separable
penalty functions and thus suffer from several issues such as sensitivity to changes with initial data and
regularization term parameters, etc., and the convexity of the OCF cannot be guaranteed simultaneously.
Therefore, the core objective of SLMR is to determine how to maintain convexity of the OCF when the
regularizer (or penalty function) is taken to be non-convex, so that the fault component can be estimated
accurately from its noisy observation.

To address such issues, a novel non-separable non-convex regularizer, namely augmented Huber
penalty function, is developed in this paper, which overcomes limitations of separable non-convex
regularization and ensures the strict convexity of the OCF. Specifically, the augmented penalty function
is firstly defined by L1-norm and generalized Huber functions, the strict convexity and convexity
condition of the proposed OCF is then derived and provided. Meanwhile, an iterative algorithm
(e.g., forward–backward splitting, FBS) is presented as a solution to the proposed objective cost function.
Lastly, both the simulated signal and engineering bearing data of larger reducers are employed to validate
the effectiveness of the proposed approach in terms of diagnostic accuracy and signal-to-noise ratio, etc.

The layout of this work is organized as follows: Section 2 introduces the algorithm and theoretical
derivation of the augmented penalty optimization; Section 3 presents the simulation evaluation of
the proposed augmented Huber non-convex penalty regularization (AHNPR) method; In Section 4,
the practical diagnosis results and discussion for tapered bearing using the proposed approach with
other methods are presented; and Conclusions are drawn in Section 5.

2. Augmented Huber Non-Convex Penalty Regularization

2.1. Sparse Representation

Generally, estimating a sparse component x from its noisy observation y can be expressed as

y = Ax + w (1)

where w is the additive noise. It should be noted that Equation (1) belongs to a highly underdetermined
equation, i.e., ill-posed or non-deterministic polynomial-time hard (N-P hard) problem [26], and there
are an infinite set of solutions. Convex and non-convex optimization approaches are commonly used to
estimate a sparse component from its noisy signal. A suitable optimization problem for estimating x is

x̂ = argmin
x
{1

2
‖y−Ax‖2

2 + λ‖Dx‖1} (2)

where λ is regularization term parameter and D =


−1, 1

. . .
. . .

−1, 1

, D ∈ R(N−1)×N ,

which controls the sparsity of the approximating value of x. The above problem is well-known as the



Algorithms 2018, 11, 184 3 of 19

L1-norm minimization, and the L1-norm is used as a convex function for sparsity. If the signal x is a
sparse component, i.e., most of the amplitude values in x tend to zero, then the problem in Equation
(1) can be solved by L1-norm fused lasso optimization (LFLO) algorithm, i.e.,

x̂ = argmin{1
2
‖y−Ax‖2

2 + λ0‖x‖1 + λ1‖Dx‖1} (3)

where λ0 and λ1 are regularization parameters. The solution of the LFLO algorithm can be given by a
soft-threshold function [27], i.e.,

x = Soft(tvd(y, λ1), λ0) (4)

where tvd(·, ·) is the total variation de-noising (TVD) model [28–30] and the soft-threshold function is
defined as follows:

Soft(x, λ) =


x + λ, x < −λ

0, −λ ≤ x ≤ λ

x− λ, x > λ

(5)

2.2. The Augmented Huber Non-Convex Penalty Regularization

In this section, before the elicitation of the proposed AHNPR algorithm, the following definitions
and proposition for convex analysis should be reviewed first.

The Huber equation is defined through two piecewise functions [31,32], i.e.,

s(x) =

{
1
2 x2, |x| ≤ 1
‖x‖ − 1

2 , |x| ≥ 1
(6)

The plot of Huber function s(x) is illustrated in Figure 1.
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Figure 1. The Huber function s(x).

Let b denote a scale and the scaled Huber function (SHF) can be defined as

sb(x) =
1
b2 s(b2x), b 6= 0 (7)

For b = 0, i.e., s0(x) = 0. For b 6= 0, the scaled Huber function is given by

sb(x) =

{
1
2 b2x2, |x| ≤ 1/b2

|x| − 1
2b2 , |x| ≥ 1/b2 (8)

Note that 0 ≤ sb(x) ≤ |x|, ∀x ∈ R, i.e., lim
b→∞

sb(x) = |x| and lim
b→0

sb(x) = 0.

For the definition of SHF, the SHF could be rewritten through a minimization form, i.e.,
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sb(x) = min
v∈R

{
‖v‖1 +

1
2

b2(x− v)2
}

(9)

Proof 1. According to the SHF, i.e., sb(x) = 1
b2 s(b2x), b 6= 0, Equation (9) can be rewritten as

sb(x) = min
v∈R

{
‖v‖1 +

1
2 (b

2x− v)2
}

/b2

= min
v∈R

{
‖b2v‖1 +

1
2 (b

2x− b2v)2
}

/b2

= min
v∈R

{
‖v‖1 +

1
2 b2(x− v)2

} (10)

Let B denote a matrix and the generalized Huber function (GHF) can be defined as

sB(x) = min
v∈R

{
‖v‖1 +

1
2
‖B(x− v)‖2

2

}
(11)

In summary, if matrix B evolves into a scale, i.e., B = b, then the GHF reduces to the SHF,
sB(x) = sb(x) for all x.

If B is a matrix and BTB = I is a diagonal, then the GHF is separable, and sB(x) is the sum
of the SHF sb(x), i.e., BTB = Diag(b1, b2, · · · , bN)⇒ sB(x) = ∑

N
sbn(xn) . In contrast, if BTB 6= I is a

non-diagonal matrix, the GHF is non-separable.
Based on the definitions above, the new non-separable non-convex penalty function can be derived

using the GHFs. The new non-separable non-convex penalty (NNP) function φ(x) is defined as

φ(x) =

{
|x| − 1

2 x2, |x| ≤ 1
1
2 , |x| ≥ 1

(12)

Therefore, according to the definition of Huber function, the function φ(x) can be expressed as

φ(x) = |x| − s(x) (13)

where s(x) is the Huber function. Similarly, the plot of NNP function φ(x) is illustrated in Figure 2.
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Let b denote a scale of function and the scaled NNP function can be defined as

φb(x) = |x| − sb(x) (14)
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where sb(x) is SHF. For b = 0, i.e., φ0(x) = |x|. For b 6= 0, the scaled NNP function is given by

φb(x) =

{
|x| − 1

2 b2x2, |x| ≤ 1/b2

1
2b2 , |x| ≥ 1/b2 (15)

Let B denote a matrix and the NNP function φ(x) will evolve into an augmented Huber function
(AHF) φB(x), i.e.,

φB(x) = ‖x‖1 − sB(x) (16)

where sB(x) is the generalized Huber function (GHF).
Given a matrix B, if BTB = 0, then φB(x) = ‖x‖1; if BTB = I is a diagonal matrix,

then AHF φB(x) is separable, and φB(x) is the sum of the scaled NNP function sb(x), i.e.,
BTB = Diag(b2

1, b2
2, · · · , b2

N)⇒ φB(x) = ∑
N

φbn(xn) . If BTB = Diag(b2
1, b2

2, · · · , b2
N), then we have

φB(x) = ‖x‖1 −∑
N

sbn(xn)

= ∑
N
|x|n − sbn(xn)

= ∑
N

φbn(xn)

(17)

In contrast, if BTB is a non-diagonal matrix, the AHF φB(x) is non-separable.
Thus, the proposed AHNPR method finds the component x by solving the following

optimization problem:
F(x) = 1

2‖y−Ax‖2
2 + λφB(x)

= 1
2‖y−Ax‖2

2 + λ[‖x‖1 − SB(x)]
(18)

where F(x) is the objective cost function (OCF), and φB(x) is the AHF, which is a non-convex sparsity
inducing regularizer.

2.3. Convexity Condition

In this section, the convexity of the proposed OCF will be proved to consider how to set the
parameter τ and the relationship between matrix A and matrix B.

If y ∈ RM, A ∈ RM×N is a matrix, the regularization term parameter λ > 0 and the proposed OCF
F(x) = 1

2‖y−Ax‖2
2 + λφB(x) is convex, then the matrix BTB satisfies

BTB ≤ 1
λ

ATA (19)

Proof 2. According to sB(x) = min
v∈R

{
‖v‖1 +

1
2‖B(x− v)‖2

2

}
and φB(x) = ‖x‖1 − sB(x), the F(x) can be

rewritten as
F(x) = 1

2‖y−Ax‖2
2 + λ[‖x‖1 − sB(x)]

= 1
2‖y−Ax‖2

2 + λ‖x‖1 −min
v∈R

{
λ‖v‖1 +

λ
2 ‖B(x− v)‖2

2

}
= max

v∈R

{
1
2‖y−Ax‖2

2 + λ‖x‖1 − λ‖v‖1 − λ
2 ‖B(x− v)‖2

2

}
= max

v∈R

{
1
2 xT(ATA− λBTB)x + λ‖x‖1 + g(x, v)

}
= 1

2 xT(ATA− λBTB)x + λ‖x‖1 + max
v∈R

g(x, v)

(20)

where AT is the complex conjugate transpose of matrix A, and BT is the complex conjugate transpose
of matrix B. The last term max

v∈R
g(x, v) is convex due to the point-wise maximum of a set of convex

functions [31]. Hence, the proposed OCF F(x) is convex if it satisfies ATA− λBTB ≥ 0.
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For convexity condition BTB ≤ 1
λ ATA, it can be rewritten as BTB = (τ/λ)ATA, in which the

parameter τ satisfies τ ≤ 1. Hence, given a matrix A, the matrix B could be set as B =
√

τ/λA, 0 ≤
τ ≤ 1. The parameter τ controls the non-convexity of the AHF φB(x). If τ = 0, then B = 0 and
function φB(x) reduces to the L1-norm. If τ = 1, then BTB = (τ/λ)ATA and the function φB(x) are
maximally non-convex.

Here, the nominal range of parameter τ is discussed by a simulated discrete signal. Given a
simulated systematic signal of

f (t) = f1(t) + Noise
= M0 sin(2π f1t) + M1 cos(2π f2t) + Noise

(21)

where the amplitudes of M0 and M1 are 1 and 2, respectively, the signal length is N = 100 with the
frequencies f 1 = 0.25 and f 2 = 0.4. For the de-noising experiment, the Gaussian noise with σ = 1.5 is
added to acquire the simulated systematic signal. The systematic signal f (t) is approximately sparse
in the frequency domain, as illustrated in Figure 3, which can be represented by f = Ax, where A is
an over-sampled inverse discrete Fourier transform and x is a sparse vector of Fourier coefficients.
Specifically, matrix A is defined as Am,n = (1/

√
N) exp(j(2π/N)mn), m = 0, 1, · · · , M − 1; n =

0, 1, · · · , N − 1, with M = 100 and N = 256. Assuming that matrix AT is the complex conjugate
transpose of matrix A and it can be calculated that BTB is a diagonal matrix.
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Figure 3. The noise-free signal, simulated systematic signal and its frequency spectrum: (a) Noise-free
signal; (b) simulated systematic signal; (c) frequency spectrum of simulated systematic signal.

In order to obtain a nominal range of parameter 0 ≤ τ ≤ 1, we vary the parameter τ from 0.05
to 0.95 (by increments of 0.05) and calculate each root-mean-square error (RMSE) between the actual
value f1(t) and its estimated value ˆf1(t), and also we calculate the optimized coefficients (or Fourier
coefficients amplitude) at frequencies f 1 = 0.25 and f 2 = 0.4 for each parameter τ. The RMSE values
and optimized coefficients for each parameter τ are shown in Figure 4. From Figure 4a, it can be seen
that the larger value of parameter τ would get a lower value of RMSE, and the optimal parameters
τ are concentrated in the 0.8 ≤ τ ≤ 0.9 range. As a matter of fact, the smaller value of parameters τ

would make the estimated signal noisier and less sparse. From Figure 4b, it is found that the optimized
coefficients at f 1 = 0.25 increase and then slightly decrease with increasing parameter τ; meanwhile,
the optimized coefficients at f 1 = 0.4 increase as parameter τ increases. From the point of view that the
significant coefficients are not underestimated and get a clearer signal f1(t), the optimal parameters τ

are also concentrated in the 0.8 ≤ τ ≤ 0.9 range. Therefore, in practice the nominal range of parameter
τ is set to 0.8 ≤ τ ≤ 0.9.

For the selection of the regularization parameter λ, we have

λ = γ× β0 × σ (22)

where σ is the standard deviation (SD) of the additive noise, β0 is the constant so as to maximize
the signal-to-noise ratio (SNR). Here, parameters β0 and γ are typically set to be constant values, i.e.,
β0 = [0.5, 1], γ = [7.5, 8]. In practice, the standard deviation (SD) of the background noise in Equation
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(22) can be computed using the fault signal and healthy data under the same operating environment.
Moreover, when the healthy data are not available or are unknown, the standard deviation (SD) of
background noise can still be estimated by the following formula:

σ̂ = MAD(y)/0.6745 (23)

which is a traditional estimator of the noise level used for wavelet de-noising [33], where MAD(y)
represents the median absolute deviation (MAD) of signal y, i.e.,

MAD(y) = median(|yi −median(y)|), i = 1, 2, . . . , N (24)

As an example, if we take the constant parameters to be β0 = 0.7 and γ = 7.5, with the regularization
parameter λ = 7.5 × 0.7 × 1.5 = 7.875, the solutions of LFLO and proposed AHNPR method with
parameter τ = 0.8 are shown in Figure 5. Comparing the results of the LFLO and proposed AHNPR
methods, the proposed AHNPR solution is sparser than the results of LFLO in frequency domain
(see Figure 5c) and the LFLO underestimates significant coefficients of the underlying signal.
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Therefore, in practice, based on the above analysis, the optimal parameter τ is set to be
0.8 ≤ τ ≤ 0.9, the constant parameters β0 and γ are set to be β0 = 0.7 and γ = 7.5, and the regularization
parameter λ is set to be λ = γ× β0 × σ.

Finally, in order to minimize the F(x), and assuming BTB = (τ/λ)ATA with parameter 0.8≤ τ ≤ 0.9,
the optimization problem could be transformed into saddle-point problem, i.e.,

(xopt, vopt) = argmin
x∈R

max
v∈R

F(x, v)

= argmin
x∈R

max
v∈R

{
1
2‖y−Ax‖2

2 + λ‖x‖1 − λ‖v‖1 − λ
2 ‖B(x− v)‖2

2

} (25)

The solution of the saddle-point problem can be obtained using the forward–backward splitting
(FBS) algorithm, [34], as listed in Algorithm 1.

Algorithm 1 Iterative algorithm for the proposed AHNPR method

Initialization: x(0),v(0), 0 < µ < 2/max{1, τ/(1− τ)} · ‖AT A‖2;
For i = 0, 1, 2, . . .;
w(i) = x(i) − µAT

{
A[x(i) + τ(v(i) − x(i))]− y

}
u(i) = v(i) + µτAT A(x(i) − v(i))
x(i+1) = soft(w(i), λµ)

v(i+1) = soft(u(i), λµ)

end
return: x(i+1) = soft(w(i), λµ)

3. Numerical Simulation

A simulation signal is utilized to investigate the effectiveness of the proposed AHNPR approach.
Considering the periodical impulse features that are generated by the localized fault in rotating
machinery, the simulation signal is constructed as

y(t) = x(t) + Noise
= exp(−a× 2π fnt)× sin(2π fn ×

√
1− a2t) + σ× randn(1, N)

(26)

where a = 0.1 is a damping coefficient, the structural frequency of system is fn = 2000 Hz, signal length
is N = 2048, and the sampling frequency is fs = 20 KHz. In addition, the additive Gaussian noise with
σ = 0.4 is added to acquire the simulated synthetic signal. Figure 6a,c depict the obtained periodical
impulses with localized faults and the simulated synthetic signal. Figure 6b,d are the corresponding
Morlet wavelet time-frequency diagrams of periodical impulses and simulated synthetic signals,
respectively. From Figure 6c,d, it is seen that the periodic impulses are completely buried in heavy
background noise.
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Figure 6. Simulated synthetic signal with faults: (a) Fault impulses; (b) Morlet wavelet time-frequency
diagram of fault impulses; (c) simulated synthetic signal; (d) Morlet wavelet time-frequency diagram
of simulated synthetic signal.

Following this, the proposed AHNPR method is applied to process the simulated synthetic signal.
Specifically, matrix A is defined as Am,n = (1/

√
N) exp(j(2π/N)mn); here, m = 0, 1, · · · , M− 1; n =

0, 1, · · · , N − 1. Assuming that matrix AT is the complex conjugate transpose of matrix A, it can
be calculated that ATA is a diagonal matrix, the parameter τ is set to τ = 0.8, and thus matrix B is
B =
√

τ/λA. In addition, taking the constant parameters to be β0 = 0.7 and γ = 7.5, the parameter λ

could be calculated by Equation (22), i.e., λ = 7.5 × 0.7 × 0.4 = 2.1. Since BTB is a non-diagonal matrix,
the augmented Huber penalty function φB(x) is non-separable.

The de-noising results of the LFLO method and proposed AHNPR method are shown in
Figure 7a,c, respectively. Figure 7b,d are the corresponding Morlet wavelet time-frequency diagrams
of Figure 7a,c, respectively. It can be noted that the periodic characteristics in Figure 7c are more
obvious than in Figure 7a. The sparse Fourier coefficients of LFLO and the proposed AHNPR method
are shown in Figure 8a,b. The non-convex penalty function method aims to induce sparsity in sparse
coefficients more effectively than the LFLO method. Moreover, the LFLO method underestimates the
significant (large-amplitude) sparse coefficients of the de-noised signal.
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Figure 7. The solutions of the LFLO and the proposed AHNPR method. (a) The result of the LFLO
method; (b) Morlet wavelet time-frequency diagram of the result generated by LFLO; (c) the result of
the proposed AHNPR method; (d) Morlet wavelet time-frequency diagram of the result generated by
the proposed AHNPR method.



Algorithms 2018, 11, 184 11 of 19
Algorithms 2018, 11, x FOR PEER REVIEW 13 of 21 

 

 
(a) 

 
(b) 

Figure 10. The results of sparse Fourier coefficients using the LFLO and the proposed AHNPR 
method. (a) The result of the LFLO method; (b) the result of the proposed AHNPR method. 

4. Experimental Verification 

To demonstrate the validity of the proposed approach in engineering applications, the tapered 
rolling bearing with a faulty outer race is implemented. Experimental vibration data were collected 
from several accelerometers instrumented on a bearing end bracket from a large reducer, as shown 
in Figure 11. The geometrical parameters of the tested tapered bearing are listed in Table 1, and the 
fault frequency of the bearing outer race is 118.8 Hz. The sampling frequency is 51.2 KHz (right side 
of input shaft) and 5.12 KHz (left side of input shaft), the rotation frequency is 16.67 Hz and sampling 
length is 6.4 s. The tapered rolling bearing (FAG-32212-A) fault was located on the right side of the 
input shaft. In this experiment, the vibration data collected from the right side of input shaft 
(horizontal direction, i.e., non-drive end) were used in the first experiment. To create a more 
challenging condition, the vibration data collected from the left side of the input shaft (horizontal 
direction, drive end) were also analyzed in the second experiment. 

Table 1. The geometrical parameters of the tested tapered rolling bearing. 

Bearing 
Type Fault Type 

Number 
of Balls 

Inner 
Diameter 

Outer 
Diameter 

Fault 
Frequency 

FAG-32212-A Outer race 9 60 mm 110 mm 118.8 Hz 

0 500 1000 1500 2000
0

0.5

1

1.5

2

Sampling point/N

Sp
ar

se
 F

ou
rie

r c
oe

ffi
ci

en
ts

0 500 1000 1500 2000
0

0.5

1

1.5

2

Sampling point/N

Sp
ar

se
 F

ou
rie

r c
oe

ffi
ci

en
ts

Figure 8. The results of sparse Fourier coefficients using the LFLO and the proposed AHNPR method.
(a) The result of the LFLO method; (b) the result of the proposed AHNPR method.

4. Experimental Verification

To demonstrate the validity of the proposed approach in engineering applications, the tapered
rolling bearing with a faulty outer race is implemented. Experimental vibration data were collected
from several accelerometers instrumented on a bearing end bracket from a large reducer, as shown in
Figure 9. The geometrical parameters of the tested tapered bearing are listed in Table 1, and the fault
frequency of the bearing outer race is 118.8 Hz. The sampling frequency is 51.2 KHz (right side of input
shaft) and 5.12 KHz (left side of input shaft), the rotation frequency is 16.67 Hz and sampling length
is 6.4 s. The tapered rolling bearing (FAG-32212-A) fault was located on the right side of the input
shaft. In this experiment, the vibration data collected from the right side of input shaft (horizontal
direction, i.e., non-drive end) were used in the first experiment. To create a more challenging condition,
the vibration data collected from the left side of the input shaft (horizontal direction, drive end) were
also analyzed in the second experiment.

Table 1. The geometrical parameters of the tested tapered rolling bearing.

Bearing Type Fault Type Number of
Balls

Inner
Diameter

Outer
Diameter

Fault
Frequency

FAG-32212-A Outer race 9 60 mm 110 mm 118.8 Hz
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Figure 9. Experimental set up for the tapered bearing test.

The first experiment had two tasks, i.e., to estimate the weak fault signal from the original
vibration signal and to calculate the sparsity of the sparse coefficient. The raw vibration signal (right
side of input shaft, 4096 sampling points were selected, i.e., 0.08 s) and its envelop spectrum are
displayed in Figure 10a,b, respectively. As shown in Figure 10b, although the spectrum peak at
237.5 Hz, which is consistent with the twice outer-race fault frequency, can be detected; however,
the spectrum peak is masked by heavy background noise and frequency features are not clear enough
to detect practical fault.
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Figure 10. Original vibration signal and its envelope spectrum. (a) Original vibration signal; (b) the
envelope spectrum of the original vibration signal.
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The proposed AHNPR approach and the LFLO method are respectively employed to process the
measured vibration signal and the obtained results are displayed in Figure 11. The parameter τ was set
to τ = 0.8 and matrix A is also defined as Am,n = (1/

√
N) exp(j(2π/N)mn), m = 0, 1, · · · , M− 1; n =

0, 1, · · · , N− 1. Thus, matrix B is B =
√

0.8/λA. It can be calculated that BTB is a non-diagonal matrix,
thus the augmented Huber function (AHF) φB(x) is non-separable. Here, it should be noted that
the healthy data are not available or are unknown, according to Equations (23) and (24). Taking the
constant parameters to be β0 = 0.7 and γ = 7.5, the parameters of the proposed method can be obtained
as follows: the standard deviation σ = 4.234, and regularization term parameters λ = 7.5 × 0.7 × 4.234
= 22.23. Comparing results with the time-domain waveform and envelope spectrum, one can observe
improvements at two levels: the first is the significant enhancement in the contribution of periodical
characteristic. The periodical characteristic with LFLO is weaker than that related to the proposed
method. The second improvement is that the amplitudes of fault frequency and its harmonic are
worthy of further enhancement. Note that some other unrelated components in Figure 11d are greatly
reduced compared with the envelope spectra of the raw signal and the de-noised signal generated by
the LFLO method.
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Figure 11. The results of LFLO and the proposed AHNPR method. (a) The time-domain waveform
generated by LFLO; (b) envelope spectrum of the results based on the LFLO method; (c) the
time-domain waveform generated by the proposed AHNPR method; (d) envelope spectrum of the
results based on the proposed AHNPR method.

In addition, the distribution of sparse coefficients generated by LFLO and the proposed
AHNPR method are given in Figure 12a,b, respectively. One can see that the sparse coefficients
are underestimated by the LFLO method along with the sparse coefficients associated with additive
noise that reduce sparsity. In comparison with the LFLO result, the sparse coefficients of the proposed
AHNPR method are enhanced and amplified.
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Figure 12. The optimized coefficients of the de-noised signal generated by LFLO and the proposed AHNPR
method. (a) The result using the LFLO method; (b) the result using the proposed AHNPR method.
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As to the second experiment, Figure 13a,b present the raw vibration signal on the drive end
(i.e., the left side of the input shaft, 4096 sampling points were selected, i.e., 0.8 s) and its envelope
spectrum. In this case, the outer race fault frequency cannot be observed. This may be caused by
the fact that the outer race fault is quite weak and the transfer path of the accelerometers located on
the left side are longer than in the previous experiment. As such, the proposed AHNPR algorithm is
applied to separate the fault feature from other unrelated components and the results are displayed
in Figure 13c,d. The parameters of the proposed method can be obtained as follows: the standard
deviation σ = 4.44, regularization term parameter λ = 7.5 × 0.7 × 4.4 = 23.31, and parameter τ is set to
τ = 0.8.

The outer race fault frequency and its harmonics are detected in the corresponding envelope
spectrum. In addition, interestingly, the sidebands are distributed in both fault frequency and its
harmonics, after calculating the difference between the fault frequencies and sidebands. It should be
noted that the difference values are consistent with the rotational frequency (16.67 Hz). Therefore,
the outer race fault of bearings can be more clearly diagnosed. The above result demonstrates that
the proposed algorithm can detect the bearing fault and eliminate the background noise interference,
regardless of whether the accelerometers are located on the right or left side of the input shaft.
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Figure 13. Raw signal on the left side of the input shaft and the diagnosis results generated by the
proposed AHNPR method. (a) The raw signal on the left side of the input shaft; (b) the envelope
spectrum of the raw signal; (c) the result generated by the proposed AHNPR method; (d) envelope
spectrum of the result generated by the proposed AHNPR method.

In previous research [35], another non-convex penalty regularization approach, namely the
asymmetric convex penalty regularization (ACPR) method, was proposed for weak fault detection for
gearboxes. To explore the advantage of the proposed approach over the ACPR method, the diagnosis
results under same operation environments are compared, the ACPR method is introduced to process
the same data that collected from the right side and left side of the input shaft, respectively, and the
rules of parameter settings are based on the reference [35]. The sparse component of right-side of input
shaft generated by the ACPR method is shown in Figure 14a, and its envelop spectrum is shown in
Figure 14b. Likewise, the sparse component of left-side of input shaft generated by the ACPR method
is presented in Figure 14c, and its envelop spectrum is presented in Figure 14d. From the time-domain
waveform of Figure 14a,b, the separating effect generated by the ACPR method is better than the results
that generated by proposed method, and the noise components are decimated drastically, but the fault
frequency of the bearing outer race and its harmonic cannot be extracted using the ACPR method,
as shown in Figure 14b,d. This is because the ACPR algorithm contains two penalty functions, i.e.,
symmetric and asymmetric penalty functions, here the asymmetric function is established using simple
quadratic polynomial, which may not be appropriate for such data. Compared with the traditional
envelop spectrum method, the LFLO method and the ACPR method, the final comparative results
show the effectiveness and superiority of the proposed diagnosis method.
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5. Conclusions

This paper proposes a novel weak fault detection approach for tapered rolling bearing based on
the augmented Huber nonconvex penalty regularization (AHNPR) approach. The purpose of this
paper is to overcome the following two problems: (1) The traditional convex regularizer (e.g., L1-norm)
may underestimate sparse coefficients of the underlying signal; and (2) the convexity of the objective
function cannot be guaranteed using traditional separable non-convex penalties regularizers.

In this work, we proposed an AHNPR for solving the low-rank matrix approximation (LRMA)
problem (or inverse problem). Compared to the LFLO algorithm, where the singular values would be
calculated by a soft-threshold function, the proposed method does not underestimate singular values.
The AHNPR is known to estimate singular values more accurately. In addition, an efficient algorithm
using the forward–backward splitting (FBS) technique to solve the proposed OCF is derived. Finally,
the effectiveness of the proposed method is demonstrated by the simulated vibration signal practical
rolling bearing under severe additive background noise.

A possible future direction of research involves the use of AHFs, which are focused on multi-fault
diagnosis under variable speed or variable harsh running environments.
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