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Abstract: Clustering is one of the main tasks of machine learning. Internal clustering validation
indexes (CVIs) are used to measure the quality of several clustered partitions to determine the
local optimal clustering results in an unsupervised manner, and can act as the objective function
of clustering algorithms. In this paper, we first studied several well-known internal CVIs for
categorical data clustering, and proved the ineffectiveness of evaluating the partitions of different
numbers of clusters without any inter-cluster separation measures or assumptions; the accurateness of
separation, along with its coordination with the intra-cluster compactness measures, can notably affect
performance. Then, aiming to enhance the internal clustering validation measurement, we proposed
a new internal CVI—clustering utility based on the averaged information gain of isolating each
cluster (CUBAGE)—which measures both the compactness and the separation of the partition.
The experimental results supported our findings with regard to the existing internal CVIs, and showed
that the proposed CUBAGE outperforms other internal CVIs with or without a pre-known number
of clusters.

Keywords: machine learning; clustering; internal clustering validation index; categorical data

1. Introduction

Clustering analysis is the unsupervised process of partitioning a group of data objects into
clusters, with the objective to grouping objects of high similarity into the same cluster, while separating
dissimilar objects into different clusters. Clustering is a main task of data analysis, and it has been
studied extensively in the fields of data mining and machine learning [1,2]. Clustering techniques
can be roughly distinguished as hard and soft clustering, this study is limited to the hard clustering
analysis, in which each object belongs to one and only one cluster.

The results of clustering—partitions—vary with parameter settings, clustering methods, and the
criteria of similarity (or dissimilarity) [3]. The mechanisms of the clustering method, such as random
initialization, can cause inconsistencies in clustering results as well. How do we determine the final
result from multiple possible partitions? As shown in Figure 1, the standard solution is to conduct
several clustering processes with different schemes respectively, then select the partition of the highest
quality [1,4,5]. The key is to define and measure the ‘quality of partitions’ by clustering validation
indexes (CVIs) in the third step in Figure 1.

By whether to use external information, we can summarize the CVIs into two categories, i.e.,
external and internal CVIs. External CVIs use external information to evaluate the quality of the
clustering results. For instance, if the prior knowledge, such as the true partition (or the partition
designated by experts) exists, external CVIs can be used to evaluate the conformity of the clustered
partition and the prior partition [6–8]. Such prior knowledge is absent in the unsupervised scenario,
which makes the external CVIs inapplicable.
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Figure 1. Clustering procedure consists of four steps with a feedback pathway.

On the other hand, Internal CVIs require no such prior knowledge, and have extensive practical
applications in information retrieval, text and image analysis, biological engineering, and other
domains of data mining [9–16]. The quality of clustering results is usually inspected internally
from two aspects—the intra-cluster compactness, and the inter-cluster separation (also known as
isolation) [5,17–23]. The compactness reflects the degree of similarity of the objects in the same cluster,
while the separation reflects how the objects in one cluster are dissimilar to others.

Meanwhile, the internal CVIs for numerical data, such as the Dunn index [24], the I index [25],
the Silhouette index [26], and the Calinski-Harabasz index [27], use intuitive geometric information to
evaluate the partitions, which makes them unsuitable for categorical data clustering. Considering the
increasing amount of categorical data in practical applications and the challenging issues that have not
been adequately addressed in the literature, further research on internal CVIs for categorical data is
in need [9,14,15,28,29].

Therefore, in this paper, we limit our scope to provide insight and enhancement of the internal
CVIs for categorical data:

1. Do internal CVIs for categorical data show monotonicity with respect to the number of clusters?
One should avoid the monotonicity in validation measurement to prevent the bias towards
partitions with more clusters, which would leave the performance of the evaluation to the
boundary of the number of clusters in the candidate partitions.

2. Do internal CVIs for categorical data which use no separation measures really ignore the
separation? A partition of good compactness is not necessarily a good partition, since the
objects in one cluster may be similar to the objects in other clusters as well. Some internal CVIs for
categorical data use no separation measures based on the attribute distribution between clusters,
and have been proven to be effective when the number of clusters is constant in reference [9].
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However, if the impact of separation on the clustering validation is ignored, the compactness
measure alone may not be effective in evaluating partitions of different sizes due to the first issue.

3. What can we offer to enhance performance? After research on the above issues, we wish to
offer an alternative internal CVI that has improved performance on categorical data clustering
validation measurement.

To better understand the internal CVIs for categorical data, we investigate five well-known internal
CVIs for categorical data clustering validation evaluation, i.e., the information entropy function (E) [30],
the k-modes objective function (F) [31], the category utility function (CU) [32], the objective function
of clustering with slope (Cloper) [33], and the objective function of categorical data clustering with
subjective factors (R) [34]. We attempt to reveal the nature of the five internal CVIs by investigating the
compactness measures and the separation measures, and discuss whether assumptions of separation
exist and can be substituted for the separation measures. Meanwhile, we theoretically analyze whether
the compactness measures for categorical data show monotonicity in certain circumstances, and the
role of separation measures (assumptions) in neutralizing the monotonicity.

Then, to enhance the internal measurement, we propose a new internal CVI that has improved
performance, namely, the clustering utility based on the averaged information gain of isolating each
cluster (CUBAGE). CUBAGE uses the proposed averaged information gain of isolating each cluster
(AGE) to measure the separation, and the reciprocal entropy of the dataset conditioned on the partition
to measure the compactness.

The paper is organized into six sections. Section 2 is the related work. Section 3 provides in-depth
analysis and discussions of five CVIs on the first two issues. In Section 4, we present the proposed
internal CVI. Section 5 presents our experimental results and detailed discussion. Finally, we state our
conclusions in Section 6.

2. Related Work

In this section, we first clarify our notations throughout this paper, then introduce some
widely-used internal CVIs for categorical data. Additionally, we provide a brief comparison of
internal and external CVIs.

2.1. Notations

Unless stated otherwise, we used the following notations in this paper. U = {X1, . . . , Xn} is a set
of n objects, each object is described by the same m independent attributes A1, . . . , Am. The value of
attribute Aj (j = 1, . . . , m) can be taken only from domain D(Aj) = {aj

(1), . . . , aj
(dj)}, where dj is the number

of possible values of the attribute. p(aj
(i)) is the probability of attribute Aj taking the value aj

(i) (i = 1,
. . . , dj).

C 6= Φ is a set of objects (or, a cluster), a partition P = {C1, . . . , Ck} is the clustering result of U into
k clusters, with the property that C1 ∪ C2 ∪ . . .∪ Ck = U, and Cl ∩ Cl’ = Φ (l 6= l’; l, l’ = 1, . . . , k). For any
given Cl, the conditional probability of attribute Aj taking value aj

(i) in cluster Cl is p(aj
(i)|Cl). D(Aj|Cl)

is the domain of attribute Aj in cluster Cl, obviously, D(Aj|Cl) ⊆ D(Aj).

2.2. Internal Clustering Validation Indexes

1. The information entropy function (E).

The information entropy of a random variable indicates the information and uncertainty that the
variable has [35]. Considering attribute A as a random categorical variable, the entropy H(A) is defined
as follows:

H(A) = −
d

∑
i

p(a(i)) log(p(a(i))). (1)
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Given a set of independent variables V = {A1, . . . , Am}, the entropy H(V) is:

H(V) =
m

∑
j

H(Aj) = −
m

∑
j

dj

∑
i

p(aj
(i)) log(p(aj

(i))). (2)

A lower H(V) indicates less uncertainty of V.
Given a partition P = {C1, . . . , Ck}, the entropy of V conditioned on P, i.e., H(V|P), is considered

as the ‘whole entropy of the partition’ [30]:

E(P) = H(V |P) = −
m
∑

j=1

k
∑

l=1
p(Cl)

dj

∑
i=1

p(aj
(i) |Cl) log(p(aj

(i) |Cl))

= −
m
∑

j=1

k
∑

l=1

dj

∑
i=1

p(aj
(i), Cl) log(p(aj

(i) |Cl)) ,

(3)

where p(aj
(i)|Cl) is the conditional probability of the value aj

(i), given cluster Cl. Notice that the
probability of Cl is p(Cl) = |Cl|/n.

E(P) attempts to represent the total entropy of the partition, which can be construed as the degree
of disorder, by summing the weighted entropy of each cluster. To minimize the function E(P) is to find
a partition in which the values of attributes describing the objects in the same clusters are centralized,
which indicates that the objects are more similar in each cluster.

2. The k-modes objective function (F).

Similar to the k-means clustering algorithm [36], k-modes compares each object in the same
cluster with the cluster center, and sums the dissimilarities [31]. Since it is improper to take the
means of categorical values as the cluster center, k-modes use the modes of values of each attribute.
The dissimilarity between the object and the center is defined as:

d(Xli, Zl) =
m

∑
j=1

δ(xlij, zl j), (4)

where Xli is the ith object in cluster Cl, xlij is the value of attribute Aj describing object Xi, Zl is the
center of cluster Cl, zlj is the value of attribute Aj describing center Zl, and:

δ(xlij, zl j) =

{
1, xlij = zl j,
0, xlij 6= zl j.

(5)

Therefore, the k-modes objective function is:

F(P) =
k

∑
l=1

dcluster(Cl) =
k

∑
l=1

|Cl |

∑
i=1

d(Xli, Zl). (6)

where dcluster(Cl) is the sum of the dissimilarity between each object in cluster Cl and its center:

dcluster(Cl) =
|Cl |

∑
i=1

d(Xli, Zl) = |Cl | ·
m

∑
j=1

[(1−
dj

max
i=1

p(aj
(i) |Cl)] . (7)

F(P) describes the overall dissimilarities between objects and centers; a lower F(P) indicates that
partition P has a higher quality.

3. The category utility function (CU).
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For the objects in the same cluster, CU measures the possibility of these objects taking the same
attribute values [32]:

CU(P) =
k
∑

l=1
p(Cl)

m
∑

j=1

dj

∑
i=1

[p (aj
(i) |Cl)

2 − p(aj
(i))

2
]

=
k
∑

l=1
p(Cl)

m
∑

j=1

dj

∑
i=1

[p (aj
(i) |Cl)

2
]−

k
∑

l=1

m
∑

j=1

dj

∑
i=1

p(aj
(i))

2
.

(8)

This process attempts to maximize both the probability that two objects in the same category have
attribute values in common by p(aj

(i)|Cl)2, and the probability that objects from different categories
have different attribute values by −p(aj

(i))2. However, the last term −p(aj
(i))2 is invariable when the

dataset is given. Therefore:

CU(P) =
k

∑
l=1

p(Cl)
m

∑
j=1

dj

∑
i=1

[p (aj
(i) |Cl)

2
]− Constant, (9)

where C is a constant. This means that the CU only measures how similar the objects in the same
cluster are.

The authors of references [37,38] further averaged the values of the CU(P) measure over clusters,
i.e., they used CU(P)/k instead of CU(P) to compare the partitions of different size. In this paper,
we refer to the modified function as CU1/k(P).

4. The CLOPE objective function (Cloper)

CLOPE is an efficient clustering algorithm for large scaled datasets, and the basic idea of its
criterion function is simple and straightforward [33,39]. CLOPE first defined the size and the width of
cluster Cl:

Size(Cl) =
m

∑
j=1

dj

∑
i=1

Occ(aj
(i), Cl), (10)

Width(Cl) =
m

∑
j=1
|D(Aj |Cl) |, (11)

where Occ(aj
(i)|Cl) is the number of occurrences of value aj

(i) in cluster Cl:

Occ(aj
(i), Cl) = |Cl | × p(aj

(i) |Cl). (12)

Then, the objective is to maximize the following function:

Clope(P) =
k

∑
l=1

p(Cl)
Size(Cl)

Width(Cl)
r , (13)

where r is the parametric power.
Moreover, as we can show that Size(Cl) = m|Cl|, for the consistency of expression, we rewrite the

function as:

Clope(P) = m · n ·
k

∑
l=1

p(Cl)
2[

m

∑
j=1
|D(Aj |Cl) |]

−r

. (14)

In this paper, we refer to the function using the parameter of r as Cloper(P).

5. The CDCS objective function (R).
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The CVIs above only used the intra-cluster information to measure the partition. CDCS use both
intra-cluster similarity and inter-cluster similarity, which are [34]:

intra(P) =
1
m

k

∑
l=1

p(Cl)
m

∑
j=1

[
dj

max
i=1

p(aj
(i) |Cl)]

3

, (15)

inter(P) =
1

n× (k− 1)

k−1

∑
t=1

k

∑
s=1

Sim(Ct, Cs)
1
m |Ct ∪ Cs |, (16)

where Sim(Ct, Cs) is the similarity score between two clusters Ct and Cs:

Sim(Ct, Cs) =
m

∏
j=1
{

dj

∑
i=1

min[p(aj
(i) |ct), p(aj

(i) |cs)] + ε }, (17)

and where ε is a small value preventing Sim(Ct, Cs) = 0.
The objective of CDCS is to maximize the ratio of intra(P) to inter(P). Partitions that have both

higher intra-cluster similarity and lower inter-cluster similarity will receive better scores:

Ratio(P) =
intra(P)
inter(P)

. (18)

We refer to this function as R(P) in this paper.

2.3. Comparison of Internal and External Clustering Validation Indexes

Internal CVIs use only internal information to identify commonalities in the data and react
based on the presence or absence of such commonalities, to measure the quality of the clustering
result [2,9,17,23]. The internal information includes, but is not limited to, the attribute value
distribution, similarities of objects or clusters, and the partition size, which are quantities and features
inherited from the dataset and the clustering process.

The avoidance of requiring external information makes internal CVIs applicable to the
unsupervised scenarios, and can act as the objective functions of the clustering process. For instance,
internal CVIs are used as objective functions of COOLCAT clustering [30], k-modes clustering [31],
CLOPE clustering [33], and CDCS clustering [34].

External CVIs use external information. In the literature, there are two types of overall expression
of the external information: (1) Explicitly expressed as ‘true partition’, ‘class labels’, ‘data division’,
and ‘pre-specified/pre-known structure’ [1,4,5,23,40–48]; (2) used vague expression, such as ‘prior
knowledge’ and ‘ground truth’ [17,49,50]. In the literature adopted the first type of expression,
the usage of external CVIs was representatively described as in References [5]:

‘Based on the external criteria we can work in two different ways. Firstly, we can evaluate
the resulting clustering structure C, by comparing it to an independent partition of the data P built
according to our intuition about the clustering structure of the data set. Secondly, we can compare the
proximity matrix P to the partition P.’

The external CVIs used in the references that adopted the second type of expression also required
the pre-known partition, although the universal requirement was not explicitly stated. Therefore,
the applications of typical external CVIs are quite limited to the scenarios where the true or designated
partitions can be compared with, for instance, choosing the optimal clustering algorithm on a
specific dataset.

In the experimental section, we use external CVIs as the evaluation metrics to examine the
performance of internal CVIs.
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3. Understanding of Internal Clustering Validation Indexes

In this section, we theoretically analyzed the effectiveness of the clustering validity evaluation of
the five internal CVIs mentioned above, i.e., the entropy function (E), the k-modes objective function
(F), the CLOPE objective function (Cloper), the averaged category utility function (CU1/k), and the
CDCS objective function (R). We pointed out the compactness measure and the separation measures
(assumptions) of them. We also analyzed the ineffectiveness of using compactness alone in clustering
validation measurement.

3.1. Generalization and an Example

To better understand the composition of the CVIs, we first generalized them into Table 1.
The compactness cores use intra-cluster information to measure the compactness of each cluster based
on the consensus that the attribute values in a compact cluster should be concentrated. As shown in
Table 1, all five CVIs can evolve the compactness measure with different cores.

Table 1. Summary of the aforementioned clustering validation indexes (CVIs).

CVI Compactness Core Average Compactness (Com) Objective

E(P) −
m
∑

j=1

dj

∑
i=1

p(aj
(i) |Cl) log(p(aj

(i) |Cl))
k
∑

l=1
p(Cl) · Core Minimize Com

F(P)
m
∑

j=1
[(1−max

dj

i=1 p(aj
(i) |Cl)]

k
∑

l=1
p(Cl) · Core Minimize n · Com *

Cloper(P) [
m
∑

j=1
|D(Aj |Cl) |]

−r k
∑

l=1
p(Cl)

2 · Core Maximize n ·m · Com *

CU1/k(P)
m
∑

j=1

dj

∑
i=1

p (aj
(i) |Cl)

2 − Constant
k
∑

l=1
p(Cl) · Core Maximize k−1 · Com

R(P)
m
∑

j=1
[max

dj

i=1 p(aj
(i) |Cl)]

3 k
∑

l=1
p(Cl) · Core Maximize m−1 · Com · inter(P)−1 *

* Note that the number attributes m and the number of objects n are invariable to any partition.

We addressed our concerns about the effectiveness of these CIVs with an example. Table 2 is an
example of a dataset and five partitions of it. We evaluated these five partitions with E, F, Clope1~3,
CU1/k, and R, respectively; the results are shown in Table 3, the optimal scores of each CVI are bolded.

In Table 3, the bolded values are the optimal values measured by each index. As we can see,
the opinions of different CVIs did not agree, and as the number of clusters increased, the values of
E, F, Clope1, and R, monotonically decreased. Generally, if the valuation outcome tended to change
with the number of clusters monotonically, the evaluation methods may not be suited for comparing
partitions of different cluster numbers, since they will bias towards choosing the partition of less or
more clusters. We start our discussion on the effectiveness of E and F—the CVIs showed monotonicity,
and only use compactness measures.

Table 2. Example of a dataset with five partitions. The number of clusters is 2, 3, 4, 5, and 6, respectively.

Object A1 A2 A3 Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

X1 a d h 1 1 1 1 1
X2 a e i 1 1 1 1 1
X3 a f h 1 1 1 2 2
X4 b g h 1 2 2 3 3
X5 b g h 1 2 2 3 4
X6 b f h 1 2 3 4 5
X7 c d j 2 3 4 5 6
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Table 3. Evaluation results of the partitions in Table 2.

CVI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

E(P) * 2.120 1.016 0.744 0.396 0.396
F(P) * 8 4 3 2 2

Clope1(P) 2.071 1.750 1.500 1.343 1.057
Clope2(P) 0.289 0.396 0.393 0.402 0.307
Clope3(P) 0.046 0.094 0.113 0.125 0.093
CU1/k(P) 0.255 0.376 0.330 0.302 0.252

R(P) 47.353 29.321 20.652 14.844 8.019

* To optimize E and F is to minimize them, while other functions are to be maximized.

3.2. Analysis of Indexes E and F

The indexes E and F use compactness measures only, and average the compactness by a weight
that was linear to the cluster size p(Cl). We can show that the values of index E and F are monotonic to
the number of clusters when clustering hierarchically:

Theorem 1. Given dataset U, described by a set of independent attributes V = {A1, . . . , Am}, P1 and P2 are two
partitions of U. If P1 = {C1, . . . , Ck} and P2 = {C1, . . . , Ck-1, Cs1, . . . , Cst}, where Ck = Cs1 ∪ Cs2 ∪ . . .∪ Cst,
Csl 6= Φ, and Csl ∩ Csl’ = Φ (l 6= l’; l, l’ = 1, . . . , t), then E(P1) ≥ E(P2), and the equality holds if and only if
p(V|Cs1) = p(V|Cs2) = . . . = p(V|Cst).

Proof of Theorem 1. According to Equations (2) and (3), we know that:
E(P1) = −

m
∑

j=1

k−1
∑

l=1
p(Cl)

dj

∑
i=1

p(aj
(i) |Cl) log(p(aj

(i) |Cl)) −
m
∑

j=1
p(Ck)

dj

∑
i=1

p(aj
(i) |Ck) log(p(aj

(i) |Ck)) ,

E(P2) = −
m
∑

j=1

k−1
∑

l=1
p(Cl)

dj

∑
i=1

p(aj
(i) |Cl) log(p(aj

(i) |Cl)) −
m
∑

j=1

t
∑

l=1
p(Csl)

dj

∑
i=1

p(aj
(i) |Csl) log(p(aj

(i) |Csl)) .

Then:

E(P1)− E(P2) =
m
∑

j=1
[

t
∑

l=1
p(Csl)

dj

∑
i=1

p(aj
(i) |Csl) log(p(aj

(i) |Csl)) − p(Ck)
dj

∑
i=1

p(aj
(i) |Ck) log(p(aj

(i) |Ck)) ]. (19)

Therefore, the necessary and sufficient condition of E(P1) ≥ E(P2) is:

−
m

∑
j=1

p(Ck)

dj

∑
i=1

p(aj
(i) |Ck) log(p(aj

(i) |Ck) ) ≥ −
m

∑
j=1

t

∑
l=1

p(Csl)

p(Ck)

dj

∑
i=1

p(aj
(i) |Csl) log(p(aj

(i) |Csl) ), (20)

Since Cs1 ∪ Cs2 ∪ . . .∪ Cst = Ck, Csl 6= Φ, and Csl ∩ Csl’ = Φ (l 6= l’; l, l’ = 1, . . . , t), we can show that:

t
∑

l=1

p(Csl)
p(Ck)

=
t

∑
l=1

p(Csl |Ck) = 1, l = 1, ..., t . (21)

Meanwhile, due to Bayes’ theorem, we can establish that:

t
∑

l=1

p(Csl)
p(Ck)

p(aj
(i) |Csl) =

t
∑

l=1

p(Csl)
p(Ck)

· p(aj
(i))·p(Csl |aj

(i))

p(Csl)

=
t

∑
l=1

1
p(Ck)

· p(aj
(i)) · p(Csl |aj

(i))

=
p(Ck |aj

(i))

p(Ck)
· p(aj

(i))

= p(aj
(i) |Ck), i = 1, ..., dj, j = 1, ..., m

(22)
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Since the attributes are independent, and we know that H(X) is a concave function, we can prove
Inequality (20) to be true by Jensen’s inequality [51].

Also, H(X) is not linear. Due to Jensen’s inequality, the equality holds if and only if p(aj
(i)|Cs1) =

p(aj
(i)|Cs2) = . . . = p(aj

(i)|Cst) (j = 1, . . . , m; i = 1, . . . , dj), which is p(V|Cs1) = p(V|Cs2) = . . . = p(V|Cst). �

Theorem 2. If the conditions are the same as in Theorem 1, then F(P1) ≥ F(P2), and the equality holds if
and only if z1j = z2j = . . . = ztj (j = 1, . . . , m), where zlj is the mode of the values of attribute Aj in cluster Csl
(l = 1, . . . , t).

Proof of Theorem 2. Similar to the proof of Theorem 1, we can show that:

F(P1)− F(P2) = dcluster(Ck)−
t

∑
l=1

dcluster(Csl) =
m

∑
j=1

|Ck |

∑
i=1

δ(xkij, zkj)−
t

∑
l=1

m

∑
j=1

|Csl |

∑
i=1

δ(xlij, zl j). (23)

Since Cs1 ∪ Cs2 ∪ . . .∪ Cst = Ck, Csl 6= Φ, and Csl ∩ Csl’ = Φ (l 6= l’; l, l’ = 1, . . . , t), to any attribute
Aj, the occurrence of value aj

(i) in cluster Ck is equal to the sum of the occurrence of the same value in
cluster Cs1 to Cst:

Occ(aj
(i), Ck) =

t
∑

l=1
Occ(aj

(i), Csl), j = 1, . . . , m, i = 1, ..., dj . (24)

Meanwhile, we can rewrite the dissimilarity of any cluster Cq of dataset U as:

dcluster(Cq) =
m

∑
j
[ |Cq | −Occ(zqj, Cq)] . (25)

Applying Equation (25) to Equation (23) yields:

F(P1)− F(P2) =
m

∑
j
[ |Ck | −Occ(zkj, Ck)] −

t

∑
l=1

m

∑
j
[ |Csl | −Occ(zl j, Csl)] . (26)

By the definition of mode, we know that:

Occ(zl j, Csl) ≥ Occ(zkj, Csl), j = 1, . . . , m, l = 1, ..., t. (27)

Then:
t

∑
l=1

m

∑
j
[ |Csl | −Occ(zl j, Csl)] ≤

t

∑
l=1

m

∑
j
[ |Csl | −Occ(zkj, Csl)] . (28)

Therefore:

F(P1)− F(P2) ≥
m

∑
j
[ |Ck | −Occ(zkj, Ck)] −

t

∑
l=1

m

∑
j
[ |Csl | −Occ(zkj, Csl)] . (29)

By Equation (24), we can show that the right-hand part of Inequality (29) equals 0. Therefore,
F(P1) ≥ F(P2), and the equality holds if and only if:

Occ(zl j, Csl) = Occ(zkj, Csl), j = 1, . . . , m, l = 1, ..., t. (30)

�

Theorems 1 and 2 show that one cannot determine whether any clusters in the partition should
be merged by E or F, since the evaluation results always suggest to divide. Even if the attribute
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distribution in the candidate clusters are equivalent (in which case they are generally regarded as the
most similar clusters), the scores of whether to merge them would be in a tie. This most affects the
hierarchical clustering, in which objects are clustered in either agglomerative or divisive manners,
and the suggested layer of hierarchy by these CVIs would always be the layer with the most clusters,
unless the layer with the second-most clusters has the same evaluation score.

We should point out that, in some researches, the separation coefficient 1/k of index CU1/k (which
will be discussed shortly) was multiplied to the function E(P) directly, which would aggravate the
monotonicity, since 1/k is also a monotonically decreasing function with respect to the partition size.
Therefore, we will not discuss such a method in this paper.

3.3. Analysis of Indexes CU1/k, Cloper, and R

Besides the compactness measure, indexes CU1/k, Cloper, and R use separation measures or
assumptions as well. CU1/k(P) is the averaged compactness over k clusters weighted by p(Cl),
and CU1/k(P) is the further averaged CU(P). The role of the multiplicand 1/k is a crude overfitting
control, and can be regarded as the assumed separation coefficient with respect to the number of
clusters. We can show that the compactness measure in CU1/k(P) also shows monotonicity in the
previous scenario:

Theorem 3. If the conditions are the same as in Theorem 1, then CU(P1) ≤ CU(P2), and the equality holds if
and only if p(V|Cs1) = p(V|Cs2) = . . . = p(V|Cst).

Proof of Theorem 3. Similar to the proof of Theorem 1, we can show that:

CU(P1)− CU(P2) =
m

∑
j=1

[p(Ck)

dj

∑
i=1

p (aj
(i) |Ck)

2
−

t

∑
l=1

p(Csl)

dj

∑
i=1

p (aj
(i) |Csl)

2
)]. (31)

Ck 6= Φ, so we can rewrite Equation (31) as:

CU(P1)− CU(P2)

p(Ck)
=

m

∑
j=1

[

dj

∑
i=1

p (aj
(i) |Ck)

2
−

t

∑
l=1

p(Csl)

p(Ck)

dj

∑
i=1

p (aj
(i) |Csl)

2
)]. (32)

Therefore, the necessary and sufficient condition of CU(P1) ≤ CU(P2) is:

p (aj
(i) |Ck)

2
≤

t

∑
l=1

p(Csl)

p(Ck)
p (aj

(i) |Csl)
2
, i = 1, ..., dj, j = 1, ..., m. (33)

We know that y = x2 is a convex, and not a linear function. Therefore, Inequality (33) is true, due to
Jensen’s inequality with Equations (21) and (22) in the proof of Theorem 1, and the equality holds if
and only if p(V|Cs1) = p(V|Cs2) = . . . = p(V|Cst). �

Therefore, using the category utility function to evaluate partitions of different size without the
separation coefficient 1/k is questionable. However, the act of multiplying the compactness with such
a coefficient is based on the assumption that the separation of the partition is negatively correlated
with the partition size. Such an assumption ignores the attribute value distribution between clusters,
and may generate a new bias to the partitions of fewer clusters, since 1/k would be dominant to the
result when the change in compactness is relatively gradual.

The compactness core of Cloper(P) is also monotonic. However, different to other indexes,
Cloper(P) uses the quadratic weight p(Cl)2 instead of p(Cl) to average the compactness. In consequence,
the partitions in which the objects are more concentrated in fewer clusters would score better with
Cloper(P), which is also an assumption of separation for adjusting the evaluation results. Like the
separation coefficient 1/k of CU1/k(P), such an assumption is irrelevant to the differences in attribute
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values between clusters. If we remove the assumption, i.e., we use p(Cl) instead of p(Cl)2, the averaged
compactness would also be monotonic to the partition size in the previous scenario:

Theorem 4. If the conditions are the same as in Theorem 1, and we have the compactness measure as followed:

G(P) = n ·m ·
k

∑
l=1

p(Cl) · [
m

∑
j=1
|D(Aj |Cl) |]

−r

, (34)

where r is a parameter greater than zero, then G(P1) ≤ G(P2), and the equality holds if and only if D(Aj|Ck) =
D(Aj|Cs1) = D(Aj|Cs2) =. . . = D(Aj|Cst), (j = 1, . . . , m).

Proof of Theorem 4. Similar to the proof of Theorem 1, we can show that:

G(P1)− G(P2)

n ·m =
m

∑
j=1

[
p(Ck) · |D(Aj |Ck) |−r −

t

∑
l=1

p(Csl) · |D(Aj |Csl) |−r

]
, (35)

Since Cs1 ∪ Cs2 ∪ . . .∪ Cst = Ck, Csl 6= Φ, and Csl ∩ Csl’ = Φ (l 6= l’; l, l’ = 1, . . . , t), to any attribute Aj: p(Ck) =
t

∑
l=1

p(Csl),

|D(Aj |Ck) |−r ≤ |D(Aj |Csl) |−r, r > 0, j = 1, ...m, l = 1, ...t.
(36)

Therefore, the value of Equation (35) is not greater than zero, the equality holds if and only if
|D(Aj|Ck)| = |D(Aj|Cs1)| = |D(Aj|Cs2)| = . . . = |D(Aj|Cst)|, (j = 1, . . . , m), which is equal to
D(Aj|Ck) = D(Aj|Cs1) = D(Aj|Cs2) = . . . = D(Aj|Cst), (j = 1, . . . , m). �

To look more deeply, the essential effect of parameter r in Cloper(P) is the subjectively adjusted
trade-off between compactness and separation (assumption). The compactness would be less important
in the evaluation as the value of r decreases, and it would be entirely ignored when r = 0 (although
it is avoided). As a result, in Table 3, Clope2(P) and Clope3(P) choose the partition with more clusters,
due to the effect of compactness, and Clope1(P) chooses the partition of least clusters, due to the effect
of the separation assumption. Therefore, setting r is actually setting the preference for compactness or
separation, and could be unfounded in the unsupervised scenario.

The compactness measure of index R is also monotonic to the partition size, since maximizing
the compactness of R(P) can be easily proven to be equivalent to minimizing the function
F(P). The separation measure of R(P) evaluates the inter-cluster similarity Sim(Ct, Cs) pairwise.
The compactness and the separation of R(P) only considers the most and least common values,
respectively, which might lower the sensitivity to the value distribution. We will test and discuss the
effectiveness of such methods in the experimental section.

4. Internal Clustering Validation Index: CUBAGE

As discussed previously, the CVIs cannot effectively evaluate the partitions of different sizes if
the separation measures or assumptions are absent, and the crude separation assumptions without
respect to the attribute values are rather questionable.

In this section, we first proposed a new method to measure the inter-cluster separation. Then,
we present our algorithm to internally measure the clustering validation, namely, the clustering utility
based on the averaged information gain of isolating each cluster (CUBAGE).
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4.1. Inter-Cluster Separation Measure: AGE

Our measure of inter-cluster separation—averaged information gain of isolating each cluster,
henceforth AGE—was based on the idea of information gain in information theory. Before presenting
AGE, we will review the concept of information gain.

The mutual information is a measure of the shared information of two discrete variables X
and Y [52]:

I(X; Y) = H(X)− H(X |Y) = ∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
). (37)

In machine learning, the mutual information I(X; Y) is the expected information gain; that is,
the reduction in the entropy of X that is achieved by learning the state of Y [53]. In general terms,
the expected information gain is the change in entropy from a prior state (X) to a state that takes some
information (X|Y):

IG(X, Y) = H(X)− H(X |Y). (38)

Given a partition P = {Cl} (l = 1, . . . , k) of dataset U, which is described by V = {A1, . . . , Am},
we define the information gain of separating cluster Cl from other clusters as:

GE(Cl) = H(V)− H(V |Pl), (39)

where Pl= {Cl, U − Cl} is the partition that separates Cl from other clusters, and U − Cl is the
complementary set of Cl.

GE(Cl) is the information gain of V from the unpartitioned state to the state where the objects are
divided into Cl and U − Cl; in other words, the degree of certainty that we can gain by separating
the objects in Cl from other objects. Therefore, GE(Cl) equals the dissimilarity between Cl and other
clusters (U − Cl); a higher value of GE(Cl) indicates that more separation is achieved by separating Cl
with other clusters.

As Figure 2 illustrates, we average the value of GE over all the scenarios of isolating each cluster
to measure the overall separation:

AGE(P) =
1
k

k

∑
l

GE(Cl) =
1
k

k

∑
l
[H(V)− H(V |Pl) ]. (40)

Explicitly, AGE(P) is calculated as:

AGE(P) =
1
k

k

∑
l
[H(V)− p(Cl) · H(VCl )− p(U − Cl) · H(VU−Cl )], (41)

where VCl is the set of attributes describing the objects in Cl, VU−Cl is the set of attributes describing
other objects, and: 

H(V) = −
m
∑

j=1

dj

∑
i=1

p(aj
(i)) log(p(aj

(i))),

H(VCl ) = −
m
∑

j=1

dj

∑
i=1

p(aj
(i) |Cl) log(p(aj

(i) |Cl)) ,

H(VU−Cl ) = −
m
∑

j=1

dj

∑
i=1

p(aj
(i) |U − Cl) log(p(aj

(i) |U − Cl)) .

(42)
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Figure 2. This figure illustrates how the information gain of separating each clusters GEl are calculated
and averaged to represent the whole separation of the partition. In the figure, HU is the entropy of
unpartitioned dataset U (n objects), Hl is the entropy of cluster l (nl objects), and Hrest is the entropy of
the rest of the objects.

4.2. Upper and Lower Bounds of AGE

By the property of information gain, the lower bound of AGE(P) is zero:

AGE(P) ≥ 0. (43)

We will discuss the upper bound respectively:

1. When the number of clusters k ≤ 2:

AGE(P) = 1
k

k
∑
l
[H(V)− E(Pl)] = H(V)− E(P), k ≤ 2. (44)

This indicates that for a given dataset, maximizing AGE(P) is equivalent to minimizing E(P) when
the size of the partition is no greater than 2. This is because that the whole partition is affirmatory
when one of the clusters is learned. Moreover, when the objects are not separated at all, i.e., k = 1,
the value of AGE(P) is 0;

2. When the number of clusters k > 2, due to Theorem 1, we can establish that:

AGE(P) = 1
k

k
∑
l
[H(V)− E(Pl)] ≤ 1

k

k
∑
l
[H(V)− E(P)] = H(V)− E(P), k > 2. (45)

The equality of Inequality (45) holds if and only if the attribute value distributions in each cluster
are all the same, under which circumstances the value of E(P) would be equal to H(V); therefore,
AGE(P) = 0.

To sum up, the upper bound of AGE(P) is H(V) − E(P) and the lower bound is 0. The value of the
upper bound becomes equal with the lower bound 0 when the objects are not separated at all, or the
attribute value distributions in each cluster are all the same; this means that the AGE(P) yields the
minimum possible value when the objects are least separated.

4.3. CUBAGE Index

Our internal clustering validation index, CUBAGE, uses AGE(P) as the inter-cluster separation
measure, and uses the reciprocal of the conditional entropy, E(P)−1, as the intra-cluster compactness:

CUBAGE(P) = Sep(P) ∗ Com(P) = AGE(P) · E(P)−1. (46)

This index takes a form of the product of the separation and the compactness. A higher value of
CUBAGE(P) indicates a better clustering result. As shown in Table 4, neither AGE(P) nor CUBAGE(P)
showed monotonicity with respect to the partition size.
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Table 4. The AGE (averaged information gain of isolating each cluster) and CUBAGE (clustering utility
based on AGE) outcomes of the partitions in Table 2.

CVI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

AGE 1.032 1.191 0.912 0.769 0.601
CUBAGE 0.487 1.172 1.226 1.941 1.518

Additionally, when the size of the partition is no greater than 2, we can establish the following by
Equations (44) and (46):

CUBAGE(P) =
1
k

k
∑
l
[H(V)−E(Pl)]

E(P) = H(V)−E(P)
E(P) = H(V)

E(P) − 1, k ≤ 2. (47)

Equation (47) is actually the information gain ratio of the partition. This means that for a given
dataset, maximizing CUBAGE(P) is equivalent to minimizing E(P) when the number of clusters is no
greater than 2, since the term H(V) is a constant to the dataset.

Given a partition P, the value of CUBAGE(P) can be calculated, as shown in Figure 3. Algorithms
1 and 2 are the pseudocode of CUBAGE.

Algorithm 1 Clustering Utility based on Entropy (CUBAGE)

Input: dataset with n objects: U = (Xi); label of a partition with k clusters;
Output: CUBAGE value of the partition;
Called Function: entropy calculation function: Entropy(objects);
Begin:
1. Calculate the entropy of the whole dataset, save as HU: HU = Entropy(U);
2. For each cluster Cl:
3. Calculate the entropy of objects in Cl, save in vector H:H(l) = Entropy(Cl);
4. Calculate the entropy of objects in U − Cl, save in vector HC:HC(l) = Entropy(U − Cl);
5. End for;
6. Generate weight vector: W = 1/n·[|C1|, | C2|, . . . , | Cl|];
7. Calculate the dot product E = W·H;
8. Calculate AGE = HU − 1/k·[E + (1 −W)·HC];
Return:
9. CUBAGE = AGE/E;

The time complexity of CUBAGE(P) is O(kmn), where k is the number of clusters, m is the number
of attributes, and n is the total number of objects. Note that there is no extra time cost for computing the
compactness E−1(P), since the weighted entropy of each cluster is already calculated during computing
the separation AGE(P). The time cost could be lower if the data is sparse. Furthermore, one can easily
apply parallel or distributed computing to CUBAGE(P) by the objects or the attributes to reduce the
computing time. Therefore, such time complexity makes CUBAGE(P) scalable to large datasets.

Algorithm 2 Entropy calculation function

Input: a set of x objects;
Output: Entropy of objects in a single set;
Begin:
1. For each attribute Aj:
2. Calculate the entropy of the attribute by Equation (1), save in vector HA;
3. End for;
Return:
4. Entropy = sum(HA);
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5. Experiments and Discussion

In this section, we present the results of the comparative experiments to evaluate the effectiveness
of CUBAGE, along with the five internal CVIs mentioned above. We used −F(P) and −E(P) instead
of F(P) and E(P) to unify the objectives, and maximized each function to search for the local
optimal partition.

5.1. Experimental Methods

We tested the CVIs on eight datasets from the UCI (University of California, Irvine) Machine
Learning Repository (http://archive.ics.uci.edu/mL/index.php), as shown in Table 5; records with
missing values are removed. To compare the quality of the partitions chosen by the internal CVIs,
we used two external CVIs as the benchmark evaluation criteria, respectively:

1. The adjusted Rand index (ARI)—the corrected-for-chance version of the Rand index—is based on
the numbers of objects in common (or not) between the pre-defined classes and the produced
clusters [6]. Given two partitions P = {C1, . . . , Ck} and P’ = {C’1, . . . , C’k’} ARI is defined as:

ARI =

∑ij

(
nij
2

)
−
[

∑i

(
bi
2

)
∑j

(
dj
2

)]
/

(
n
2

)
1
2

[
∑i

(
bi
2

)
+ ∑j

(
dj
2

)]
−
[

∑i

(
bi
2

)
∑j

(
dj
2

)]
/

(
n
2

) , (48)

where nij is the number of common objects in Ci and C’j, nij = | Ci ∩ C’j|, bi = ∑
j

nij, dj = ∑
i

nij.

In a specific dataset, a partition that is more similar to the pre-defined classes would score higher
values in ARI. Note that ARI may take negative values.

http://archive.ics.uci.edu/mL/index.php
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2. The normalized mutual information (NMI) calculates the mutual information of two partitions,
and normalizes it with the sum of their entropy [16]:

NMI =
2 ∑k

i=1 ∑k′
j=1

nij
n log

nijn
bidj

−∑k
i=1

bi
n log bi

n −∑k′
j=1

dj
n log

dj
n

. (49)

In a specific dataset, a higher value of NMI indicates that the partition is more proximal to the
pre-defined classes.

For example, in one measurement of several partitions, partitions P1 and P2 scores best in internal
CVIs IV1 and IV2, respectively. EV is an external CVI, if EV(P1) > EV(P2), we can establish that partition
P1 is more proximal to the pre-defined classes than partition P2 in the opinion of EV. Therefore, IV1

performs better than IV2 in this example.

Table 5. Datasets from UCI.

Dataset Objects Attributes Classes Object Distribution

Voting 435 16 2 168, 267
Breast Cancer Wisconsin (Original) 683 9 2 444, 239

Mushroom 5644 22 2 2156, 3488
Soybean (Small) 47 35 4 10, 10, 10, 17
Car Evaluation 1728 6 4 1210, 384, 69, 65

Heart Disease (Cleveland) 297 13 5 54, 35, 35, 13, 160
Dermatology 358 34 6 111, 60, 71, 48, 48, 20

Zoo 101 16 7 41, 20, 5, 13, 4, 8, 10

We first compare the NMI values of the partitions selected by each internal CVIs to find out which
internal CVI can select the better partition, i.e., performs better in the opinion of NMI. Then we use
ARI to evaluate the internal CVIs in the same manner.

On each dataset, we used the classical agglomerative hierarchical clustering and the k-modes
clustering to produce the partitions, and both clustering methods applied the same cluster dissimilarity
that was defined in F. The experimental procedures are shown in Figures 4 and 5.

1. The agglomerative hierarchical clustering is a ‘bottom-up’ approach; each object is treated as an
individual cluster in the beginning. When moving up the hierarchy, pairs of clusters are merged
progressively if the dissimilarity of their union is lower than the other pairs in the same layer,
until all objects are merged into one cluster eventually. The layers in the hierarchy are different
partitions of the dataset. From the generated partitions with the number of clusters ranging from
2–10, we selected one ‘optimal’ partition by each internal CVI, then compared the external CVI
values (NMI and ARI, respectively) of the selected partitions.

2. The k-modes clustering is a partitioning approach that is similar to the more famous k-means
clustering. It starts with k randomly-generated cluster centers (seeds), and each object is assigned
to the most appropriate cluster if the dissimilarity of their union is the lowest. In the next iteration,
the centers of the clusters are updated by the attribute modes, and the objects are reassigned
in the previous manner. The iteration ends if the value of the objective function F stabilizes.
The clustering results are inconsistent over different seeds, even if the number of clusters k is fixed.
To test the performances when the number of clusters is unknown, we used the internal CVIs
to search for the optimal partition from all the partitions produced by k-modes with k ranging
from 2–10 (each value of k is conducted 100 times, therefore 900 candidate partitions generated).
We further repeated the process 100 times and compared the average external CVI values (ARI
and NMI, respectively) of the partitions selected by each internal CVI. Additionally, we tested
the internal CVIs with k set to the pre-defined number of clusters to examine the performance
when the number of clusters is determined.
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5.2. Results of the Hierarchical Clustering Validation Evaluation

The NMI and ARI scores of the partitions chosen by each internal CVI in the hierarchical clustering
are shown in Tables 6 and 7; the bracketed figures are the performance ranks over indexes. In general,
the indexes CUBAGE and CU1/k performed the best when evaluating the layers of the hierarchical
clustering. The results of indexes −F and −E were worse than other indexes in both NMI and ARI.
Figure 6 illustrates the changing of validation scores over the layers of the hierarchy; as we can see,
the indexes CUBAGE and CU1/k matched the benchmark evaluation criteria the best.Algorithms 2018, 11, x FOR PEER REVIEW  18 of 25 
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Table 6. Normalized mutual information (NMI) values of the hierarchical partitions chosen from layers
2–10 by each internal CVI.

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.489 (7) 0.292 (7) 0.292 (1) 0.489 (1) 0.489 (1) 0.489 (1) 0.489 (6) 0.396
Breast (1) 0.704 (7) 0.337 (7) 0.337 (1) 0.704 (1) 0.704 (1) 0.704 (1) 0.704 (6) 0.609

Mushroom (5) 0.362 (6) 0.339 (6) 0.339 (3) 0.368 (8) 0.256 (1) 0.412 (1) 0.412 (3) 0.368
Soybean (1) 1 (4) 0.745 (4) 0.745 (1) 1 (6) 0.669 (6) 0.669 (3) 0.878 (6) 0.669

Car (4) 0.031 (1) 0.053 (1) 0.053 (3) 0.05 (4) 0.031 (4) 0.031 (4) 0.031 (4) 0.031
Heart (1) 0.216 (5) 0.167 (5) 0.167 (1) 0.216 (1) 0.216 (5) 0.167 (5) 0.167 (1) 0.216

Dermatology (1) 0.687 (4) 0.597 (4) 0.597 (1) 0.687 (6) 0.473 (6) 0.473 (1) 0.687 (6) 0.473
Zoo (1) 0.85 (2) 0.764 (2) 0.764 (4) 0.741 (5) 0.522 (5) 0.522 (5) 0.522 (5) 0.522

Average NMI * 0.542 0.412 0.412 0.532 0.42 0.433 0.486 0.411
Average Rank * 1.875 4.5 4.5 1.875 4 3.625 2.625 4.625

* Averaged over datasets (average values of each column).

Table 7. Adjusted Rand index (ARI) values of the hierarchical partitions chosen from layers 2–10 by
each internal CVI.

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.557 (7) 0.142 (7) 0.142 (1) 0.557 (1) 0.557 (1) 0.557 (1) 0.557 (6) 0.337
Breast (1) 0.808 (7) 0.18 (7) 0.18 (1) 0.808 (1) 0.808 (1) 0.808 (1) 0.808 (6) 0.72

Mushroom (5) 0.288 (7) 0.161 (7) 0.161 (1) 0.375 (6) 0.286 (3) 0.318 (3) 0.318 (1) 0.375
Soybean (1) 1 (7) 0.431 (7) 0.431 (1) 1 (4) 0.501 (4) 0.501 (3) 0.781 (4) 0.501

Car (1) 0.066 (7)
−0.002

(7)
−0.002 (6) 0.008 (1) 0.066 (1) 0.066 (1) 0.066 (1) 0.066

Heart (1) 0.289 (5) 0.061 (5) 0.061 (1) 0.289 (1) 0.289 (5) 0.061 (5) 0.061 (1) 0.289
Dermatology (1) 0.563 (4) 0.359 (4) 0.359 (1) 0.563 (6) 0.33 (6) 0.33 (1) 0.563 (6) 0.33

Zoo (1) 0.872 (3) 0.522 (3) 0.522 (2) 0.715 (5) 0.42 (5) 0.42 (5) 0.42 (5) 0.42
Average ARI * 0.555 0.232 0.232 0.539 0.407 0.383 0.447 0.38

Average Rank * 1.5 5.875 5.875 1.75 3.125 3.25 2.5 3.75

* Averaged over datasets (average values of each column).

5.3. Results of the k-Modes Clustering Validation Evaluation

The NMI and ARI scores of the partitions chosen by each internal CVI in the k-modes clustering
are shown in Tables 8–11.

When k was not determined (Tables 8 and 9), CUBAGE outperformed the other indexes on most
of the datasets, and CU1/k came second. When k was determined (Tables 10 and 11), CUBAGE still
outperformed others, and indexes −E and −F advanced in performance.

Table 8. Average NMI values of the chosen k-modes partitions over 100 runs (k ranging from 2–10).

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.443 (8) 0.312 (7) 0.324 (1) 0.443 (3) 0.418 (3) 0.418 (3) 0.418 (6) 0.397
Breast (1) 0.674 (6) 0.363 (7) 0.358 (1) 0.674 (8) 0.016 (4) 0.48 (5) 0.407 (3) 0.491

Mushroom (1) 0.458 (5) 0.368 (4) 0.391 (3) 0.394 (8) 0.196 (2) 0.434 (6) 0.365 (7) 0.291
Soybean (1) 0.838 (4) 0.746 (3) 0.752 (1) 0.838 (8) 0.492 (6) 0.553 (6) 0.553 (5) 0.572

Car (5) 0.05 (2) 0.065 (1) 0.072 (3) 0.058 (6) 0.026 (6) 0.026 (6) 0.026 (4) 0.054
Heart (1) 0.206 (3) 0.175 (4) 0.171 (2) 0.205 (8) 0.039 (7) 0.165 (6) 0.165 (5) 0.167

Dermatology (1) 0.704 (4) 0.647 (3) 0.684 (1) 0.704 (8) 0.313 (6) 0.362 (5) 0.456 (7) 0.321
Zoo (2) 0.808 (3) 0.795 (4) 0.783 (5) 0.579 (8) 0.479 (7) 0.481 (1) 0.823 (6) 0.572

Average NMI * 0.522 0.434 0.442 0.487 0.247 0.365 0.402 0.358
Average Rank * 1.625 4.375 4.125 2.125 7.125 5.125 4.75 5.375

* Averaged over datasets (average values of each column).
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Table 9. Average ARI values of the chosen k-modes partitions over 100 runs (k ranging from 2–10).

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.53 (8) 0.174 (7) 0.191 (1) 0.53 (3) 0.503 (3) 0.503 (3) 0.503 (6) 0.428
Breast (1) 0.787 (6) 0.217 (7) 0.195 (1) 0.787 (8) −0.001 (4) 0.551 (5) 0.337 (3) 0.639

Mushroom (1) 0.489 (7) 0.187 (6) 0.228 (3) 0.319 (8) 0.155 (2) 0.447 (5) 0.268 (4) 0.309
Soybean (1) 0.654 (4) 0.442 (3) 0.461 (1) 0.654 (8) 0.26 (6) 0.297 (6) 0.297 (5) 0.352

Car (2) 0.023 (4) 0.017 (3) 0.021 (1) 0.025 (6) −0.001 (6) −0.001 (6) −0.001 (5) 0.014
Heart (2) 0.199 (4) 0.092 (5) 0.079 (3) 0.19 (6) 0.065 (8) 0.055 (7) 0.065 (1) 0.263

Dermatology (1) 0.552 (3) 0.493 (4) 0.487 (1) 0.552 (7) 0.136 (6) 0.159 (5) 0.21 (8) 0.119
Zoo (1) 0.817 (3) 0.573 (4) 0.544 (5) 0.448 (7) 0.342 (8) 0.341 (2) 0.769 (6) 0.411

Average ARI * 0.506 0.274 0.276 0.438 0.183 0.294 0.306 0.317
Average Rank * 1.25 4.875 4.875 2 6.625 5.375 4.875 4.75

* Averaged over datasets (average values of each column).

Table 10. Average NMI values of the chosen k-modes partitions over 100 runs (k fixed to the actual
number of classes).

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.443 (5) 0.436 (1) 0.443 (1) 0.443 (6) 0.376 (6) 0.376 (6) 0.376 (4) 0.439
Breast (1) 0.674 (4) 0.635 (1) 0.674 (1) 0.674 (8) 0.015 (7) 0.022 (6) 0.434 (5) 0.445

Mushroom (1) 0.458 (5) 0.451 (1) 0.458 (1) 0.458 (8) 0.037 (1) 0.458 (6) 0.435 (7) 0.136
Soybean (1) 1 (4) 0.977 (1) 1 (1) 1 (7) 0.675 (6) 0.692 (5) 0.791 (8) 0.672

Car (4) 0.048 (1) 0.057 (3) 0.05 (2) 0.055 (7) 0.038 (8) 0.037 (6) 0.042 (5) 0.048
Heart (2) 0.181 (3) 0.18 (7) 0.171 (5) 0.175 (4) 0.177 (8) 0.167 (6) 0.173 (1) 0.187

Dermatology (3) 0.742 (4) 0.633 (1) 0.744 (2) 0.742 (7) 0.505 (6) 0.548 (5) 0.582 (8) 0.495
Zoo (1) 0.852 (4) 0.818 (3) 0.836 (2) 0.838 (5) 0.811 (7) 0.804 (6) 0.809 (8) 0.781

Average NMI * 0.55 0.523 0.547 0.548 0.329 0.388 0.455 0.4
Average Rank * 1.75 3.75 2.25 1.875 6.5 6.125 5.75 5.75

* Averaged over datasets (average values of each column).

Table 11. Average ARI values of the chosen k-modes partitions over 100 runs (k fixed to the actual
number of classes).

Dataset CUBAGE −F −E CU1/k Clope1 Clope2 Clope3 R

Voting (1) 0.53 (5) 0.511 (1) 0.53 (1) 0.53 (6) 0.451 (6) 0.451 (6) 0.451 (4) 0.53
Breast (1) 0.787 (4) 0.738 (1) 0.787 (1) 0.787 (7) 0.008 (8) 0.001 (6) 0.488 (5) 0.513

Mushroom (1) 0.489 (5) 0.486 (1) 0.489 (1) 0.489 (8) −0.015 (1) 0.489 (6) 0.465 (7) 0.023
Soybean (1) 1 (4) 0.97 (1) 1 (1) 1 (7) 0.474 (6) 0.489 (5) 0.598 (8) 0.469

Car (1) 0.036 (4) 0.03 (2) 0.034 (3) 0.032 (8) 0.006 (7) 0.009 (5) 0.022 (6) 0.012
Heart (3) 0.134 (7) 0.107 (5) 0.123 (6) 0.119 (2) 0.22 (4) 0.124 (8) 0.104 (1) 0.277

Dermatology (1) 0.654 (4) 0.52 (2) 0.63 (3) 0.621 (7) 0.26 (6) 0.298 (5) 0.343 (8) 0.236
Zoo (3) 0.774 (8) 0.662 (6) 0.713 (7) 0.709 (2) 0.797 (5) 0.751 (4) 0.757 (1) 0.807

Average ARI * 0.551 0.503 0.538 0.536 0.275 0.326 0.403 0.358
Average Rank * 1.5 5.125 2.375 2.875 5.875 5.375 5.625 5

* Averaged over datasets (average values of each column).

5.4. Discussion

We can see from the overall results that none of the internal CVIs consistently outperformed all of
the other CVIs in either of the benchmark evaluation criteria over the eight datasets. This is because
that the datasets are of different structures, and that the benchmark criteria NMI and ARI do not always
agree with each other, especially when the quality of the partition is relatively low (see Figure 6c,e,f).
However, we can observe that index CUBAGE had better overall performance compared to others,
from the perspectives of both the average scores and the averaged ranks. A detailed discussion follows:

Index E—the internal CVI without separation measure or assumption—performed well in the
k-modes clustering when k was set to the actual number of classes. In the hierarchical clustering
experiments, as we proved above, the value of E showed monotonicity with respect to the number of
clusters, and the performance decreased notably. A similar performance drop appeared in the k-modes
clustering when k was unknown.
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Indexes F and R had lower sensitivities to the value distribution, since they only consider the
most and/or the least common values in the cluster. The performances of these CVIs were below
average in the experiments. The performance drop of F appeared when the number of clusters was
unknown, similar to index E. As the compactness measure of F and R are equivalent, by comparing
the trends in the hierarchical clustering experiments (Figure 6), we can observe that the compactness
measure of R had little effect on the partition evaluation, and the role of the separation was dominant.

Index CU1/k uses 1/k as the separation coefficient without respect to the value distribution
between clusters. In the k-modes clustering experiments, the performance of CU1/k dropped on most
of the occasions when the number of clusters changed from known to unknown, as shown in Figure 7.
This indicates that the separation assumption is not universally suitable, although it corrected the
monotonicity of the compactness core.
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The performance of the index Cloper is highly dependent on the parameter r. As we discussed,
the effect of compactness drops as r decreases. In the hierarchical clustering experiments, the value of
Clope1(P) monotonically decreased as the number of clusters increased under the effect of the separation
measure. For the same reason, in the k-modes clustering, Clope1(P) was outperformed by Clope2(P)
and Clope3(P). However, Clope2(P) and Clope3(P) outperformed each other on different datasets,
which indicates that setting r appropriately to compromise the compactness and the separation
is difficult. Additionally, the performance drop of Cloper when the number of clusters changed from
known to unknown, as shown in Figure 7, indicates that the separation assumption of index Cloper is
not suitable for most datasets as well.

Such a performance drop happened least with our internal CVI—CUBAGE. The separation
measure AGE showed advantageous applicability to the datasets and clustering methods,
and coordinated well with the compactness measure E−1. When the number of clusters was unknown,
CUBAGE had improved performance compared to index E for introducing inter-cluster information.
When the number was pre-known, the partitions chosen by E were identical to those chosen by
CUBAGE on the datasets Voting, Breast, and Mushroom (datasets with two classes), which agreed
with Equation (47); CUBAGE performed better than E on other datasets when k is fixed as well,
which indicates that the separation measure AGE not only contributes to the performance of evaluating
partitions of different sizes, it also has a positive impact when evaluating the partitions of the same
size. For comparison, R was outperformed by its equivalent compactness measure F when k was fixed,
and the separation coefficient of CU1/k had no impact on the performance, since 1/k is a constant
under such circumstances. As a result, CUBAGE performed better than other internal CVIs in general
in the conducted experiments.
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6. Conclusions and Future Work

This paper studies internal clustering validation measures for categorical data. We analyzed the
compactness and separation measures or assumptions of five well-known internal CVIs, and proposed
a new index—CUBAGE.

Analysis results showed that the indexes without separation measures based on the attribute
distribution do not necessarily ignore the impact of separation, since some indexes (i.e., CU1/k and
Cloper) adjusted the evaluation results by the separation assumptions with respect to the partition size
or the object distribution, although the assumptions may be crude and not universally suitable.

The compactness cores of the indexes are all monotonic with respect to the number of clusters
in the hierarchical clustering, which makes them biased toward partitions with more clusters.
The separation measures or assumptions corrected such biases by their preferences for the concentrated
partitions. Therefore, the coordination of separation and compactness affects the evaluation
considerably. For instance, as discussed, the role of parameter r is to adjust the importance of the
compactness and the separation of the index Cloper, which influenced the effectiveness.

The proposed internal CVI—CUBAGE—is based on a new separation measure that uses the
averaged information gain of isolating each cluster to measure the overall separation of the partition.
Theoretical analysis showed that this separation measure scores the minimum possible value when the
objects are least separated. Meanwhile, CUBAGE uses the reciprocal entropy of the dataset conditioned
on the partition—which is also the reciprocal of index E—to measure the whole compactness. As the
product of the separation and compactness measures, CUBAGE showed better performance in the
experiments than other indexes, which indicates that the separation and the compactness measures are
accurate, and that they coordinate well on most datasets.

In the future, we will investigate the internal CVIs in an extended range to provide systematic
studies on the relation of within-cluster compactness and intracluster-separation. Secondly,
the performance on evaluating the partitions of different characteristic patterns can be studied.
Additionally, we will analyze the possibility of using CUBAGE as the objective function in the clustering
process from the aspects, such as convergence speed.
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