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Abstract: Wu et al. (2014) showed that under the small set expansion hypothesis (SSEH) there is
no polynomial time approximation algorithm with any constant approximation factor for several
graph width parameters, including tree-width, path-width, and cut-width (Wu et al. 2014). In this
paper, we extend this line of research by exploring other graph width parameters: We obtain
similar approximation hardness results under the SSEH for rank-width and maximum induced
matching-width, while at the same time we show the approximation hardness of carving-width,
clique-width, NLC-width, and boolean-width. We also give a simpler proof of the approximation
hardness of tree-width, path-width, and cut-widththan that of Wu et al.
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1. Introduction

There are many graph width parameters, such as cut, path, tree, band, branch, carving,
clique, NLC, rank, boolean, maximum induced matching-widths, and the approximability and
inapproximability of some of these width parameters have been investigated extensively. For example,
regarding the approximability of tree-width tw, it is known that there are polynomial time
approximation algorithms with ratio O(

√
log tw(G)) [1]. Regarding inapproximability, tree-width

cannot be approximated within any additive constant c unless P = NP [2]. Regarding rank-width
rw, for every fixed k, there is a polynomial time algorithm that reports rw(G) > k, or outputs a rank
decomposition of width at most 3k − 1 [3]. Recently, it has been shown that maximum induced
matching-width cannot be approximated within any constant factor in polynomial time unless
NP = ZPP [4]. For several graph parameters, there are still large gaps between approximability and
inapproximability results: it is a major concern as to whether there are constant factor approximation
algorithms for those graph width parameters. Indeed, it is a long-standing open problem as to whether
tree-width can be approximated within a constant factor.

Raghavendra and Steurer introduced a complexity assumption referred to as the small set
expansion hypothesis (SSEH) that is deeply related to the unique games conjecture (UGC) [5],
and since then several inapproximability results under SSEH have been reported. For example, in [6]
Raghavendra et al. showed that under SSEH there are no constant factor approximation algorithms for
the balanced separator and minimum linear arrangement problems (a similar result was already known
for the balanced separator problem under UGC [7]). Recently, Manurangsi showed inapproximability
results for maximum biclique problems, minimum k-cut, and densest at-least-k-subgraph [8]. In [9],
Wu et al. (2014) showed under SSEH that there are no constant factor approximation algorithms
for cut, path, tree-widths, minimum fill-in (it has recently been shown that minimum fill-in has no
polynomial time approximation scheme unless P = NP and that assuming ETH, there is some positive
ε such that no algorithm can find a (1 + ε) approximation in time 2O(n1−δ) for any positive constant
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δ [10]), one-shot black pebbling costs, and other problems. Those were the first results showing the
hardness of constant factor approximation for these graph parameters. However, the hardness result
of tree-width in [9] does not necessarily mean that the long-standing open problem of tree-width
is solved, because there is no consensus on the correctness of UGC and SSEH at this time [11] and
it was shown in [12] that both unique games and small set expansion admit a subexponential time
approximation algorithm. Regardless of the veracity of these two assumptions, the results in [6,9]
stimulate the study of approximation hardness for graph parameters, and it is widely acknowledged
that UGC and SSEH have played important roles in the study of approximation algorithms.

The above width parameters have widespread applications from both theoretical and practical
viewpoints (e.g., [13]). Efficiently computing these width parameters becomes especially relevant
when considering the fact that many NP-hard problems admit efficient graph algorithms for instances
whose width parameters have a small value. The reader is invited to refer to the literature on
fixed parameter tractability for further information (e.g., Downey and Fellow [14], Cygan et al. [15],
Flum and Grohe [16]). Inspired by [9], in this paper, we extend the research in [9] to other graph
parameters. That is, we demonstrate in a unified manner that under SSEH there are no constant factor
polynomial time approximation algorithms for cut, path, tree, branch, carving, NLC, rank, clique,
boolean, and maximum induced matching-widths (see Figure 1 in Section 4).

2. Definitions and Known Results

2.1. Graphs, Expansion, Matrices

In this subsection, we recall some definitions and notation of graphs, expansion, and matrices.
Let G be a simple graph. We use operators V and E to refer to the vertex and edge sets of G as V(G)

and E(G), respectively. We will frequently write G = (V, E) instead of G = (V(G), E(G)). For a subset
X of V(G) (E(G), resp.), X denotes V(G)\X (E(G)\X, resp.). Let X and Y be subsets of V. N(X)

denotes the neighbors of X (i.e., N(X) = {u ∈ X | ∃v ∈ X s.t. {u, v} ∈ E}). E(X, Y) denotes {{u, v} ∈
E : u ∈ X, v ∈ Y}. For each v ∈ V, dG(v) (or simply d(v)) denotes the degree of v in G. ∆(G) denotes
the maximum degree of G. G[X] denotes the induced subgraph of G induced by X. The vertex boundary
width of order i of G, denoted by bv(i, G), is defined as bv(i, G) := minS⊆V,|S|=i |N(S)|. Similarly,
the edge boundary width of order i, denoted by be(i, G), is defined as be(i, G) := minS⊆V,|S|=i |E(S, S)|.

Let S be a subset of V. The edge expansion Φ(S) is defined as ΦG(S) = |E(S,S)|
min{vol(S),vol(S)} ,

where vol(S) = ∑v∈S d(v). Moreover, µ(S) denotes vol(S)
vol(V)

. Since, in this paper, we mainly consider

d-regular graphs, vol(S) and µ(S) can be regarded as d|S| and |S|
|V| , respectively.

Let M be the adjacency matrix of G. For X, Y ⊆ V such that X ∩Y = ∅, M[X, Y] means a matrix
satisfying the following. The rows and columns are labeled by X and Y, respectively, and each entry
(x, y) with x ∈ X and y ∈ Y is 1 if {x, y} ∈ E(G), 0 otherwise. We denote the rank over GF(2) of
M[X, Y] as rank(M[X, Y]). For the rank over GF(2), the following is known.

Lemma 1 (Lemma 4.3 in [17]). Let A be a matrix over GF(2) such that A has at least p non-zero entries and
each row and each column in A has at most q non-zero entries. Then, rank(A) ≥ p

q2 holds.

2.2. Graph Width Parameters

In this subsection, we briefly review the definitions of graph width parameters. We only give the
definitions of graph width parameters that will be needed in our proofs. Definitions of the other graph
width parameters can be found as follows: For the definitions of path-width, tree-width, branch-width,
and band-width, see e.g., [18]. For the definitions of carving-width, clique-width, and boolean-width,
see e.g., [19–21], respectively. Note that the decision problems related to graph width parameters
considered in this paper are all minimization problems.



Algorithms 2018, 11, 173 3 of 10

As some of graph width parameters are based on decomposition trees, let us first review the
notion of a decomposition tree. Given a tree T, let us denote the set of leaves of T by L(T). For an
edge e in T, (T\e)1 and (T\e)2 denote the two subtrees obtained from T by removing e. Given a graph
G = (V, E) and a tree T such that |L(T)| = |V|, let fT be a bijection from L(T) to V. For each edge e in
T, we denote the subset of V mapped by fT from the leaves in (T\e)i as (V\e)i for i ∈ {1, 2}. That is,
(V\e)i = { fT(v) : v ∈ L((T\e)i)}. Note that (V\e)i obviously depends on T and fT . In this paper, we
will refer to a pair (T, fT) satisfying the following conditions as a decomposition tree of G = (V, E):

• T is a subcubic tree with |V| leaves, where a tree is subcubic if every vertex in T has degree 1 or 3;
• fT is a bijection from L(T) of T to V.

We denote the set of tree decompositions of G by DG.

Cut-width: For a graph G = (V, E), let π : V → {1, . . . , |V|} be an ordering of
V. Let Sπ(i) := {π−1(1), π−1(2), . . . , π−1(i)}, ∂e(π, i) := E(Sπ(i), Sπ(i)). Then,
cutw(G) := min

π
max

1≤i≤n
|∂e(π, i)|.

Rank-width: For a graph G = (V, E), let T be a subcubic tree and fT be a bijection from L(T) to V.
Then, rw(G) := min

(T, fT)∈DG
max

e∈E(T)
rank

(
M
[
(V\e)1, (V\e)2

])
.

Maximum induced matching-width For a graph G = (V, E) and a subset A of V, we denote the
size of a maximum induced matching in the bipartite graph (A, A; E(A, A)) by mim(A). Then,
mimw(G) := min

(T, fT)∈DG
max

e∈E(T)
mim((V \ e)1)).

3. SSE Hypothesis

In this section, we briefly review the small set expansion hypothesis (SSEH), which is deeply
related to the unique games conjecture (UGC). Research on the unique games conjecture and
semidefinite programming has led to significant progress in the field of approximation algorithms in
the past decade. In [9], Wu et al. provided the following very useful strong form of SSEH.

SSE hypothesis (strong form) [Conjecture 2.23 and Remark 2.25 in [9]] There is a constant c such that
for every integer q > 1 and arbitrarily small ε > 0, the following problem is NP-hard:

Problem 1. Given a regular graph G = (V, E), distinguish between the following two cases:

Yes There exist q disjoint sets S1, . . . , Sq ⊆ V such that ΦG(Si) ≤ 2ε and |Si| = |V|
q holds for all 1 ≤ i ≤ q,

No For every |V|10 ≤ |S| ≤
9|V|
10 , ΦG(S) ≥ c

√
ε holds.

4. Method for Showing Inapproximability

In this section, we explain the useful method which is used implicitly in [9] to prove the
inapproximability of width parameters in a unified setting. Through the remainder of this section,
gw denotes a graph width parameter such that determining gw is a minimization problem and P
denotes any polynomial time computable parameter of G, typically |V| or |E|. That is, the graph
parameters gw and P are functions from graphs to the natural numbers such that isomorphic graphs
are mapped to the same number.

To show the approximation hardness of gw, it is sufficient to prove that there are constants cY and
cN such that for any graph G,
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• gw(G) ≤ cYεP holds if G is a YES instance in Problem 1 (i.e., completeness), and
• gw(G) ≥ cN

√
εP holds if G is a NO instance in Problem 1 (i.e., soundness),

where ε is the same as in Problem 1. We will refer to such cYεP (cN
√

εP, resp.) as upper threshold (lower
threshold, resp.).

Suppose that gw(G) can be approximated within a constant factor in polynomial time. That is,
there is a constant ρ > 0 for which there is an approximation algorithm A such that for any graph
G, A outputs a value A(G) satisfying gw(G) ≤ A(G) ≤ ρ · gw(G). Then, take ε such that 1

ρ > cY
√

ε
cN

.

That is, ε <
(

cN
cY
· 1

ρ

)2
. Then, the following Algorithm 1, which uses the approximation algorithm A as

a subroutine, solves Problem 1.

Algorithm 1 DeciInstByAlgA(G)

Input: a graph G
Output: YES/NO

1 compute an approximate solution A(G) of gw(G);
2 if A(G) < cN

√
εP then

3 output “G is a YES instance in Problem 1”
4 else
5 output “G is a NO instance in Problem 1”
6 end

The correctness of Algorithm 1 can be explained as follows. In the case of “A(G) < cN
√

εP”, from
gw(G) ≤ A(G) < cN

√
εP, we can guarantee that G is not a NO instance by the soundness condition.

In the case of “A(G) ≥ cN
√

εP”, from gw(G) ≥ A(G)
ρ ≥ cN

√
ε

ρ P > cN
√

ε · cY
√

ε
cN

P ≥ cYεP, we can
conclude that G is not a YES instance by the completeness condition.

It is worth mentioning that for graph width parameters gwi (1 ≤ i ≤ 3) such that gw1(G) �
gw2(G) � gw3(G) for any graph G, the approximation hardness of gwi (1 ≤ i ≤ 3) can be shown by
just showing both the completeness for gw3 and soundness for gw1, where gwi(G) � gwi+1(G) means
that there exists a constant c such that gwi(G) ≤ c · gwi+1(G) for any G. Figure 1 illustrates the unified
setting: two width parameters gwu and gwl such that gwu is arranged above gwl are linked by a line if
gwl � gwu holds. In the figure, lclw means linear clique-width, and the left (right, resp.) side illustrates
a scheme of proofs for the inapproximability in [9] (this paper, resp.). The relations among width
parameters illustrated in Figure 1 can be confirmed from the inequalities in Appendix A.
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pw: path-width

tw: tree-width

Lemma 5.1 in [9]
Lower Threshold

cutw: cut-width

Lemma 5.1 in [9]
(Lemma 2)

Upper Threshold

banw
band-width

pw
path-width

tw
tree-width

be
edge boundary width

Lemma 3
Lower Threshold

bv
vertex boundary width

Lemma 3
Lower Threshold

cutw
cut-width

Lemma 5.1 in [9]
(Lemma 2)

Upper Threshold

carw
carving-width

braw
branch-width

rw
rank-width

Theorem 3
Lower Threshold

boow
boolean-width

mimw
maximum induced matching-width

Theorem 4
Lower Threshold

lclw
linear clique-width

cliw
clique-width

NLC
NLC-width

Figure 1. Scheme showing how to prove the inapproximability. (gw1 → gw2 means that gw1 � gw2).

5. Hardness Results Derived from Inapproximability of Tree-Width

In this section, we exhibit approximation hardness results for several graph width parameters
which can be derived from the approximation hardness of tree-width together with known results.

Theorem 1. Assume that tree-width cannot be approximated within any constant factor in polynomial time.
Then, {branch, carving, clique}-widths cannot be approximated within any constant factor either.

Proof. The approximation hardness of branch-width follows from the fact that braw(G) − 1 ≤
tw(G) ≤ b 3

2 × braw(G)c − 1 [18].
For carving-width, it is known that from a graph G we can construct a graph G′ in polynomial

time such that tw(G) ≤ tw(G′) ≤ tw(G) + 1 and ∆(G′) ≤ 3 [22]. It is also known that carw(G)
∆(G)

≤
tw(G) ≤ 2× carw(G) [23–25]. By combining both results, we can conclude that if carving-width can
be approximated within a constant factor, then tree-width can be approximated within a constant
factor as well.

The hardness of clique-width can be shown by the fact that tw(G)+1
4 ≤ cliw(L(G)) ≤ 2tw(G)+ 2 [26],

where L(G) means the line graph of G.

6. Results

6.1. Simpler Proof of the Inapproximability of {Cut, Path, Tree}-Widths

As mentioned in Section 1, in [9], Wu et al. demonstrated that under SSEH there are no constant
factor approximation algorithms for cut-width, path-width, and tree-width. In this subsection, we
show the same result in a different way from that of Wu et al. The difference is as follows. Recall first
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the relations cutw(G) ≥ pw(G) ≥ tw(G). To show the approximation, hardness, completeness, and
soundness should be proved (see Section 4). To prove completeness, Wu et al. gave an upper threshold
of cut-width, and we just use their upper threshold, so there is no difference in this part. To prove
soundness, they gave a lower threshold of tree-width. To obtain the lower threshold, they used the
lower bound of “1/2-vertex separator”, which is a well-known lower bound of tree-width. Instead
of the 1/2-vertex separator, we employ the vertex boundary width, which is also known as a lower
bound of tree-width. The most obvious difference is that they used an auxiliary graph G′ produced
from an input graph G to show a lower bound of 1/2-vertex separator of G′, while in our case, we
do not need an auxiliary graph. In this sense, our proof is simpler than that of Wu et al. (2014). To be
self-contained, we review the proof of the completeness of Theorem 4.1 in [9].

Lemma 2 (Completeness of Theorem 4.1 in [9]). Let q = 1
ε . Let G = (V, E) be d-regular and a YES

instance in Problem 1, where d is an universal constant. Then, cutw(G) ≤ ccε|E| holds for some universal
constant cc.

Proof. Since G is a YES instance, we have

|E(Si, V\Si)| = ΦG(Si)× d|Si| = ΦG(Si)× d
|V|
q

= ΦG(Si)×
2|E|

q
≤ 4ε|E|

q
.

Hence, the number of edges whose endpoints do not belong to the same partition Si is
upper-bounded as follows:

1
2

q

∑
i=1
|E(Si, V\Si)| ≤

1
2

q

∑
i=1

4ε|E|
q
≤ 2ε|E|.

From 1
q = ε, we have |Si| = ε|V|. Hence, |E(Si, Si)| is at most d|Si |

2 = dε|V|
2 = ε|E|. Thus, by

considering an ordering in which u comes before v for any vertices of u ∈ Si and v ∈ Sj with i < j, we
have cutw(G) ≤ 3ε|E| (i.e., cc = 3).

We now show the soundness in Lemma 3.

Lemma 3. Let G = (V, E) be a NO instance stated in Problem 1. Then, for all |V|4 ≤ i ≤ |V|2 ,

• mini be(i, G) ≥ c
2
√

ε|E|, and
• mini bv(i, G) ≥ c

2d
√

ε|E|

hold, where c is the constant in the NO instance in Problem 1.

Proof. For each |V|4 ≤ i ≤ |V|2 , let Si be a set such that be(i, G) = |E(Si, Si)| and |Si| = i. Then, for each

i, we have be(i, G) = |E(Si, Si)| = ΦG(Si)× d|Si| ≥ c
√

ε× d× i ≥ c
√

ε× d× |V|4 = c
2
√

ε× |E|.
Let Si be a set such that bv(i, G) = |N(Si)| and |Si| = i. From the above and the fact that

|E(S, S)| ≤ |N(S)| × d, we have

min
|V|
4 ≤i≤ |V|2

bv(i, G) = min
|V|
4 ≤i≤ |V|2

|N(Si)| ≥ min
|V|
4 ≤i≤ |V|2

|E(Si, Si)|
d

≥ 1
d
× min
|V|
4 ≤i≤ |V|2

|E(Si, Si)| ≥ 1
d
× c

2
√

ε|E|.

Theorem 2. Under SSEH, it is NP-hard to approximate {cutw, pw, tw, carw}-widths of a graph to within a
constant factor in polynomial time.
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Proof. Combining Lemmas 2 and 3 and the relations: for each 1 ≤ j ≤ |V|,

• minj/2≤i≤j bv(i, G)− 1 ≤ tw(G) ≤ pw(G) ≤ min{cutw(G), banw(G)} [27],
• minj/2≤i≤j bv(i, G) ≤ minj/2≤i≤j be(i, G) ≤ carw(G) ≤ cutw(G) [28],

we have the theorem.

6.2. Inapproximability of Rank, Clique, Boolean, and Mim-Widths

Theorem 3. Under SSEH, it is NP-hard to approximate rank and clique-widths of a graph to within a constant
factor in polynomial time.

Proof. Let G = (V, E) be a YES instance stated in Problem 1, and M an adjacency matrix of G. Then,
from the fact that rw(G) ≤ tw(G) + 1 ≤ pw(G) + 1 [29] and Lemma 2, we have rw(G) ≤ 2× pw(G) ≤
c× ε|E| for some constant c, from which follows the completeness.

Now, let G = (V, E) be a NO instance stated in Problem 1. Hence, for any S ⊆ V such that
|V|
10 ≤ |S| ≤

9|V|
10 , ΦG(S) ≥ c

√
ε holds, where c is the constant in the NO instance in Problem 1.

To prove the soundness, we will show that rw(G) ≥ c′
√

ε|E| for some constant c′. Let (T, fT) be an
optimal decomposition tree of G, (i.e., max

e∈E(T)
rank(M[(V\e)1, (V\e)2]) = rw(G)). Since T is a subcubic

tree, T has an edge e such that min{|(V\e)1|, |(V\e)2|} ≥ |V|−1
3 . For graphs with |V| ≥ 10, we have

|V|−1
3 ≥ 0.9 · |V|3 . Denote (V\e)1 by A and (V\e)2 by B. As rw(G) ≥ rank(M[A, B]), it is sufficient to

show that rank(M[A, B]) ≥ c′
√

ε|E| for some c′.
Since min{vol(A), vol(B)} = d × min{|A|, |B|} ≥ d × |V|−1

3 ≥ 0.9 × d × |V|3 holds. Thus,

|E(A, A)| = min{vol(A), vol(B)} × ΦG(A) ≥ 0.9d |V|3 × c
√

ε = 0.9× 2|E|
3 × c

√
ε. Since the number

of nonzero elements (i.e., 1’s) of M equals |E(A, B)|, the number of nonzero elements is at least
c
√

ε× 0.9× 2|E|
3 . Meanwhile, the number of nonzero elements in each row and/or column of M is at

most d, because G is d-regular. Hence, by Lemma 1, we have rank(M[A, B]) ≥ 2c
3d2 × 0.9×

√
ε|E| as

desired (i.e., c′ = 2c
3d2 × 0.9).

The approximation hardness of clique-width follows from the relations cliw(G) ≤ pw(G) + 2 [30]
and rw(G) ≤ cliw(G) [31] (see also inequalities (A4) and (A3) in Appendix A). As stated in Theorem 1,
the hardness can also be obtained from the approximation hardness of tree-width.

Theorem 4. Under SSEH, it is NP-hard to approximate mim and boolean-widths of a graph to within a
constant factor in polynomial time.

Proof. The proof is quite similar to that of Theorem 3. It is known that mimw(G) ≤ boow(G) [32] and
boow(G) ≤ tw(G) + 1 [33] (see also inequalities (A6) and (A7) in Appendix A). From the relations,
it is sufficient to show that, given a NO instance G = (V, E), mimw(G) ≥ c′

√
ε|E| for some constant

c′. Let (T, fT) be an optimal decomposition tree of G, and e be an edge such that min{|(V\e)1|,
|(V\e)2|} ≥ |V|−1

3 . Note that since T is a subcubic tree, there exists such edge e. Without loss of

generality, we may assume that |(V\e)1| ≤ |(V\e)2|. Let A denote (V\e)1. As |V|−1
3 ≤ |A| ≤ 2|V|+1

3 ,

ΦG(A) ≥ c
√

ε holds. Since min{vol(A), vol(A)} = d×min{|A|, |A|} = d× |A| ≥ d× |V|−1
3 holds,

we have |E(A, A)| = min{vol(A), vol(A)} ×ΦG(A) ≥ d |V|−1
3 × c

√
ε = c

√
ε 2|E|−d

3 ≥ c
√

ε |E|3 .
Pick any edge e from E(A, A). Let D1 denote the set of edges e′ such that e and e′ have a common

end vertex and D2 denote the set of edges e′′ such that e′′ and e′ have a common end vertex for some
e′ ∈ D1. Then, remove the edges e, D1, and D2. Since G is a d regular graph, we can iterate this process

at least E(A,A)
2·d2 times. The edges picked in each iteration consists of an induced matching in the bipartite

graph (A, A; E(A, A)). As mim(A) ≥ c
√

ε|E|
3·2d2 and (T, fT) is an optimal decomposition tree of G, we

have mimw(G) ≥ c
√

ε|E|
3·2d2 .
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7. Future Research

In this paper, we showed in a unified manner that under SSEH it is NP-hard to approximate
various graph width parameters to within any constant factor in polynomial time. Such width
parameters include rank-width, clique-width, boolean-width, and maximum induced matching-width.
However, there are several graph parameters for which it is not known whether there are constant
factor approximation algorithms. For example, it would be interesting to investigate the constant
approximability for path-distance-width [34,35].
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Appendix A. Relations among Graph Parameters

For the graph parameters described in the previous subsection, the following relations are known.

• For each 1 ≤ j ≤ |V|,

min
j/2≤i≤j

bv(i, G)− 1 ≤ tw(G) ≤ pw(G) ≤ min{cutw(G), banw(G)}. (see Lemma 9 in [27]) (A1)

• For each 1 ≤ j ≤ |V|,

min
j/2≤i≤j

bv(i, G) ≤ min
j/2≤i≤j

be(i, G) ≤ carw(G) ≤ cutw(G) (see Theorem 1 in [28]), (A2)

•
rw(G) ≤ min{tw(G) + 1, cliw(G)} (see Corollary 5 in [29], Proposition 6.3 in [31]), (A3)

•
lclw(G) ≤ pw(G) + 2 (see Section 5 in [30]), (A4)

•
NLC(G) ≤ cliw(G) ≤ 2NLC(G) (see [36,37]), (A5)

where NLC(G) denotes the NLC-width of G (see [38] for the definition of NLC-width and details).
•

boow(G) ≤ tw(G) + 1 (see Figure 1 in [33]). (A6)

•
mimw(G) ≤ boow(G) ≤ mimw(G) log2(|V(G)|) (see Theorem 4.2.10 in [32]). (A7)

Note that relation (A5) implies that clique-width can be approximated within a constant factor if
and only if NLC-width can be approximated within a constant factor.

References

1. Feige, U.; Hajiaghayi, M.; Lee, J.R. Improved approximation algorithms for minimum weight vertex
separators. SIAM J. Comput. 2008, 38, 629–657. [CrossRef]

2. Bodlaender, H.L.; Gilbert, J.R.; Hafsteinsson, H.; Kloks, T. Approximating treewidth, pathwidth, frontsize,
and shortest elimination tree. J. Algorithms 1995, 18, 238–255. [CrossRef]

3. Oum, S. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 2008, 5, 10. [CrossRef]
4. Sæther, S.H.; Vatshelle, M. Hardness of computing width parameters based on branch decompositions

over the vertex set. Theor. Comput. Sci. 2016, 615, 120–125. [CrossRef]

http://dx.doi.org/10.1137/05064299X
http://dx.doi.org/10.1006/jagm.1995.1009
http://dx.doi.org/10.1145/1435375.1435385
http://dx.doi.org/10.1016/j.tcs.2015.11.039


Algorithms 2018, 11, 173 9 of 10

5. Raghavendra, P.; Steurer, D. Graph expansion and the unique games conjecture. In Proceedings of the
42nd ACM Symposium on Theory of Computing, Cambridge, MA, USA, 6–8 June 2010; pp. 755–764.
[CrossRef]

6. Raghavendra, P.; Steurer, D.; Tulsiani, M. Reductions between expansion problems. In Proceedings of the
27th Conference on Computational Complexity, Porto, Portugal, 26–29 June 2012; pp. 64–73. [CrossRef]

7. Khot, S.A.; Vishnoi, N.K. The unique games conjecture, integrality gap for cut problems and embeddability
of negative type metrics into `1. JACM 2015, 62, 8. [CrossRef]

8. Manurangsi, P. Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest
At-Least-k-Subgraph from the Small Set Expansion Hypothesis. Algorithms 2018, 11, 10. [CrossRef]

9. Wu, Y.; Austrin, P.; Pitassi, T.; Liu, D. Inapproximability of Treewidth and Related Problems. J. Artific.
Intell. Res. 2014, 49, 569–600. [CrossRef]

10. Cao, Y.; Sandeep, R. Minimum fill-in: Inapproximability and almost tight lower bounds. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Barcelona, Spain,
16–19 January 2017; pp. 875–880.

11. Barak, B. Truth vs. Proof in Computational Complexity. EATCS Bull. 2012, 108, 130–142.
12. Arora, S.; Barak, B.; Steurer, D. Subexponential algorithms for unique games and related problems.

In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, Las Vegas, NV,
USA, 23–26 October 2010; pp. 563–572. [CrossRef]
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