
algorithms

Article

Modeling and Evaluation of Power-Aware Software
Rejuvenation in Cloud Systems

Sharifeh Fakhrolmobasheri 1,*, Ehsan Ataie 2 and Ali Movaghar 1

1 Department of Computer Engineering, Sharif University of Technology, Tehran 1458889694, Iran;
movaghar@sharif.edu

2 Department of Engineering and Technology, University of Mazandaran, Babolsar 4741613534, Iran;
ataie@umz.ac.ir

* Correspondence: mobasheri@ce.sharif.edu; Tel.: +98-913-326-4082

Received: 30 August 2018; Accepted: 15 October 2018; Published: 18 October 2018
����������
�������

Abstract: Long and continuous running of software can cause software aging-induced errors and
failures. Cloud data centers suffer from these kinds of failures when Virtual Machine Monitors
(VMMs), which control the execution of Virtual Machines (VMs), age. Software rejuvenation is
a proactive fault management technique that can prevent the occurrence of future failures by
terminating VMMs, cleaning up their internal states, and restarting them. However, the appropriate
time and type of VMM rejuvenation can affect performance, availability, and power consumption
of a system. In this paper, an analytical model is proposed based on Stochastic Activity Networks
for performance evaluation of Infrastructure-as-a-Service cloud systems. Using the proposed model,
a two-threshold power-aware software rejuvenation scheme is presented. Many details of real cloud
systems, such as VM multiplexing, migration of VMs between VMMs, VM heterogeneity, failure of
VMMs, failure of VM migration, and different probabilities for arrival of different VM request types
are investigated using the proposed model. The performance of the proposed rejuvenation scheme is
compared with two baselines based on diverse performance, availability, and power consumption
measures defined on the system.

Keywords: cloud computing; software rejuvenation; aged software; performance evaluation

1. Introduction

Cloud computing is the practice of storing, managing, and processing data using a network
of remote servers accessed via the Internet [1]. As such, cloud computing is a model for easy and
ubiquitous access to a set of servers, storage devices, networks, applications, and services with
minimal interaction with the service provider and minimal management cost [2]. Virtualization
techniques are used in cloud systems to appropriately handle user requests. By applying virtualization,
multiple Virtual Machines (VMs) are simultaneously run on a single Physical Machine (PM)
controlled by software usually known as Hypervisor or Virtual Machine Monitor (VMM) [3–5].
In Infrastructure-as-a-Service (IaaS) clouds, each user request is in the form of one or more VM requests.

The tendency of software to fail or cause a system failure after running continuously for a specific
time period is referred to as software aging [6,7]. Software aging is a phenomenon in long-run software
systems that causes an increased failure rate and/or degraded performance due to accumulation of
aging errors [8,9]. Since VM requests in IaaS clouds are usually different in terms of software and tools
for which they are initiated, their corresponding VMs exhibit complex behaviors and sophisticated
interactions throughout their lifetime that enable VMMs to manage a wide variety of VM behaviors.
Consequently, after running for a long time or managing heavy workloads, VMMs, like any other
software, age and slow due to a multitude of internal errors and diverse behaviors of VMs [7,10–13].

Algorithms 2018, 11, 160; doi:10.3390/a11100160 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-3424-579X
https://orcid.org/0000-0002-6803-6750
http://www.mdpi.com/1999-4893/11/10/160?type=check_update&version=1
http://dx.doi.org/10.3390/a11100160
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 160 2 of 15

If these errors are not prevented or addressed properly, the performance of the system degrades and
the cloud provider may fail to meet Quality of Service (QoS) requirements [14].

Software rejuvenation is an effective method used to cope with software aging and performance
degradation [11,15,16]. In this method, software is restored to its original state before causing
aging-induced crashes and system failures. In cloud systems, providers can also benefit from software
rejuvenation by rejuvenating their VMMs before they fail. However, the main problem in this regard
is how to choose the right VMM to be rejuvenated and the correct time to do so. In addition to the
selection of the appropriate VMM and the proper time for rejuvenation, the selection of the right
method amongst existing options is of utmost importance. The majority of models proposed in the
literature use a series of side programs to measure the efficiency and performance of VMMs. A study
showed that the majority of previous studies in the field of software rejuvenation adopted time-based
or prediction-based strategies [17], both of them show low performance.

The rapid worldwide growth of the cloud computing paradigm has led to the emergence of
massive data centers with high power consumption across the world [18]. In 2016, the total energy
consumption of the world’s data centers was 416 terawatt hours (TWh), which is 38% higher than
the 300 TWh of energy that the entire U.K. consumed in the same year [19]. As a result, the power
consumption of cloud computing servers and the field of green computing are worthy of more
attention [20]. Active PMs, i.e., switched-on PMs, consume a major portion of a cloud system’s power.
Therefore, a cloud provider with many active but lightly loaded PMs/VMMs has high power waste,
resulting in low energy efficiency. The technique proposed to increase the energy efficiency in this
paper involves migration of VMs from lightly loaded VMMs, and then switching free PMs off, leading
to a smaller number of active VMMs and PMs. In real-world cloud systems, requested VMs are
heterogeneous and they differ in terms of processing speed, memory, and storage capacities. Therefore,
in order to match real-world systems as much as possible, we consider two categories of VMs in this
paper: (1) small VMs, which are VMs that need to be served for a short while and therefore utilize a
small share of resources, and (2) big VMs, which are the VMs that need to be executed for a longer
period of time and thus use a significant share of system resources. Over the course of their life,
larger VMs have a greater impact on software aging of their host VMMs in contrast to the smaller VMs.

In this paper, we present a Stochastic Activity Networks (SAN) model for cloud data centers and
provide a strategy for applying rejuvenation to candidate VMMs at the appropriate time. Model-based
studies are amongst the most prevalent analyses that researches completed to study software aging
and software rejuvenation [21]. Since one of the main causes of failures of VMMs is the continuous
execution of VMs running on VMMs [17], the type and the total number of VMs executed by a VMM
serve as the measure for determining the appropriate time of rejuvenation. Therefore, we define an
upper bound for the maximum number of VMs that a VMM can run, starting from its last boot time, and
force a rejuvenation whenever the age of a VMM reaches this limit. The age of a VMM can be expressed
as the cumulative workload that the VMM has served since its last failure or rejuvenation. By analyzing
the proposed model with the rejuvenation scheme, the benefits of applying the rejuvenation to VMMs
of an IaaS cloud provider in reducing the number of VM failures and improving the performance and
availability in the steady-state are observed. In addition, the proposed model enables power-awareness
in the cloud management system by migrating active VMs from lightly loaded VMMs to more
heavily loaded ones and switching off free PMs. Evaluation of the proposed scheme demonstrates
that this power saving mechanism improves the system’s steady-state performance and availability.
The formalism used in this paper to model the power-aware VMM rejuvenation scheme is SANs [22–24].
SANs are probabilistic extensions of activity networks that are equipped with a set of activity time
distribution functions, reactivation predicates, and enabling rate functions. They were developed to
facilitate performance and dependability evaluation and have features that permit the representation
of parallelism, timeliness, fault tolerance, and degradable performance [25]. More detailed information
about SANs can be found in the previous literature [26–28].

Algorithms 2018, 11, 160 3 of 15

The main contributions of this paper are summarized as follows. (1) A SAN model is presented
for performance evaluation of IaaS clouds that considers many details of real systems, including VM
multiplexing, migration of VMs between VMMs, VM heterogeneity, failure of VMMs, failure of VM
migration, and different probabilities for arrival of different VM request types. (2) Using the presented
SAN, a two-threshold power-aware software rejuvenation scheme is proposed and compared with
two baselines based on diverse performance, availability, and power consumption measures defined
on the system.

The rest of this paper is organized as follows. Section 2 reviews the previous work in the field of
software rejuvenation in cloud systems. Section 3 provides a brief introduction to the SAN formalism.
In Section 4, the general structure of our system is explained. In Section 5, the proposed SAN model
and the rejuvenation scheme presented for the SAN are introduced in detail. Section 6 presents
the output measures of interest and the results of the performance evaluation, and finally, Section 7
concludes the paper and provides some directions for future work.

2. Related Work

Evaluation of performance, availability, and power consumption of rejuvenation techniques in
cloud systems using analytical models is an emerging topic. Machida et al. studied different methods
of rejuvenation and suggested three main methods for software rejuvenation in a server virtualized
system: cold, warm, and migration rejuvenation [11]. In the cold rejuvenation method, active VMs
on a VMM that want to be rejuvenated are switched off. After completion of the VMM rejuvenation,
the switched-off VMs are restarted on the rejuvenated VMM. In the warm method, active VMs are
suspended, and after completion of the VMM rejuvenation, the suspended VMs resume their running
on the rejuvenated VMM. In the migration method, active VMs on the intended VMM are moved to
another host VMM before rejuvenation of the intended VMM occurs. When rejuvenation is completed,
they move back to their original PM. Therefore, the downtime caused by the migration method is
shorter than that of other methods. Our model is also based on the migration rejuvenation method.
In the model presented in Machida et al. [11], the rejuvenation is periodically performed without
considering the system’s workload. In contrast, the rejuvenation in our model is performed according
to the VMM’s age.

Bruneo et al. analyzed the best period for rejuvenation to achieve high availability considering
the VMM’s workload [15]. They suggested a specific period of rejuvenation as the best one for each
specified input workload. By changing the rate of input workload, the rejuvenation period also changes.
More simply, the heavier the amount of workload, the longer the rejuvenation period; and the lighter
the input workload, the shorter the rejuvenation period. Thus, rejuvenation time is adopted according
to the VMM’s workload. In contrast to Bruneo et al. [15], in our proposed model, the rejuvenation time
is determined based on the age of a VMM instead of using a constant period, which provides a flexible
model and an accurate analysis.

Melo et al. presented a rejuvenation model for cloud data centers to evaluate the availability in
the steady-state [10]. In their model, only one active VMM and one standby VMM were considered.
Our proposed model is similar to the model presented in Melo et al. [10]. In both models, the age
of a VMM increases when a new workload is admitted. However, in Melo et al. [10], rejuvenation
is periodically performed, and the status of a VMM is checked at the end of each period to ensure
that performance degradation is due to the age of the VMM and not the overload of the data center
itself. If rejuvenation is required, all active VMs on the target VMM are moved to the standby VMM to
continue their execution. Notably, the model with only one active VMM is not realistic for cloud data
centers. In contrast to Melo et al. [10], we consider several active VMMs in our model.

Melo et al. studied cloud data centers in different scenarios and analyzed different periods for
setting rejuvenation timer in each scenario [29]. The authors specified the best rejuvenation time for
achieving high availability in the steady-state. Liu et al. studied rejuvenation from different aspects [16].
Amongst the presented ideas in Liu et al. [16], saving a system’s checkpoints periodically can also

Algorithms 2018, 11, 160 4 of 15

be used in case of failure to recover the state of the system. The authors applied warm rejuvenation,
in which paused VMs are maintained on external memory. Compared to the approach presented in
Liu et al. [16], both migration rejuvenation and power-awareness are simultaneously applied in our
presented model.

Roohitavaf et al. represented a SAN model using the Möbius tool to evaluate the availability
and power consumption of cloud data centers [22]. Based on their evaluation, by switching off low
load VMMs, providers not only decrease the power consumption of a cloud data center but also reach
higher availability if the migration time is short enough. Roohitavaf et al. [22] only considered the
energy saving aspect of cloud data centers; in contrast, we studied the simultaneous effect of power
saving and rejuvenation on cloud data centers.

There are also other related studies in the field of VMM rejuvenation that presented models
and schemes using techniques other than analytical modeling. Kourai and Ooba proposed VMBeam,
which enables lightweight software rejuvenation of virtualized systems using zero-copy migration [30].
The proposed VMBean has been implemented in Xen, an open source hypervisor. Sudhakar et al.,
proposed a neural network-based approach to approximate the non-linear relationship between
resource usage statistics and the time to failure of VMMs caused by aging-related errors [31].
Araujo et al., investigated the software aging effects in the Eucalyptus framework, considering
workloads composed of intensive requests for remote storage attachment and VM instantiations [32].
They also presented an approach that applies time series analysis to schedule rejuvenation to reduce
the downtime by predicting the proper moment to perform the rejuvenation.

In summary, the approaches that analyze the performance, availability, and power consumption
of VMM rejuvenation tasks in cloud systems using analytical models are rare. In contrast to existing
work, our presented scheme allows power-aware rejuvenation of VMMs using a two-threshold
mechanism. The proposed model supports PM heterogeneity, which has not been considered in
previously presented models. Moreover, the model considers several other aspects of real cloud
systems that have not usually been considered in previously published reports. In addition, the number
of PMs/VMMs and the number of VMs that can simultaneously be serviced on a PM/VMM are larger
than those modeled in other approaches.

3. Overview of SANs

SANs are stochastic generalizations of Petri Nets (PNs), defined for modeling and analysis
of distributed real-time systems [27,28]. SANs, which are more powerful and flexible than other
extensions of PNs, can be formally defined as a 7-tuple (P, IA, T A, IG, OG, IR, OR) [24], where:

• P is a finite set of places. Places are similar to places in PNs and are represented by circles.
• IA is a finite set of instantaneous activities that represent system activities that are completed

almost instantly compared to the corresponding performance variables. Each instantaneous
activity is assigned to a case probability function, which returns a value between zero and one,
that allows us to express uncertainty. Instantaneous activities are represented by thin lines.

• TA is a finite set of timed activities that represent system activities whose running time affects the
system’s functionality and evaluation results. A timed activity is exhibited with X inputs and Y
outputs, where X + Y > 0. Each input can be a place or an input gate, and each output can be a
place or an output gate. Each timed activity is assigned to an activity time distribution function
and an enabling function. Timed activities are represented by thick lines.

• IG is a finite set of input gates. Each input gate has a finite number of inputs. Each G ∈ IG with m
inputs is associated with a function fG : Nm → Nm , called the function of G; and a predicate
gG : Nm → {true, f alse} , called the enabling predicate of G. Input gates provide more flexibility
in defining activity enabling and completion rules. Input gates are represented by triangles.

Algorithms 2018, 11, 160 5 of 15

• OG is a finite set of output gates. Each output gate has a finite number of outputs. Each G ∈ OG
with m outputs is associated with a function fG : Nm → Nm , called the function of G. Like input
gates, output gates are represented by triangles.

• IR ⊆ P × {1, ..., |P|} × IG × (IA ∪ TA) is the input relation. IR satisfies the following conditions:

For any (P1, i, G, a) ∈ IR such that G has m inputs, i ≤ m,
For any G ∈ IG with m inputs and i ∈ N, i ≤ m, there exists a ∈ (IA ∪ T A) and P1 ∈ P,

such that (P1, i, G, a) ∈ IR,
For any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j and G1 = G2,

• OR ⊆ (IA ∪ TA) × OG × {1, ..., |P|} × P is the output relation. OR satisfies the
following conditions:

For any (a, G, i, P1) ∈ OR, such that G has m outputs, i ≤ m,
For any G ∈ OG with m outputs and i ∈ N, i ≤ m, there exists a ∈ (IA ∪ T A) and P1 ∈ P.

such that (a, G, i, P1) ∈ OR,
For any (a, G1, i, P1), (a, G2, j, P1) ∈ OR, i = j and G1 = G2.

Several tools have been developed, such as Möbius [33], UltraSAN [34], and METASAN [35],
to provide support for SANs as a modeling formalism. All these software packages are intended for
automatic evaluation of performance, dependability, and performability of systems. Among them,
we chose Möbius as the modeling tool in this paper.

4. System Description

Figure 1 shows the structure of an IaaS cloud system where user requests are expressed as requests
for VMs. This system contains N physical machines, each one with an active VMM. User requests are
placed in the input queue upon arrival. The migration queue is used when VMs need to be migrated
between VMMs.

Algorithms 2018, 11, x FOR PEER REVIEW 5 of 15

o For any G ∈ IG with m inputs and i ∈ N, i ≤ m, there exists a ∈ (IA ∪ T A) and P1 ∈ P, such

that (P1, i, G, a) ∈ IR,

o For any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j and G1 = G2,

• OR ⊆ (IA ∪ TA) × OG × {1, ..., |P|} × P is the output relation. OR satisfies the following conditions:

o For any (a, G, i, P1) ∈ OR, such that G has m outputs, i ≤ m,

o For any G ∈ OG with m outputs and i ∈ N, i ≤ m, there exists a ∈ (IA ∪ T A) and P1 ∈ P. such

that (a, G, i, P1) ∈ OR,

o For any (a, G1, i, P1), (a, G2, j, P1) ∈ OR, i = j and G1 = G2.

Several tools have been developed, such as Mӧbius [33], UltraSAN [34], and METASAN [35], to

provide support for SANs as a modeling formalism. All these software packages are intended for

automatic evaluation of performance, dependability, and performability of systems. Among them,

we chose Mӧbius as the modeling tool in this paper.

4. System Description

Figure 1 shows the structure of an IaaS cloud system where user requests are expressed as

requests for VMs. This system contains N physical machines, each one with an active VMM. User

requests are placed in the input queue upon arrival. The migration queue is used when VMs need to

be migrated between VMMs.

Figure 1. The structure of the Infrastructure-as-a-Service (IaaS) cloud system under study.

Right after system startup, all PMs of the cloud data center are assumed to be switched-off and

they are switched on only on demand after receiving requests for VMs. Since active PMs consume

more power, as long as there is free capacity on active VMMs, no PM is switched on. In other words,

a new PM is switched on only if none of the active VMMs have sufficient capacity to accept migrating

or requested VMs. When there is a VM request in the input queue, one of the active VMMs with free

capacity is randomly selected to service the request. Similarly, when there is a VM in the migration

queue, one of the active VMMs with free capacity is randomly chosen to service the migrating VM.

We supposed that a PM can host up to M VMs concurrently. After finishing the tasks defined for a

VM, the resources assigned to that VM are returned to their corresponding VMM, thereby providing

the VMM some capacity to accept another VM. In order to make the model more realistic, we

assumed that the system is able to handle two different types of VMs: big and small VMs. Big VMs

are VMs that have a greater impact on VMM aging due to having a longer runtime or equivalently,

using a more significant share of system resources. Here, we assumed that a big VM has a runtime

twice as large as the runtime of a small VM.

Figure 1. The structure of the Infrastructure-as-a-Service (IaaS) cloud system under study.

Right after system startup, all PMs of the cloud data center are assumed to be switched-off and
they are switched on only on demand after receiving requests for VMs. Since active PMs consume
more power, as long as there is free capacity on active VMMs, no PM is switched on. In other words,
a new PM is switched on only if none of the active VMMs have sufficient capacity to accept migrating
or requested VMs. When there is a VM request in the input queue, one of the active VMMs with free
capacity is randomly selected to service the request. Similarly, when there is a VM in the migration
queue, one of the active VMMs with free capacity is randomly chosen to service the migrating VM.
We supposed that a PM can host up to M VMs concurrently. After finishing the tasks defined for a VM,

Algorithms 2018, 11, 160 6 of 15

the resources assigned to that VM are returned to their corresponding VMM, thereby providing the
VMM some capacity to accept another VM. In order to make the model more realistic, we assumed
that the system is able to handle two different types of VMs: big and small VMs. Big VMs are VMs that
have a greater impact on VMM aging due to having a longer runtime or equivalently, using a more
significant share of system resources. Here, we assumed that a big VM has a runtime twice as large as
the runtime of a small VM.

A VMM may fail due to different reasons. One of the notable causes of VMM failure is
aging-related errors. If an aged VMM is not rejuvenated at in time, the VMM fails. Thus, the failure
of all VMs running on top of that VMM is possible. In serving a VM, the age of its hosting VMM
increases, but completion of that VM does not decrease the VMM’s age. This is because running a
VM has some adverse effects on the corresponding VMM that are not removed once VM’s tasks are
completed. Therefore, both the number and the type of VMs served by a VMM can be considered
indicators of its age. By VMM age, we mean the cumulative workloads that are accepted and served by
that VMM after its last reboot. In our considered system, once the age of a VMM reaches the maximum
threshold F, regardless of there being free capacity on other VMMs, the active VMs of that VMM are
put in the migration queue, and the VMM is then rejuvenated. In order to improve system reliability,
when the age of a VMM reaches the threshold F′ (F′ < F), and if other VMMs have enough free capacity
to accept the VMs running on that VMM, these VMs are put in the migration queue, and the aged
VMM is rejuvenated before reaching the threshold F. With the aim of power saving, when a VMM is
relatively idle and other VMMs can serve its active VMs, these VMs are put in the migration queue to
be migrated to those VMMs, and the emptied PM is switched off.

5. The Proposed Model

The proposed model is composed of five sub-models shown in Figure 2. The insertion sub-model
(Figure 2a) models the arrival of user requests to the system, the migration sub-model (Figure 2b)
addresses the migration of VMs between VMMs, the service and green computing sub-model
(Figure 2c) models serving VMs and termination of lightly loaded VMMs with the aim of green
computing goals, the rejuvenation sub-model (Figure 2d) addresses rejuvenation of the aged VMMs,
and the failure sub-model (Figure 2e) models the failure of VMMs. We assumed that the times assigned
to all timed activities follow an exponential distribution [36–39]. In Figure 2a, the arrival of new
requests to the system and selection of appropriate VMM to handle them are modeled. Timed activity
TAArr models the arrival of VM requests. Upon completion of TAArr, a token is inserted into place PIni.
Place PIni represents the input queue, and a token in this place serves as a request waiting in the queue.
Once the number of tokens in place PIni reaches the threshold Qin, representing the capacity of the
input queue, the input gate IGArr prevents timed activity TAArr from completion. The completion rate
of activity TAArr is λva. The timed activity TAIni randomly selects one of the active VMMs to serve
a requested VM. Whenever at least one token is in place PIni, representing a VM request, and there
is enough capacity on one of the VMMs to accept a new VM, timed activity TAIni is enabled and
can complete the activity. Upon completion of this activity, one token is removed from place PIni by
input gate IGIni. If more than one VMM can accept an incoming request, TAIni randomly chooses the
destination VMM. When VMMi is chosen by this activity, one of the output gates OGIniSi

or OGIniBi
is selected. If the requested VM is small, the output gate OGIniSi

is enabled; otherwise, the output
gate OGIniBi

is enabled. Here, we assumed that the chance of arrival of a small VM is twice as large
as that of a big VM. In the output gate OGIniSi

, the number of active VMs running on VMMi and
the age of that VMM are both increased by one. However, in the output gate OGIniBi

, the number of
active VMs running on VMMi increases by one and the related age increases by two. The completion
rate of activity TAIni depends on the number of VMs that can be assigned to all available VMMs
and the number of VM requests waiting in place PIniwhichever is smaller—and the initiation rate
of a VM is λvi. The rate of activity TAIni is demonstrated in Table 1. The predicates and functions
corresponding to the input gates of the insertion sub-model are presented in rows 1 and 2 of Table 2,

Algorithms 2018, 11, 160 7 of 15

and the functions corresponding to the output gates of the insertion sub-model are presented in rows
1 and 2 of Table 3. In these tables, the Pi → Mark() function returns the number of tokens inside
place Pi. Notably, though places, activities, and gates of the proposed sub-models are not explicitly
connected to each other, these sub-models are implicitly interconnected. The actual connections can be
considered by reviewing the predicates and functions of the gates of these sub-models presented in
Tables 2 and 3. As an example, the predicate of IGArr shown in Table 2 indicates that the activation of
this input gate of insertion sub-model is dependent on the markings of places PCurrentVMsi and PMig,
which are elements of service and green computing sub-model and migration sub-model, respectively.

Algorithms 2018, 11, x FOR PEER REVIEW 7 of 15

𝑃𝑀𝑖𝑔 , which are elements of service and green computing sub-model and migration sub-model,

respectively.

Figure 2. The proposed Stochastic Activity Network (SAN) for (a) insertion sub-model, (b) migration

sub-model, (c) service and green computing sub-model, (d) rejuvenation sub-model, and (e) failure

sub-model.

In Figure 2b, the migration of VMs between VMMs is modeled. When the rejuvenation

mechanism or the power saving scheme requires a VM to migrate, a token is put into place 𝑃𝑀𝑖𝑔,

representing the migration queue. Then, timed activity 𝑇𝐴𝑀𝑖𝑔 randomly selects one of the active

VMMs that have enough capacity to accept the migrating VM. When there is no VMM with free

capacity to serve a migrating VM, input gate 𝐼𝐺𝑀𝑖𝑔 prevents timed activity 𝑇𝐴𝑀𝑖𝑔 from completion.

Assuming that VMMi is selected to serve the migrating VM, if the VM is small, output gate 𝑂𝐺𝑀𝑖𝑔𝑆𝑖

is enabled, and the number of active VMs and the age of that VMM increases by one. If the migrating

VM is large, output gate 𝑂𝐺𝑀𝑖𝑔𝐵𝑖
 is enabled, the number of active VMs running on VMM𝑖 increases

by one, and the age of the corresponding VMM increases by two. The completion rate of activity

𝑇𝐴𝑀𝑖𝑔 depends on the number of VMs that can be assigned to all available VMMs and the number

of VMs waiting for migration in place 𝑃𝑀𝑖𝑔, whichever is smaller, and the migration rate of a VM is

called 𝜆𝑣𝑚𝑔 [40]. The rate of activity 𝑇𝐴𝑀𝑖𝑔 is demonstrated in Table 1. We also assumed a constant

number for probability of failure of a VM migration task. Therefore, we assumed that output gate

𝑂𝐺𝑀𝑖𝑔𝐹𝑎𝑖𝑙𝑒𝑑
 is enabled with probability 𝑝𝑣𝑚𝑓. In this output gate, the removed token from place 𝑃𝑀𝑖𝑔

turns back to place 𝑃𝑀𝑖𝑔. Using this mechanism, the migration of a VM fails and should be retried.

The predicate and function corresponding to the input gate of the migration sub-model are presented

in row 3 of Table 2, and the output functions of the output gates of this sub-model are presented in

rows 3–5 of Table 3.

Figure 2. The proposed Stochastic Activity Network (SAN) for (a) insertion sub-model, (b)
migration sub-model, (c) service and green computing sub-model, (d) rejuvenation sub-model, and (e)
failure sub-model.

Table 1. Rate of timed activities of the proposed Stochastic Activity Network (SAN) model.

Timed Activity Rate

TAIni

possibleIni =
N
∑

i=1
(P_totali → Mark() == T2) && (P_Failedi → Mark() == 1)?

M: (M – PCurrentVMsi → Mark ());
possibleIni - = PMig → Mark() ;
minimum = (possibleIni <= PIni → Mark ())? possibleIni: PIni → Mark ();
return minimum * λvi;

TAMig

possibleIni =
N
∑

i=1
(P_totali → Mark() == T2) && (P_Failedi → Mark() == 1)?

M: (M – PCurrentVMsi → Mark ());
possibleIni - = PMig → Mark() ;
minimum = (possibleIni <= PMig → Mark ())? possibleIni: PMig → Mark ();
return minimum * λvmg;

Algorithms 2018, 11, 160 8 of 15

Table 2. Predicates and functions of input gates of the proposed SAN mod.

Gate Predicate Function

IGArr
systemLoad =

N
∑

i=1
PCurrentVMsi → Mark() + PIni → Mark() + PMig → Mark() ;

(Qin > systemLoad)? return 1: 0;
;

IGIni

availCapacity =
N
∑

i=1
(P_totali → Mark() == T2)

&& (P_Failedi → Mark() == 1) ?
M : (M – PCurrentVMsi → Mark ());
availCapacity - = PMig → Mark() ;
(PIni → Mark () > 0) && (availCapacity > 0)? return 1: 0;

PIni→ Mark()−−;

IGMig

availCapacity =
N
∑

i=1
(PTotali

→ Mark() == T2) &&
(

PFailedi
→ Mark() == 1

)
?

M : (M - PCurrentVMsi → Mark ());
(PMig → Mark () > 0) && (availCapacity > 0)? return 1 : 0;

PMig → Mark()−−;

IGWakeup

availCapacity = (N –
N
∑

i=1
PFailedi → Mark()) * M;

systemLoad =
N
∑

i=1
PCurrentVMsi → Mark() ;

(availCapacity < systemLoad + PIni → Mark() + PMig → Mark()) &&
(PIdle →Mark() > 0)? return 1: 0;

PIdle → Mark()−−;

IGIdlei

availCapacity =
N
∑

j=1 .i 6=j
(PTotalj

→ Mark() == T2)

&&
(

PFailedj
→ Mark() == 1

)
?

0 : (M - PCurrentVMsi → Mark ());
(PFailedi

→ Mark () < 1) &&
(availCapacity > PCurrentVMsi → Mark () + PIni → Mark() + PMig → Mark())?
return 1: 0;

PMig → Mark() + =
PCurrentVMsi→ Mark();

PCurrentVMsi→ Mark() = 0;
PTotali → Mark() = 0;

IGTurnOffi
PCurrentVMsi→ Mark () > 0 PCurrentVMsi→ Mark()−−;

IGReji
(PTotali

→ Mark () == T2) && (PFailedi
→ Mark () < 1)

PMig → Mark() + =
PCurrentVMsi → Mark();

PCurrentVMsi → Mark() = 0;

IGPreReji

availCapacity =
N
∑

j=1 .i 6=j
(PTotalj

→ Mark() == T2)

&&
(

PFailedj
→ Mark() == 1

)
?

0: (M – PCurrentVMsi → Mark ());
(availCapacity > PCurrentVMsi → Mark() + PIni → Mark() + PMig → Mark()) &&
(PFailedi

→ Mark () < 1) && (PTotali
→ Mark () == T1)? return 1: 0;

PTotali → Mark() =T2;
PMig → Mark() + =

PCurrentVMsi→ Mark();
PCurrentVMsi → Mark() = 0

IGFailedi

VMM_loadi = (PFailedi
→ Mark () < 1)? PCurrentVMsi → Mark (): M+1;

((PFailedi
→ Mark () == 0) && (VMM_loadi < M + 1))? return 1: 0;

PFailedi → Mark() + +;
PCurrentVMsi → Mark() = 0;

Table 3. Functions of outputs gates of the proposed SAN model.

Gate Function

OGIniSi

VMM_Loadi= ((PFailedi
→ Mark() < 1) && (PTotali

→ Mark () < T2))? PCurrentVMsi → Mark() : M;
(VMM_Loadi < M)? { PcurrentVMsi → Mark () ++; PTotali

→ Mark () ++;}: PIni → Mark () ++;

OGIniBi

VMM_Loadi= ((PFailedi
→ Mark() < 1) && (PTotali

→ Mark () < T2 – 2))? PCurrentVMsi → Mark() : M;
(VMM_Loadi < M)? { PCurrentVMsi → Mark () ++; PTotali

→ Mark () += 2;}: PIni → Mark () ++;

OGMigSi

VMM_Loadi= ((PFailedi
→ Mark() < 1) && (PTotali

→ Mark () < T2)) ? PCurrentVMsi → Mark() : M;
(VMM_Loadi < M)? { PCurrentVMsi → Mark () ++; PTotali

→ Mark () ++;}: PMig → Mark () ++;

OGMigBi

VMM_Loadi= ((PFailedi
→ Mark() < 1) && (PTotali

→ Mark () < T2 - 2))? PCurrentVMsi → Mark() : M;
(VMM_Loadi < M)? { PCurrentVMsi → Mark () ++; PTotali

→ Mark () += 2;}: PMig → Mark () ++;

OGMigFailed
PMig → Mark () ++;

OGWakupi
PCurrentVMsi → Mark () = 0;

OGReji
PTotali

→ Mark () = 0;
OGPreReji

PTotali
→ Mark () = 0;

OGFailedi

PTotali
→ Mark () = 0;

PRepairi → Mark () ++;

OGRepairi
PFailedi

→ Mark () - -;
PCurrentVMsi → Mark () = 0;

Algorithms 2018, 11, 160 9 of 15

In Figure 2b, the migration of VMs between VMMs is modeled. When the rejuvenation mechanism
or the power saving scheme requires a VM to migrate, a token is put into place PMig, representing
the migration queue. Then, timed activity TAMig randomly selects one of the active VMMs that have
enough capacity to accept the migrating VM. When there is no VMM with free capacity to serve
a migrating VM, input gate IGMig prevents timed activity TAMig from completion. Assuming that
VMMi is selected to serve the migrating VM, if the VM is small, output gate OGMigSi

is enabled,
and the number of active VMs and the age of that VMM increases by one. If the migrating VM is
large, output gate OGMigBi

is enabled, the number of active VMs running on VMMi increases by one,
and the age of the corresponding VMM increases by two. The completion rate of activity TAMig
depends on the number of VMs that can be assigned to all available VMMs and the number of VMs
waiting for migration in place PMig, whichever is smaller, and the migration rate of a VM is called
λvmg [40]. The rate of activity TAMig is demonstrated in Table 1. We also assumed a constant number
for probability of failure of a VM migration task. Therefore, we assumed that output gate OGMigFailed
is enabled with probability pvm f . In this output gate, the removed token from place PMig turns back to
place PMig. Using this mechanism, the migration of a VM fails and should be retried. The predicate
and function corresponding to the input gate of the migration sub-model are presented in row 3 of
Table 2, and the output functions of the output gates of this sub-model are presented in rows 3–5 of
Table 3.

In Figure 2c, timed activity TAVMTurnO f f i models the serving process of a VM on the VMMi.
Upon completion of activity TAVMTurnO f f i, the number of tokens in place PCurrentVMSi

decreases
by one. The tokens in place PCurrentVMSi

represent the number of active VMs on the VMMi.
When there is no token in place PCurrentVMSi

, input gate IGTurnO f f i disables time activity TAVMTurnO f f i.
Serving individual VMs occurs at rate λvt, so the actual service rate of all VMs running on a
VMM during the execution of timed activity TAVMTurnO f f i is equal to λvt ∗ Mark

(
PCurrentVMSi

)
,

where Mark(PCurrentVMSi
) indicates the number of tokens inside place PCurrentVMSi

. In other words,
the actual service rate of VMs running on a VMM is the product of the λvt and the number of active
VMs running on that VMM.

Timed activity TAWakeUp, with completion rate λpw, models the PM wakeup process. The tokens
inside place PIdle represent the number of inactive or switched-off PMs in the system. Right after
system start up, all PMs are assumed to be switched off, so place PIdle holds as many tokens as there
are PMs in the cloud data center. Upon completion of activity TAWakeUp, a token is removed from place
PIdle by input gate IGWakeUp. If there is no token in places PIni or PMig, input gate IGWakeUp prevents
the completion of activity TAWakeUp. If more than one token exists in place PIdle, representing several
switched-off PMs in the system, one token is randomly chosen by timed activity TAWakeUp. In this
case, PMi is activated by enabling output gate OGWakeUpi and becomes ready for accepting VMs.

Instantaneous activity IAIdlei models the shutdown process of the active VMMi that is lightly
loaded or has no workload. When other active VMMs have enough free capacity to accept all VMs
running on top of VMMi, the VMs are placed into the migration queue, and then VMMi and its
hosting PM are switched off. Upon completion of instantaneous activity IAIdlei, the number of tokens
in place PIdle increases by one, and the number of tokens in place PCurrentVMSi

is set to zero. If the
tokens in place PCurrentVMSi

cannot be moved to places PCurrentVMSj
(i 6= j), input gate IGIdlei prevents

instantaneous activity IAIdlei from completion because other VMMs are unable to accept VMs running
on VMMi. The predicates and functions corresponding to the input gates of the service and green
computing sub-model are presented in rows 4–6 of Table 2, and the function corresponding to the
output gate of this sub-model is presented in row 6 of Table 3.

In Figure 2d, the number of tokens in place PTotal i represents the age of the VMMi. Therefore,
the number of tokens in place PTotal i is set to zero just after rejuvenation or reboot of VMMi. When the
number of tokens in place PTotal i reaches threshold T2, the input gate IGRej is enabled and moves
tokens from place PCurrentVMSi

to place PMig. By applying this mechanism, the migration of VMs from
VMMi to other VMMs of the data center is modeled when a VMM has to be rejuvenated. Timed activity

Algorithms 2018, 11, 160 10 of 15

TAReji models the rejuvenation process of a VMM with rate λhrj. Upon completion of this activity,
the number of tokens in place PTotal i is set to zero by output gate OGReji , which represents the age of
the newly rejuvenated VMMi. A rejuvenated VMM is active and can accept and serve VMs. However,
if there is no VM to be hosted by the rejuvenated VMM, the VMM is switched off by input gate IGIdlei
modeled in the service and green computing sub-model.

The model also uses timed activity TAPreReji for early rejuvenation of aged VMMi. When the
number of tokens in place PTotal i reaches the threshold T1, where T1 < T2, and there are less tokens in
place PCurrentVMSi

than free capacity on other active VMMs, the input gate IGPreReji is enabled. In this
situation, input gate IGPreReji moves all tokens of place PCurrentVMSi

to place PMig. The completion
rate of timed activity TAPreReji is λhrj. The output gate OGPreReji sets the number of tokens in place
PTotal i to zero right after the rejuvenation process. The predicates and functions corresponding to the
input gates of the rejuvenation sub-model are presented in rows 7 and 8 of Table 2, and the functions
corresponding to the output gates of this sub-model are presented in rows 7 and 8 of Table 3.

In Figure 2e, the failure of active VMMs in the system is modeled. Whenever VMMi fails, a token
is put in place PFailedi. After failure detection and during the repair of VMMi, a token is put into
place PRepairi. Timed activity TAFailedi models the failure event of VMMi. If there is a token in place
PFailedi or there are as many tokens in place PTotal i as in T2, the input gate IGFailedi

disables activity
TAFailedi. Upon completion of activity TAFailedi, the number of tokens in place PTotal i is set to zero
by output gate OGFailedi, and the number of tokens in place PRepairi increases by one. Once VMMi is
repaired, the numbers of tokens in places PRepairi and PFailedi become zero, and the VMM is reactivated.
The completion rate of timed activity TAFailedi is the product of the number of tokens in place PTotal i
and the failure rate of an active VMM called λh f . The greater the age of a VMM, the greater the failure
probability of that VMM.

Timed activity TARepairi represents the repair process of VMMi. When there is a token in place
PRepairi, timed activity TARepairi is enabled and can complete the activity. Then, the number of tokens in
places PTotal i and PFailedi is set to zero by the output gate OGRepairi. The completion rate of timed activity
TARepairi is λhrp. The predicate and function corresponding to the input gate of failure sub-model are
presented in row 9 of Table 2, and the functions corresponding to the output gates of this sub-model
are presented in rows 9 and 10 of Table 3.

6. Performance Evaluation

In this section, the desired output measures that can be obtained using the proposed SAN model
are defined, and then the proposed model is evaluated. The output measures are computed applying
the Markov reward approach [41]. In this approach, appropriate reward rates are assigned to each
feasible marking of a SAN model, and then the expected accumulated reward is computed in the
steady state. To this end, the proposed analytical model is solved with the Möbius tool [33]. In the
following formulas, Mark(Pi) returns the number of tokens inside place Pi.

The ratio of serving VMs to accepted requests is defined as the ratio of the steady-state number of
VMs that are being served to the steady-state number of accepted VM requests in the cloud system.
This measure is computed using Equation (1):

RSA =
N

∑
i=1

E[Mark(PCurrentVMSi
)]/(E[Mark(PIni)]+E[Mark(PMig)] +

N

∑
i=1

E[Mark(PCurrentVMSi
)]) (1)

The other measure that is obtained by applying the proposed SAN model is the probability of
VMM failure, which can be computed by the following equation:

PRVMMF =
N

∑
i=1

E[Mark(PFailedi)]/N (2)

One of the main goals of introducing rejuvenation in cloud systems is to reduce the mean number
of failed VMs, which can be computed by the product of the mean number of VMs that are being

Algorithms 2018, 11, 160 11 of 15

served on each VMM and the probability of VMM failure in the steady state. The mean number of
failed VMs can be calculated as follows:

NFV = (
N

∑
i=1

E
[

Mark
(

PCurrentVMSi

)]
/N) ∗ (

N

∑
i=1

E[Mark(PFailedi)]/N) (3)

The total power consumption of cloud servers is another measure which can be computed by the
proposed model and is the mean value of power consumed by PMs, VMMs, and VMs of the data
center. It can be computed by Equation (4).

TPC = ρb ∗ (N − E[Mark(PIdle)]) + ρv ∗
N

∑
i=1

E[Mark(PCurrentVMSi
)] (4)

where ρb is the average power consumed by a switched-on PM running a VMM, ρv is the average
power consumed by a VM, and N denotes the number of PMs in the system.

In order to evaluate the proposed model, we assumed a system with 3 PMs and the maximum of
3 VMs per each VMM. In this setting, the input parameter T1 is 8, which means a VMM of age 8 could
be rejuvenated if other VMMs have enough capacity to accept its VMs. The parameter T2 is set to 10,
which means a VMM of age 10 has to be rejuvenated instantaneously. In other words, regardless of the
capacity of other VMMs, the active VMs of a VMM aged 10 should be placed on the migration queue,
and the VMM should be rejuvenated.

The other values set for the input parameters of the proposed model are presented in Table 4.
Most of the values used herein as input parameters of the proposed SAN model are in the range
of the values considered in other related work [10,11,15,22,29,36,37,39,42]. In order to compare
different situations, the proposed model was evaluated in three modes: (1) pure power saving,
(2) pure rejuvenation, and (3) with simultaneous application of rejuvenation and power saving,
called power-aware rejuvenation. Modes 1 and 2 are the baselines for our main proposed scheme,
which is mode 3. In mode 3, all five sub-models of Figure 2 are used. In mode 1, the rejuvenation
sub-model shown in Figure 2d is omitted. In mode 2, the power saving sub-model represented in
Figure 2c is removed, and the model is adjusted so that no token would be placed in place PIdle.
The results obtained from solving the proposed model in the three modes are presented in Figure 3.

Table 4. Configuration of the cloud system under study.

Parameter Description Value/Range Unit

λh f VMM failure rate 0.00139 VMM/h
λhrj VMM rejuvenation rate 30 VMM/h
λhrp VMM repair rate 2 VMM/h
λpw PM wakeup rate 1440 PM/h
λva VM requests arrival rate [5 . . . 20] VM/h
λvt VM switch off rate 0.5 VM/h

λvmg VM migration rate 1200 VM/h
λvi VM initiation rate 120 VM/h

pvm f Probability of VM migration failure 0.01 -
N Number of PMs 3 -
M Number of VMs per PM 3 -
Qc Size of input queue 5 -
Qm Size of migration queue 6 -
ρb Power consumption of a PM running a VMM 100 W
ρv Power consumption of a VM 10 W

Figure 3a shows the average probability of VMM failure in the proposed model in the three
evaluation modes. One of the main causes of VMM failure is the increasing number of served VMs
and the errors introduced due to VMM aging. With the pure rejuvenation scheme, aged VMMs are

Algorithms 2018, 11, 160 12 of 15

identified and rejuvenated before age-induced failures occur. Thus, the forced rejuvenation of mode 2
decreases the probability of VMM failure compared to mode 1. The power saving scheme switches
off idle VMMs, which in turn restarts the age of those VMMs, and result in even lower probability of
VMM failure when combined with pure rejuvenation in mode 3.

As shown in Figure 3b, simultaneous modeling of power saving and rejuvenation schemes in
mode 3 improves the availability-related measure RSA of the cloud system. Such implementation of
power-aware rejuvenation involves the migration of VMs between VMMs, so the number of tokens in
place PMig increases and the denominator of the fraction in Equation (1) increases. However, as shown
in Figure 3a, pure rejuvenation decreases the average probability of VMM failure, and thereby increases
the mean number of active VMMs, increasing the average number of VMs that can be served at a
given time. Since PCurrentVMSi

increases more than PMig, power-aware rejuvenation causes a significant
improvement in the ratio of serving VMs to accepted requests.

Algorithms 2018, 11, x FOR PEER REVIEW 12 of 15

off idle VMMs, which in turn restarts the age of those VMMs, and result in even lower probability of

VMM failure when combined with pure rejuvenation in mode 3.

As shown in Figure 3b, simultaneous modeling of power saving and rejuvenation schemes in

mode 3 improves the availability-related measure RSA of the cloud system. Such implementation of

power-aware rejuvenation involves the migration of VMs between VMMs, so the number of tokens

in place 𝑃𝑀𝑖𝑔 increases and the denominator of the fraction in Equation (1) increases. However, as

shown in Figure 3a, pure rejuvenation decreases the average probability of VMM failure, and thereby

increases the mean number of active VMMs, increasing the average number of VMs that can be

served at a given time. Since 𝑃𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑀𝑆𝑖
 increases more than 𝑃𝑀𝑖𝑔 , power-aware rejuvenation

causes a significant improvement in the ratio of serving VMs to accepted requests.

Figure 3. Results obtained by solving the proposed SAN model representing (a) probability of VMM

failure, (b) ratio of serving VMs to accepted VMs, (c) mean number of failed VMs and (d) total power

consumption.

Figure 3c represents the effect of applying rejuvenation and power-awareness schemes to cloud

systems on the mean number of failed VMs. The greater the average probability of VMM failure, the

greater the number of failed VMs. Consequently, for the same VMM failure probability results shown

in Figure 3a, mode 3 performed the best and mode 1 the worst.

Figure 3. Results obtained by solving the proposed SAN model representing (a) probability of VMM
failure, (b) ratio of serving VMs to accepted VMs, (c) mean number of failed VMs and (d) total
power consumption.

Figure 3c represents the effect of applying rejuvenation and power-awareness schemes to cloud
systems on the mean number of failed VMs. The greater the average probability of VMM failure,
the greater the number of failed VMs. Consequently, for the same VMM failure probability results
shown in Figure 3a, mode 3 performed the best and mode 1 the worst.

Algorithms 2018, 11, 160 13 of 15

In Figure 3d, the impact of software rejuvenation and power-awareness on power consumption of
cloud system is considered. As indicated in Equation (4), the power consumption is directly related to
the number of switched-on PMs and active VMs in a data center. In the pure rejuvenation mode, mode
2, all PMs are always on and therefore the power consumption in this mode is the greatest compared to
the power consumed in modes 1 and 3, which are power-aware. In mode 3, newly rejuvenated VMMs
are free of running VMs. Thus, they are more likely to be switched off by the power saving mode.
Therefore, the total power consumption of mode 3 is less than that of mode 1. Figure 3d acknowledges
the fact that by applying rejuvenation and power saving simultaneously, the number of active PMs
decreases compared to the situation where rejuvenation is not applied.

7. Conclusions and Future Work

In this paper, a power-aware VMM rejuvenation scheme was presented for IaaS cloud systems
based on a SAN model proposed for IaaS clouds. Several real aspects of cloud systems that were not
considered in previous related work are encompassed in the proposed model, including failure/repair
behavior of VMMs, VM heterogeneity, VM migration, VM multiplexing, and different PM power
consumption states. The proposed scheme uses two different thresholds for optional and mandatory
rejuvenation of aged VMMs, in which the age of a VMM is computed as the cumulative workload
that is accepted and served by that VMM after its last reboot. Möbius software was used to solve the
proposed SAN. Then, the performance, availability, and power consumption of the presented scheme
were compared with two different baselines: a pure power saving scheme and a pure rejuvenation
scheme. The results showed that the proposed scheme improves all output measures of interest
including the ratio of serving VMs to accepted VM requests, the probability of VMM failure, the mean
number of failed VMs, and the total power consumption of cloud servers.

Though the proposed scheme is more scalable than the models and schemes presented in the
literature, scalability is still an issue that should be investigated in the future. This limitation can be
addressed by applying approximation techniques to presented analytical model, such as folding and
fixed-point methods. We plan to complete real-world experiments to validate the analytical results
and to address the scalability limitation. Another interesting extension to the model proposed in this
work could be to support heterogeneous PMs in addition to heterogeneous VMs. Colored extensions
of PNs and SANs could be used for this extension. Considering cloud data center topologies and
network architectures and considering availability and power consumption of network equipment
are other interesting extensions of current work. Investigating the overhead of VM migration on the
performance and availability of the cloud system under study is another possible future line of this
research work.

Author Contributions: All the authors contributed equally to the work. All authors read and approved the
final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the support of their respective universities.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.; Katz, R. A View of cloud computing. Commun. ACM 2010, 53,
50–58. [CrossRef]

2. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards and Technology
(NIST): Gaithersburg, MD, USA, 2011.

3. Han, Y.; Chan, J.; Alpcan, T.; Leckie, C. Using virtual machine allocation policies to defend against co-resident
attacks in cloud computing. IEEE Trans. Dependable Secur. 2017, 14, 95–108. [CrossRef]

4. Zhu, W.; Zhuang, Y.; Zhang, L. A three-dimensional virtual resource scheduling method for energy saving
in cloud computing. Future Gener. Comput. Syst. 2017, 69, 66–74. [CrossRef]

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/TDSC.2015.2429132
http://dx.doi.org/10.1016/j.future.2016.10.034

Algorithms 2018, 11, 160 14 of 15

5. Abbasi, A.A.; Jin, H. v-Mapper: An Application-Aware Resource Consolidation Scheme for Cloud Data
Centers. Future Internet 2018, 10, 90. [CrossRef]

6. Ever, E. Performability analysis of cloud computing centers with large numbers of servers. J. Supercomput.
2016, 73, 2130–2156. [CrossRef]

7. Hasan, M.; Goraya, M.S. Fault tolerance in cloud computing environment: A systematic survey. Comput. Ind.
2018, 99, 156–172. [CrossRef]

8. Nguyen, T.A.; Kim, D.S.; Park, J.S. A comprehensive availability modeling and analysis of a virtualized
servers system using stochastic reward nets. Sci. World J. 2014, 2014, 165316. [CrossRef] [PubMed]

9. Colman-Meixner, C.; Develder, C.; Tornatore, M.; Mukherjee, B. A survey on resiliency techniques in cloud
computing infrastructures and applications. IEEE Commun. Surv. Tutor. 2016, 18, 2244–2281. [CrossRef]

10. Melo, M.; Araujo, J.; Matos, R.; Menezes, J.; Maciel, P. Comparative analysis of migration based rejuvenation
schedules on cloud availability. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Manchester, UK, 13–16 October 2013.

11. Machida, F.; Seong Kim, D.; Trividi, K.S. Modeling and analysis of software rejuvenation in a server
virtualized system with live VM migration. Perform. Eval. 2013, 70, 212–230. [CrossRef]

12. Xia, Y.; Han, Y.; Zhou, M.; Li, J. A stochastic model for performance and energy consumption analysis of
rejuvenation and migration-enabled cloud. In Proceedings of the International Conference on Advanced
Mechatronic Systems, Kumamoto, Japan, 10–12 August 2014.

13. Zheng, J.; Okamura, H.; Li, L.; Dohi, T. A Comprehensive Evaluation of Software Rejuvenation Policies for
Transaction Systems with Markovian Arrivals. IEEE Trans. Reliab. 2017, 66, 1157–1177. [CrossRef]

14. Sharma, S.; Singh, S.; Singh, A.; Kaur, R. Virtualization in Cloud Computing. Int. J. Sci. Res. Sci. Eng. Technol.
2016, 2, 181–186.

15. Bruneo, D.; Pulionio, A. Workload based software rejuvenation in cloud systems. IEEE Trans. Comput. 2013,
62, 1072–1085. [CrossRef]

16. Liu, J.; Zhou, J.; Buyya, R. Software rejuvenation based fault tolerance scheme for cloud application.
In Proceedings of the IEEE 8th International Conference on Cloud Computing, New York, NY, USA,
27 June–2 July 2015.

17. Valentim, N.A.; Macedo, A.; Matias, R. A systematic mapping review of the first 20 years of software aging
and rejuvenation research. In Proceedings of the IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Ottawa, ON, Canada, 23–27 October 2016; pp. 57–63.

18. Alshathri, S.; Ghita, B.; Clarke, N. Sharing with Live Migration Energy Optimization Scheduler for Cloud
Computing Data Centers. Future Internet 2018, 10, 86. [CrossRef]

19. Bawden, T. Global Warming: Data Centres to Consume Three Times as Much Energy in Next Decade, Experts
Warn, Independent. Available online: http://www.independent.co.uk/environment/global-warming-data-
centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html (accessed
on 10 July 2018).

20. Uchechukwu, A.; Li, K.; Shen, Y. Energy Consumption in Cloud Computing Data Centers. Int. J. Cloud
Comput. Serv. Sci. 2014, 3, 31–48.

21. Cotroneo, D.; Natella, R.; Pietrantuono, R.; Russo, S. A survey of software aging and rejuvenation studies.
ACM J. Emerg. Technol. Comput. 2014, 10, 8. [CrossRef]

22. Roohitavaf, M.; Entezari-maleki, R.; Movaghar, A. Availability modeling and evaluation of cloud virtual
data centers. In Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS),
Seoul, Korea, 15–18 December 2013.

23. SAN Atomic Formalism, Möbius Wiki. Available online: https://www.mobius.illinois.edu/wiki/index.
php/SAN_Atomic_Formalism (accessed on 10 July 2018).

24. Sanders, W.H. Mobius Manual; University of Illinois: Chicago, IL, USA, 2012.
25. Sanders, W.H.; Meyer, J.F. Stochastic activity networks: Formal definitions and concepts. In Lectures on Formal

Methods and Performance Analysis; Brinksma, E., Hermanns, H., Katoen, J.-P., Eds.; Springer: Berlin, Germany,
2001; pp. 315–343.

26. Movaghar, A. Stochastic activity networks: A new definition and some properties. Sci. Iran. 2001, 8, 303–311.
27. Movaghar, A.; Meyer, J.F. Performability modeling with stochastic activity networks. In Proceedings of the

1984 Real-Time Systems Symposium, Austin, TX, USA, 6–8 August 1984.

http://dx.doi.org/10.3390/fi10090090
http://dx.doi.org/10.1007/s11227-016-1906-5
http://dx.doi.org/10.1016/j.compind.2018.03.027
http://dx.doi.org/10.1155/2014/165316
http://www.ncbi.nlm.nih.gov/pubmed/25165732
http://dx.doi.org/10.1109/COMST.2016.2531104
http://dx.doi.org/10.1016/j.peva.2012.09.003
http://dx.doi.org/10.1109/TR.2017.2741526
http://dx.doi.org/10.1109/TC.2013.30
http://dx.doi.org/10.3390/fi10090086
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://dx.doi.org/10.1145/2539117
https://www.mobius.illinois.edu/wiki/index.php/SAN_Atomic_Formalism
https://www.mobius.illinois.edu/wiki/index.php/SAN_Atomic_Formalism

Algorithms 2018, 11, 160 15 of 15

28. Meyer, J.F.; Movaghar, A.; Sanders, W.H. Stochastic activity networks: Structure, behavior, and application.
In Proceedings of the International Workshop on Timed Petri Nets, Torino, Italy, 1–3 July 1985.

29. Melo, M.; Maciel, P.; Araujo, J.; Matos, R.; Araujo, C. Availability Study on Cloud Computing Environments:
Live Migration as a Rejuvenation Mechanism. In Proceedings of the 43rd IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Budapest, Hungary, 24–27 June 2013.

30. Kourai, K.; Ooba, H. Zero-copy migration for lightweight software rejuvenation of virtualized systems.
In Proceedings of the ACM 6th Asia-Pacific Workshop on Systems, Tokyo, Japan, 27–28 July 2015.

31. Sudhakar, C.; Shah, I.; Ramesh, T. Software rejuvenation in cloud systems using neural networks.
In Proceedings of the IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC),
Solan, India, 11–13 December 2014; pp. 230–233.

32. Araujo, J.; Matos, R.; Alves, V.; Maciel, P.; Souza, F.; Trivedi, K.S. Software aging in the eucalyptus cloud
computing infrastructure: Characterization and rejuvenation. ACM J. Emerg. Technol. Commun. 2014, 10, 11.
[CrossRef]

33. Daly, D.; Deavours, D.D.; Doyle, J.M.; Webster, P.G.; Sanders, W.H. Mobius: An extensible tool for
performance and dependability modeling. In Proceedings of the 11th International Conference on Computer
Performance Evaluation: Modelling Techniques and Tools, Schaumburg, IL, USA, 25–31 March 2000;
pp. 332–336.

34. Sanders, W.H.; Oballl, W.D.; Qureshi, M.A.; Widjanarko, F.K. The UltraSAN modeling environment.
Perform. Eval. 1995, 24, 89–115.

35. Sanders, W.H.; Meyer, J.F. METASAN: A performability evaluation tool based on stochastic activity networks.
In Proceedings of the 1986 ACM Fall Joint Computer Conference, Dallas, TX, USA, 2–6 November 1986.

36. Ataie, E.; Entezari-Maleki, R.; Rashidi, L.; Trivedi, K.; Ardagna, D.; Movaghar, A. Hierarchical stochastic
models for performance, availability, and power consumption analysis of IaaS clouds. IEEE Trans. Cloud
Comput. 2017, in press. [CrossRef]

37. Bruneo, D.; Lhoas, A.; Longo, F.; Puliafito, A. Modeling and evaluation of energy policies in green clouds.
IEEE Trans. Parall. Distrib. 2015, 26, 3052–3065. [CrossRef]

38. Entezari-Maleki, R.; Sousa, L.; Movaghar, A. Performance and power modeling and evaluation of virtualized
servers in IaaS clouds. Inf. Sci. 2017, 394–395, 106–122. [CrossRef]

39. Ataie, E.; Entezari-Maleki, R.; Etesami, E.; Egger, B.; Ardagna, D.; Movaghar, A. Power-aware Performance
Analysis of Self-adaptive Resource Management in IaaS Clouds. Future Gener. Comput. Syst. 2018, 86,
134–144. [CrossRef]

40. Hlaing, P.P.; Thein, T. Availability Enhancement for Cloud Services by Migration based Rejuvenation:
Analytical Modeling. In Proceedings of the 3rd International Conference on Computational Techniques and
Artificial Intelligence, Singapore, 11–12 February 2014.

41. Ciardo, G.; Blakemore, A.; Chimento, P.F.; Muppala, J.K.; Trivedi, K.S. Automated generation and analysis of
markov reward models using stochastic reward nets. In Linear Algebra, Markov Chains, and Queueing
Models; The IMA Volumes in Mathematics and Its Application; Meyer, C.D., Plemmons, R.J., Eds.;
Springer: New York, NY, USA, 1993; pp. 145–191.

42. Ataie, E.; Gianniti, E.; Ardagna, D.; Movaghar, A. A Combined Analytical Modeling Machine Learning
Approach for Performance Prediction of MapReduce Jobs in Cloud Environment. In Proceedings of the
18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Timisoara, Romania, 24–27 September 2016.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2539122
http://dx.doi.org/10.1109/TCC.2017.2760836
http://dx.doi.org/10.1109/TPDS.2014.2364194
http://dx.doi.org/10.1016/j.ins.2017.02.024
http://dx.doi.org/10.1016/j.future.2018.02.042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Overview of SANs
	System Description
	The Proposed Model
	Performance Evaluation
	Conclusions and Future Work
	References

