
algorithms

Article

Incremental Learning for Classification
of Unstructured Data Using Extreme
Learning Machine

Sathya Madhusudhanan 1 , Suresh Jaganathan 1,* and Jayashree L S 2

1 Department of Computer Science and Engineering, SSN College of Engineering, Chennai 603110, India;
sathyamadhusudhanan@gmail.com

2 Department of Computer Science and Engineering, PSG College of Technology, Coimbatore 641004, India;
lsj@cse.psgtech.ac.in

* Correspondence: sureshj@ssn.edu.in; Tel.: +91-98841-30867

Received: 27 September 2018; Accepted: 16 October 2018; Published: 17 October 2018

Abstract: Unstructured data are irregular information with no predefined data model. Streaming
data which constantly arrives over time is unstructured, and classifying these data is a tedious task as
they lack class labels and get accumulated over time. As the data keeps growing, it becomes difficult
to train and create a model from scratch each time. Incremental learning, a self-adaptive algorithm
uses the previously learned model information, then learns and accommodates new information
from the newly arrived data providing a new model, which avoids the retraining. The incrementally
learned knowledge helps to classify the unstructured data. In this paper, we propose a framework
CUIL (Classification of Unstructured data using Incremental Learning) which clusters the metadata,
assigns a label for each cluster and then creates a model using Extreme Learning Machine (ELM),
a feed-forward neural network, incrementally for each batch of data arrived. The proposed framework
trains the batches separately, reducing the memory resources, training time significantly and is tested
with metadata created for the standard image datasets like MNIST, STL-10, CIFAR-10, Caltech101,
and Caltech256. Based on the tabulated results, our proposed work proves to show greater accuracy
and efficiency.

Keywords: classification; unstructured data; extreme learning machine; incremental learning;
streaming data

1. Introduction

Streaming data gets generated continuously in varied sizes from a wide variety of sources,
which may include log files generated by customers using mobile or web applications, e-commerce
purchases and information on social networks. These data are not well-organized like structured data,
which has a predefined data model. The continuously arriving streaming data are rich in volume,
variety, veracity, and velocity which must be processed over time incrementally. Classification of
these data is a challenging task since they do not have class labels, but these data can be grouped to
assign labels.

For the purpose of document classification, most of the existing algorithms consider only the
distribution of the content words of the document. Seong-Bae Park and Byoung-Tak Zhang proposed
the co-trained support vector machines [1,2] for unstructured document classification, which uses
both the lexical and syntactic information for the classification of large-scale unstructured documents.
A partially supervised learning algorithm, namely the co-training algorithm is used to create two
separate views of the training data where a small number of labeled data is augmented by a
large number of unlabeled data. The proposed co-training algorithm enhances the performance

Algorithms 2018, 11, 158; doi:10.3390/a11100158 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-4307-4096
https://orcid.org/0000-0002-2971-1813
https://orcid.org/0000-0001-9412-4175
http://dx.doi.org/10.3390/a11100158
http://www.mdpi.com/journal/algorithms


Algorithms 2018, 11, 158 2 of 19

of document classification by making use of both the views and a large number of unlabeled documents.
People express their emotions online using social media through tweets, questions and news headlines.
These user emotions can be classified and used in applications such as sentiment retrieval and
opinion summarization. Jun Li et al. [3] proposed an algorithm which introduces a multi-label
maximum entropy (MME) model for emotion classification over short text. Rich features are generated
by MME which models multiple emotion labels and valence scored by numerous users. L-BFGS
(Limited-memory Broyden–Fletcher–Goldfarb–Shanno) algorithm is used along with MME to improve
the robustness of the proposed method on varied-scale corpora. The user emotion classification results
using MME shows an effective performance on real-world short text collections.

Clustering, also known as unsupervised learning [4], is the process of aligning objects into groups
such that all similar data instances lie in the same group. Objects in the same cluster must have high
intra-class similarity and low inter-class similarity.

All existing clustering algorithms use distance measures [5] to group the similar objects, these
algorithms can cluster only numeric data and also the number of clusters must be known beforehand.
Since the class labels of the online data are not known, and no prior knowledge about the clusters,
the task of clustering becomes challenging.

Incremental Learning or online learning [6–8] aims to adapt the training models according to the
arriving data without forgetting the acquired knowledge. Incremental Learning transfers the acquired
knowledge from different batches to classify the test data. It helps to grow the network capacity by
overcoming the problem of catastrophic interference [9] i.e., successive training of each batch of newly
arrived data causes the network to forget the previously acquired knowledge partially or completely.
This type of learning is applied to the data streams [10] to provide accurate results addressing the
issues of, (1) limited computational resources such as memory and time and (2) the phenomenon of
concept drift [11] (changes in the distribution of data which occurs in a stream over time). Figure 1
shows an example of incremental learning.

Figure 1. Example of Incremental Learning.

The existing clustering algorithms face a challenge in handling the requirements concurrently in
the case of large, high-dimensional, unstructured data due to the time complexity involved. All these
algorithms use the distance metric to compute the similarity between objects and produce an arbitrary
clustering result depending on the initial setup. Since these algorithms can handle only structured data,



Algorithms 2018, 11, 158 3 of 19

a new clustering algorithm uCLUST [12] has been designed to overcome the above challenges and
cluster unstructured big data.

Extreme Learning Machine(ELM) is a feedforward neural network [13,14] which randomly
chooses input weights and creates a model for classifying test data samples using a single
hidden layer. A discriminative clustering approach via ELM [15] is proposed by Gao Huant et al.,
which is an unsupervised learning framework and extends the classification rules into clustering.
Three discriminative clustering approaches were designed, (1) weighted ELM (W-ELM) classifier
which gradually maximizes the discrimination of the data and (2) the other two methods were based
on Fisher’s Linear Discriminant Analysis (LDA). Among the two methods, one follows alternative
optimization and the other adopts kernel k-means approach for clustering.

This paper proposes a framework CUIL which adopts Extreme Learning Machine (ELM) neural
networks to implement the incremental learning. After clustering the unstructured data using uCLUST,
the created clusters are fed into ELM to create a model for each subset arriving over time. Each model
created incrementally is stored and using these models, the test data are classified. CUIL implements
incremental learning avoiding the retraining of samples and reduces memory and training time by
training samples in batches.

The rest of the paper is organized as follows. Section 2 discusses the works related to clustering
of unstructured data and incremental learning. Section 3 introduces our proposed work CUIL under
which the methodologies uCLUST and ELM++ are elaborated. The experimental analysis part is
summarized in Section 4. The conclusion of the paper and the possible future work is discussed in
Section 5.

2. Related Works

Many researchers have contributed their works in the area of classification of unstructured data
and incremental learning [8]. This section highlights some works contributed in this area.

Bartosz Krawczyk, et al. conducted a research survey on the analysis of data streams using
ensemble learning [16]. Data streams collected from the information system applications use learning
algorithms which acts in dynamic environments. Ensemble learning plays an important role in data
stream analysis, classification and regression tasks to handle the non-stationary environments. Various
categories of ensemble learning [17] are available based on different criteria. For supervised learning
task of classification, the available types of ensembles are, (1) stationary or non-stationary learning,
(2) chunk or online ensembles, (3) active or passive ensembles addressing the drifts. Ensemble
Learning also addresses advanced issues like class-imbalanced learning, novelty detection, active and
semi-supervised learning and more complex data structures. Some of the open research problems not
addressed are: (1) handling delayed information, (2) gradual drifts which are more complex to be
detected than sudden changes, (3) considering background knowledge while classifying data streams,
(4) ensemble pruning methods, and (5) handling big data and privacy issues.

Guo Haixiang, et al. contributed to a review paper which discusses the different methods
of learning from class-imbalanced data [18] and their applications. Detection of rare events which
potentially impact the society negatively is viewed as a prediction task in data mining and machine
learning communities. Since these events occur rarely, they suffer from the problem of imbalanced data.
Ensemble classifiers are used for the resampling of clinical data in the area of chemical and
biomedical engineering, in case of high-dimensional data, feature selection techniques are adopted.
The goal of the prediction in these tasks is basically profit-driven instead of accuracy-driven, which is
known as cost-sensitive learning. Detection of rare events in the network log and unstructured data
needs data cleaning and feature engineering processes, which are not addressed in this paper.

Sanjay Jain, et al. presented a study that gives insights on the natural requirements such as
consistency and conservativeness [19] for incremental learning [20]. Learning from positive examples
as well as from both positive and negative examples were analyzed to understand the natural
requirements of incremental learning. A case study of regular pattern languages was analyzed to



Algorithms 2018, 11, 158 4 of 19

show how the learnability of the pattern languages gets affected by the conditions like consistency and
conservativeness when using natural hypothesis spaces for learning. When considering the consistency,
normalization of the iterative learners can be achieved in local consistency. In contrast, the capabilities
of iterative learners get reduced in global consistency. The demands of the local and global
conservativeness are equal when considering the iterative learners in case of learning from only
positive examples. A global conservative learner can iteratively learn classes from positive and
negative examples, whereas a local conservative learner cannot learn iteratively. The results got from
the study helps to characterize the structure of typical classes which can be learned incrementally and
also elaborates on uniform incremental learning methods [21] .

K. Rajbabu, et al. proposed a novel method for extracting industrial information through
multi-phase classification using ontology [22] of the unstructured documents. The efficiency of the
existing information extraction approaches is unsuitable for domain-specific applications which
demand semantic and contextual taxonomy. This proposed method performs a two-phase classification
approach which extracts information based on feature weighting. The first phase performs a sentence
classification followed by the phase of word classification. This converts the unstructured documents
into enhanced directed acyclic graph (DAG)-based semi-structured text with enriched features.
The categorical type of data features is transformed to handle heterogeneous textual features.

A novel algorithm named Pulce [23] was proposed by Dino Ienco and Ruggero G. Pensa for the
positive and unlabeled (PU) learning in categorical data. An efficient classifier can be built by using
both positive and negative examples, but this requirement is not satisfied in many domains. This paper
proposes a new distance-based algorithm Pulce for Positive and Unlabeled learning of categorical
data, which overcomes the availability of positive and negative examples. Pulce makes use of the
intrinsic relationships between attribute values and overcomes the independence assumption used in
Naive Bayes. Pulce uses the statistical properties of the data to learn a distance metric which is used in
the classification task. Pulce achieves better prediction performances than the PU learning algorithms
based on Naive Bayes.

Bhagat Singh Raghuwanshi and Sanyam Shukla proposed a class-specific extreme learning
machine (CS-ELM) [24] which handles the imbalance problem in binary classes effectively.
The class imbalance problem arises when the instances of the majority class are more in number
than the minority class instances. The proposed method varies from the traditional methods like
weighted ELM and class-specific cost regulation ELM (CCR-ELM). CS-ELM does not assigns weights
to the training instances as done in weighted ELM. CCR-ELM computes the regularization parameters
without considering class distribution and overlap, but in contrast, CS-ELM considers the above
conditions to compute the same. CS-ELM shows a better performance than the traditional methods for
binary class-imbalance with less computational overhead.

A meta-cognitive online sequential extreme learning machine (MOS-ELM) [25] was proposed
by Bilal Mirza and Zhiping Lin which enables self-learning process by suitable learning strategies.
This method was proposed for class imbalance and concept drift problems occuring in both binary
and multi-class data streams. To unify various application specific OS-ELM (online sequential extreme
learning machine) methods, a new adaptive window and single output update equation was designed.
The performance of MOS-ELM outperforms the other available methods under the constraints of
concept drifts and class imbalance.

Tables 1 and 2 summarize the related works listed in this section and comparison between the
related works and our proposed work CUIL, respectively.



Algorithms 2018, 11, 158 5 of 19

Table 1. Summary of the related works.

S.No. Title Author Year Insights Remarks

1 Ensemble learning for data stream
analysis: A survey Krawczyk B, et al. 2017 Provides a survey on different types of ensemble learning for the analysis of

data streams.

Survey Paper in which some research problems like
gradual drifts, handling delayed information and big data
not addressed.

2
Learning from class-imbalanced
data: Review of methods
and applications

Haixiang G., et al. 2017 Survey paper about class-imbalanced methods. Survey Paper

3 Towards a better understanding of
incremental learning Jain S, et al. 2006 Provides insights on requirements like consistency and conservativeness for

incremental learning. Survey Paper

4

Industrial information
extraction through multi-phase
classification using ontology for
unstructured documents

Rajbabu K, et al. 2018

1. proposes a two-phase classification approach using ontology of
unstructured documents which extracts information based on
feature weighting.

2. induces domain knowledge and handles heterogenous features.

Some issues to be addressed are the precision loss and
improvement in execution time.

5 Positive and unlabeled learning in
categorical data Ienco D., et al. 2016

1. Pulce, a distance-based algorithm uses statistical properties of data to learn
a distance metric for the purpose of classification.

2. Pulce involves a discretization step which makes it unsuitable for dataset
containing numerical attributes.

Multi-class classification problems is yet to be addressed
by Pulce.

6
Class-specific extreme learning
machine for handling binary class
imbalance problem

Raghuwanshi B S, et al. 2018

1. CS-ELM is a classification algorithm which handles the class-imbalance
problem effectively in binary class datasets.

2. Features of CS-ELM are: does not assign weights for training instances,
considers class distribution and overlap.

Multi-class classification problems is yet to be addressed.

7

Meta-cognitive online sequential
extreme learning machine for
imbalanced and concept-drifting
data classification

Mirza B, et al. 2016 Algorithm proposed for learning muti-class imbalance and concept drift
problems by using an adaptive window scheme.

Class imbalance problems in data streams is yet to be
addressed by MOS-ELM when minority and majority
classes gets added over time.

Table 2. Comparison between the related works and CUIL.

Title Method Datasets Used Supports Concept Drift Parameters Considered Issues (Future Work)

Industrial information extraction through multi-phase
classification using ontology for unstructured documents

Decision
Trees, Naive
Bayes, SVM

Unstructured documents NO accuracy precision loss, performance time

Positive and unlabeled learning in categorical data k-NN Categorical dataset (UCI Machine
Learning Repository) NO accuracy Multi-class

Class-specific extreme learning machine for handling
binary class imbalance problem ELM Binary dataset (KEEL dataset) NO accuracy Multi-class

Meta-cognitive online sequential extreme learning
machine for imbalanced and concept-drifting
data classification

ELM Binary and multi-class datasets YES accuracy Class imbalance over time.

Proposed work (CUIL) ELM Binary and multi-class datasets NO accuracy, performance time Concept drift



Algorithms 2018, 11, 158 6 of 19

3. Methodology

Unstructured data which constitutes 90% of the real-world data are difficult to classify since
they do not have a predefined structure or labels. CUIL (Classification of Unstructured data using
Incremental Learning) is an incremental model proposed for the classification of unstructured data.

3.1. Architecture Description

CUIL is designed in such a way that it classifies the unstructured data by combining two
methods—uCLUST [12] and ELM++. CUIL provides uCLUST with the following inputs: clustering
attributes and image metadata, which is in JSON format. This format is chosen over other formats like
csv, xls as JSON supports unstructured format i.e., the fields of the records can be unordered. uCLUST
segregates the unlabeled images into clusters by clustering the metadata based on the given attributes.
Each image gets assigned to a cluster receiving a class label. These image metadata come in batches
and images belonging to each batch gets clustered and assigned with a class label. The labeled images
received from uCLUST is given as input to ELM++, which incrementally creates a model for each batch.
For example, if they are n batches, then n models are created and these models are used for classifying
the upcoming unlabeled test data. Figure 2 shows the architecture of CUIL, detailed explanation about
uCLUST and ELM++ are available in Sections 3.2 and 3.3 respectively.

Figure 2. Architecture of CUIL.

3.2. uCLUST

Clustering is an unsupervised learning process which groups together similar objects in the
same cluster. Most of the clustering algorithms require the user to specify the number of clusters
to be formed priorly. These algorithms work well for numeric data by using the distance measures
to compute the clusters i.e., group similar objects together in a cluster. In contrast, to cluster the
categorical data, there exists uCLUST [12], an algorithm for clustering unstructured JSON documents.
Metadata of images/audio/video/text available in the form of JSON documents is given as input to
the uCLUST algorithm.



Algorithms 2018, 11, 158 7 of 19

3.2.1. Algorithm of uCLUST

The clustering algorithm uCLUST does two tasks: (1) Formation of linked list, (2) Clustering by
traversing the linked list.

(A) Formation of the Linked List

uCLUST clusters each record in JSON document based on the categorical attribute present in it,
and uses the concept of linked lists to cluster the objects. The uCLUST algorithm gets the clustering
attributes as input from the user, and searches the value of the clustering attributes in each record.
For each record, it creates a node with fields recordID and the value of the clustering attributes.
For example, if image metadata in JSON format is given as input with clustering attributes type
(ANIMAL/ BIRD/ VEHICLE/ OTHERS) and format (PNG/ JPEG), the node for each record created is
shown in Figure 3, which represents a record in the JSON document of the image metadata. In Figure 3,
the node holds the unique ID of the record (Image1), the type of the image (ANIMAL) and the format
of the image (PNG). If the clustering attribute of a record holds multiple values, then for each value a
separate node is created for the same record.

Figure 3. Node Representation of a record in uCLUST

After extracting the values of the clustering attributes from each record, the nodes formed is
appended together to form a single linked list. Figure 4 shows the linked list for the JSON document
of the image metadata. Algorithm 1 details the step for the formation of the linked list in uCLUST.

(B) Traversal of the Linked List

After the formation of the linked list, the clustering process is done by traversing the list. For
each clustering attribute specified, traverse all the nodes in the created list. The first distinct value
of the clustering attribute is retained as such in the linked list. Whenever a new distinct value for
the clustering attribute is found, the corresponding node is deleted from the original list, and a new
linked list is formed for that attribute value. If a value in the node does not occur for the very first time,
then append the node to the linked list representing the corresponding attribute value. Each linked
list formed after the traversal represents a distinct value of the clustering attribute thus forming
the clusters. These clusters group the records with similar metadata. The steps carried out during the
traversal of the linked list is shown in Algorithm 2.

Figure 4. Linked list formed for the records in JSON document by uCLUST.



Algorithms 2018, 11, 158 8 of 19

Algorithm 1: Formation of the linked list.
Input: JSON document with records; clustering attributes
Output: linked list formed with nodes representing each record

1. Create an empty linked list
2. while not end of the JSON document do

read each record in the JSON document and extract the unique record key;
create a node with the record key field
while not end of the clustering attributes list do

extract the value of the clustering attribute
if attribute is single-valed then

append the attribute value as the next field to the node created

end

if attribute is multi-valued then
replicate the created node according to the number of values present in

the attribute;
append each attribute value to the corresponding node

end

Append each created node to the linked list

end

end

Algorithm 2: Clustering by traversing the linked list.
Input: created linked list
Output: clustered linked list

1. while not end of the linked list do
retain the first distinct node value in the original linked list itself
if node with next distinct value is found then

if the distinct value occurs for the first time then
create a new linked list representing the value in the node

else
append the node to the linked list representing the value present in it

end

delete the node from the original linked list
end

Output all the linked lists created

end

3.2.2. Illustrative Example

A sample JSON document consisting of the image metadata is given as input, refer Figure 5
which has the following attributes: {image_type, image_name, size, depth, format, total_pixel,
captured_date, captured_by}. The attributes image_type and format are accounted for clustering.
The former attribute has four values: ’ANIMAL’ or ’BIRD’ or ’VEHICLE’ or ’OTHERS’ and the
latter has two values: ’PNG’ or ’JPEG.’



Algorithms 2018, 11, 158 9 of 19

Figure 5. Example JSON document for Image metdata.

Figure 6 shows the clustering result obtained for the above JSON document by using image_type
as clustering attribute. uCLUST creates three clusters comprising of ’ANIMAL,’ ’BIRD’ and ’VEHICLE’
and Figure 7 shows the clusters formed further from uCLUST by using the clustering attribute format.
The final clustering results show four clusters as follows: (1) image of type ’ANIMAL’ in ’PNG’ format,
(2) image of type ’ANIMAL’ in ’JPEG’ format, (3) image of type ’BIRD’ in ’JPEG’ format and (4) image
of type ’VEHICLE’ in ’PNG’ format.

Figure 6. Clustering the image metadata using attribute-image_type.

Figure 7. Clustering the image metadata using attribute-format.



Algorithms 2018, 11, 158 10 of 19

3.3. ELM++

Incremental Learning [26] is a dynamic technique of supervised and unsupervised learning [27]
where input data are trained to an individual model as and when it comes. The input data are
used continuously to extend the knowledge of the existing model. The training of data in batches
does not demand the retraining of the previous data, and also the previously acquired knowledge is
never forgotten. Extreme Learning Machine (ELM) [28–30] uses single-hidden layer which is randomly
assigned and never updated. ELM works at extremely fast, discovering the complex non-linear
relationships between input and output. Algorithm 3 explains the working of ELM. When large
volume of images come in batches, ELM expects to accumulate these images together and train them
at once to create a model. When several batches arrive over time, it becomes a tedious task. On the
other hand, ELM++ incrementally trains the images in batches and creates an individual model for
each batch.

Algorithm 3: Extreme Learning Machine (ELM).
Input: Training set X with N images;

n input neurons-image size: height x width;
N′ hidden neurons;
m output neurons;

Output: Model generated with parameters (output matrix (β), weight matrix (W), bias (b))
1. Input N distinct samples (xi, ti) and an activation function g(x), where

xi = [xi1, xi2, ..., xin]
T ∈ Rn are the input features (pixel intensities),

ti = [ti1, ti2, ..., tim]
T ∈ Rm

and i = 1, 2, ..., N.
2. Generate random weights wi = [wi1, wi2, ..., win]

T based on the number of hidden neurons
N′ used, which connects the input and hidden layer.

3. Calculate the output of the hidden layer using:

H =

 g(x1.w1 + b1) ... g(x1.wN′ + bN′)

... ... ...
g(xN .w1 + b1) ... g(xN .wN′ + bN′)


where the ith column of H represents the output of the hidden node i with respect to the
input x1, x2, ..., xN .

4. Calculate the output matrix β for the output layer using the formula:
β = H†T, where

T =
[

t1, . . . tN

]T

Nxm

,

β =

 βT
1
...

βT
N′


N′xm

and

H† =

{
HT(HHT)−1, if m < n

(HT H)−1HT , if m > n



Algorithms 2018, 11, 158 11 of 19

3.3.1. Algorithm of ELM++

ELM++ trains each batch incrementally to create individual models. Along with the model
parameters, it also computes and stores the intensity mean of each class of images in the arrived batch.
Algorithm 4 explains the working concept of ELM++ and also how the class intensity mean is computed
and stored as an object, which are later used for the purpose of incremental learning.

After creating the trained models incrementally, ELM++ classifies the upcoming unlabeled test
images by combining the generated models. Algorithm 5 explains the procedure of choosing the
right model for classifying the test images. ELM++ chooses a model for finding out the class labels of
the test images by comparing the intensity mean of the test image with the stored intensity mean of
each trained class. If the difference in the intensity means of the test image and a class is less than a
defined threshold, then the test image is classified with the model with which the corresponsing class
was trained. Sometimes, an image may be classified using more than one model, i.e., the intensity mean
of the test image may be less than the intensity mean of more than one trained class. In such cases,
the test image is classified with all the models corresponding to the matched classes. The classified
results of all the models are combined using Algorithm 6.

Algorithm 4: ELM++: Incremental Model Generation.
Input: Training sets Xj;

Number of Class C;
Images in each Class Ns

Output: Objects storing the values-class number, and their corresponding intensity mean Ic;
Models Mj with parameters (β j, Wj, bj)

1. Given training sets Xj = (xji, tji)|xji ∈ Rn, tji ∈ Rm, i = 1, 2, ..., (CxNs), where tji represents
the target output class of Xj

2. For each training set j, a model Mj is created:
for i ∈ {1, . . . , C} do

for k ∈ {1, . . . , Ns} do
Read each image k in class i;
Compute the intensity mean Is for each image in class i

end
Compute the class intensity mean Ic for each class i,

end
for i ∈ {1, . . . , C} do

Store class intensity mean for class i along with model number Mj generated for the
training set j as objects.

Train each training set j using the Algorithm 3 to get the model parameters.
Store the model Mj with parameters output matrix (β j), weight matrix (Wj),

bias (bj) as objects.
end



Algorithms 2018, 11, 158 12 of 19

Algorithm 5: ELM++: Incremental testing.
Input: Models Mi with parameters (βi, Wi, bi);

Objects containing class intensity means;
Number of models available NM; Number of test images Nts

Output: Classified results and its accuracy
1. Given the models Mi and objects containing class intensity means generated on training the

available data chunks individually, where i = 1, 2, ..., NM.
2. Classify the test dataset Xt = xtm|xtm ∈ Rm as follows:
for i ∈ {1, . . . , Mi} do

F← Concatenate the objects generated by the model Mi containing the class intensity
means Ic

end
for i ∈ {1, . . . , Nts} do

Calculate the intensity mean Itest for test image i
Set the threshold← 0.01 ; match_count← 0
for j ∈ {1, . . . , number_o f _rows_in_F} do

if ((Icj − threshold) ≤ Itest ≤ (Icj + threshold)) then
classifyj ← results obtained by classifying test images using model Mj

corresponding to the matched row in F
if Mj ∈ matched_models) then

match_count←match_count + 1
else

append Mj to matched_models
end
if match_count > 0 then

classify_result← combine the results of classifyj and classifyj−1
got from model Mj and Mj−1 respectively using Algorithm 6

end
end

end
if (match_count = 0) then

append classi f yj results to classi f yresult

end
end

3.3.2. Illustrative Example

Images belonging to batch A are trained using the ELM neural network using which model A
is created. Similarly, images in batch B are trained to create model B. The mean of the images in a
specific class is computed and stored. In ELM++, these models are combined. The mean of each test
image is computed and matched against every class mean. The test image is classified using the model
with which the class mean matches. If the mean of the test image matches with two models, then the
image is tested using those two models, and the results are combined.

Figure 8 shows the individual model created by ELM for each batch. After learning and creating
the models for two batches (batch A, batch B), ELM++ creates two objects which contains three
attributes ’class, mean and model’ values. When a test image arrives, its intensity mean is calculated
and is checked with the values available in stored objects. As in Figure 9, consider if the mean of
the test image t1 is 0.53209, ELM++ checks the attribute value (mean) of the objects and based on the
threshold value (0.01), it chooses a model whose difference in intensity is ± threshold from the image
intensity. So, for test image t1, it classifies the image with model M2 since the class intensity mean of the
model is 0.54271, which lies between the range (0.53209 ± threshold). Similarly for test image t2, if the



Algorithms 2018, 11, 158 13 of 19

intensity mean is 0.44372 and threshold = 0.01, ELM++ classifies the image using both models M1 and
M2 since they have a class intensity mean of 0.45627 and 0.46211 respectively, which lies within the
range (0.44372 ± threshold). The classified results of t2 by both the models M1 and M are combined
using Algorithm 6.

Algorithm 6: ELM++: Combining the classified results.
Input: Classified output for test image got from model Mi and Mi−1
Output: Concatenated classified output for test image
1. Convert the classified output classi f yi and classi f yi−1 to their equivalent

decimal form decimali and decimali−1, that represents the class to which
the test image belongs.

2. if (decimali = expected_class)and(decimali−1 = expected_class) then
classifyresult ← classifyi−1
else if (decimali = expected_class) then

classi f yresult ← classi f yi
else if (decimali−1 = expected_class) then

classi f yresult ← classi f yi−1
else

append either classi f yi−1 or classi f yi to classi f yresult
end

end
end

end

(a) (b)

Figure 8. Models created for each train set - (a) creates a model M1 for batch A and (b) creates a model
M2 for batch B.

Figure 9. ELM++ to classify test images.



Algorithms 2018, 11, 158 14 of 19

4. Results and Discussion

4.1. Dataset Description

Experiments were done under two scenarios to estimate the performance of CUIL. The standard
datasets like MNIST, STL-10, CIFAR-10, Caltech101 and Caltech256 were used to conduct
the experiments. Table 3 lists the details of the above-mentioned datasets.

Table 3. Standard Datasets.

S. No. Dataset Number of Classes Number of Images Per Class Total Number

1 MNIST 10 2000 20000
2 STL-10 10 1300 13000
3 CIFAR-10 10 6000 60000
4 Caltech101 101 40 4040
5 Caltech256 256 119 30607

4.2. Scenario 1

Scenario 1 creates a metadata for the standard dataset MNIST which is clustered using uCLUST
and compares the performance of ELM++ with existing incremental learning algorithm Learn++ [31].
MNIST dataset contains 10 classes representing digits 0-9. Metadata is created for the dataset with
attributes image_type, height, width, number. This metadata of images is given to the clustering algorithm
uCLUST which clusters these images into 10 labeled clusters. Later, these labeled clusters were divided
into 6 training sets (S1–S6) and 1 test set Each train set holds images belonging to classes 0 through 9,
with 200 images in each class. Train set S2 will hold different images from S1. Train set S3 will hold
images that are not present in S1 and S2, and so on. Test set contains images from all these 10 classes.
Each train set was trained incrementally using ELM++ to create an individual model. When the test
set is classified using the model creates by S1, an accuracy of 72% is obtained. When the test set is
classified by combining models S1 and S2, the accuracy increases to 78.2%. By combining all these
models S1–S6, the classification of the test images gets increased to 94%. The performance of ELM++
was compared with the existing algorithm Learn++. Table 4 and Figure 10 shows the performance
comparison between Learn++ and ELM++ for MNIST dataset

Table 4. Comparison of ELM++ and Learn++– MNIST Database.

Set

Training Incre. Testing

Accuracy (%)

Learn++ ELM++ Learn++ ELM++

S1 (0–9) 94.2 92 82 72
S2 (0–9) 93.5 90 84.7 78.2
S3 (0–9) 95 90 89.7 85.3
S4 (0–9) 93.5 92 91.7 88
S5 (0–9) 95 96 92.2 90.8
S6 (0–9) 95 96 92.7 94



Algorithms 2018, 11, 158 15 of 19

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4 S5 S6

A
c
c
u

ra
c
y
(%

)

Training

Comparison of Accuracy (ELM++ vs Learn++)

Learn++
ELM++

Figure 10. Comparison of accuracy for MNIST Database.

4.3. Scenario 2

Scenario 2 applies CUIL to the standard image datasets like STL-10, CIFAR-10, Caltech101
and Caltech256 and computes the time taken to classify the test images. Using the
above-mentioned datasets, 107,647 unlabeled images were collected. 95,000 images were separated
for the training process, remaining for testing. The metadata information of the training images was
accumulated into a JSON document and each record represents an image. The JSON document is
given as input to uCLUST along with the clustering attributes image_type, format based on which
eight clusters got formed. According to the clusters formed for the input metadata, the unlabeled
images are grouped using the identity of each image (image_name). Then these grouped images are
trained incrementally using ELM++ to create models. Then the test images are classified using the
incremental models.

Table 5 lists out the accuracy obtained in testing images when incremental models are created
for 2, 4 and 8 clusters using ELM++. When the JSON document is clustered with the clustering
attribute format, 2 clusters are formed (PNG, JPEG) where model M1 trains one cluster(PNG) and
model M2 trains one cluster (JPEG). Incremental testing is done on clusters 1 and 2 using the two models
generated. When the clustering attribute image_type is used, four clusters are formed (ANIMALS,
BIRDS, VEHICLES and OTHERS) where model M1 trains two clusters(ANIMALS and BIRDS),
model M2 trains one cluster (VEHICLES) and model M3 trains one cluster (OTHERS). Similarly,
when the clustering attributes image_type, format are used, eight clusters were formed, where model
M1 trains four clusters, model M2 trains two clusters and model M3 trains two clusters.

Table 5. Performance Accuracy of ELM++.

Attribute No. of Model No. Test Accuracy (%)

Used for Clustering Clusters Formed (No. of Clusters) Set Training Incre. Test

format 2
M1(1)

1, 2
99

97.75
M2(1) 96.5

image_type 4

M1(2)

1, 2, 3, 4

97

93.3M2(1) 93

M3(1) 90.75

image_type,
format 8

M1(4)
1, 2, 3, 4, 5,

6, 7, 8

95.75

94.2M2(2) 98

M3(2) 90.75



Algorithms 2018, 11, 158 16 of 19

Table 6 lists out the performance time of CUIL. The table lists the time taken by uCLUST for
forming the clusters according to the specified attributes and the training, testing time of ELM++.
uCLUST is first applied on the metadata to form clusters (number of records is 107,647), on which the
training (95,000) is done by ELM++. Training time includes the time taken by ELM++ to create the
training models. Testing of unlabeled images is done only using the generated models. So, testing time
does not involve the usage of uCLUST and involves only the time taken to classify the labels of the
images using the models generated. The table shows that the testing time reduces when compared to
the training time irrespective of the number of clusters formed. The table lists the time taken by CUIL
under three cases: (1) using the clustering attribute format in which two clusters were formed, (2) using
the clustering attribute image_type in which four clusters were formed, (3) using the clustering attribute
format, image_type in which eight clusters were formed.

Table 6. Performance Time of CUIL.

Attribute No. of Model No.
Test Set

uCLUST— Time taken(secs)

Used for Clusters (No. of Clustering Training Incre.
Clustering Formed Clusters) Time(secs) (ELM++) Test

format 2
M1(1)

1,2 9
16.45

8.86
M2(1) 15.9

image_type 4

M1(2)

1,2,3,4 13

12.78

6.35M2(1) 11.89

M3(1) 12.05

image_type,
format 8

M1(4)
1, 2, 3, 4, 5,

6, 7, 8
22

12.35

6.11M2(2) 11.34

M3(2) 11.96

4.4. Statistical Inference

The most popular statistical test for machine learning algorithms is resampled paired t-test and is
used to measure the performance of CUIL over the algorithm Learn++. The total available samples
(S = 20, 000) is divided into train set (Tr) and test set (Te). The train set is trained using both the
algorithms Learn++ and ELM++ and the test set is used to test. Six sets (n) were conducted for both
algorithms and the proportion of misclassified samples (d) were calculated. The mean difference
(d̄) and standard deviation (σ) are calculated using the misclassified samples. Using the equations
T = d̄

σerror
and σerror =

σ√
n , the value of T is calculated.

Let us test the null hypothesis Ho that CUIL is equivalent to Learn++ against the alternative
hypothesis H1 that CUIL is better that Learn++. Using the Table 7, we calculated mean difference d̄
as 2.83, standard deviation σ as 2.815 and T value as 2.4625. Since the calculated T value is greater
than t-tabled value at 5% level of significance (2.015), we reject Ho and accept H1, i.e., CUIL is better
than Learn++.

Table 7. Statistical Test.

Set No. S1 S2 S3 S4 S5 S6

d 8 2.75 0.1 2.07 3.4 0.7

4.5. Discussions

uCLUST algorithm is checked with the following comparative parameters:
(1)Homogenity—defined as all of the clusters obtained, as a result of clustering that contain
only data points which are members belonging to a single class, then the clustering algorithm is said



Algorithms 2018, 11, 158 17 of 19

to be homogeneous, (2) Completeness—defined as if all the data points of a given class belongs to the
same cluster as a result of clustering, then the clustering algorithm is said to be complete, and (3)
V-measure—defined as the harmonic mean between homogenity and completeness, calculated using
V = 2 ∗ (homogenity ∗ completeness)/(homogenity + completeness). The values got for our model are,
(1) homogenity(uCLUST) = 0.98, (2) completeness(uCLUST) = 0.99 and (3) V-measure(uCLUST) = 0.985.

The performance of uCLUST is compared with the clustering algorithm FDCA (Fast Density
Clustering Algorithm) [32] for clustering unlabeled MNIST handwriting number images. FDCA uses
symmetric complex wavelet transformation to evaluate the similarity among the unlabaled number
images and segregate them as clusters. For MNIST dataset, FDCA gives a performance accuracy of
89.8% while uCLUST gives a clustering accuracy of 99%. The advantage of uCLUST over FDCA is the
use of unstructured JSON metadata for representing the images, while FDCA uses complex wavelet
functions which leads to complexity and more computational cost.

The key facts of using incremental algorithm ELM++ are, (1) the feedforward neural network
ELM requires less time to train a model even in case of large number of hidden neurons when
compared to other neural network algorithms like backpropagation, as ELM does not undergo any
iterations for finding the trained weights. ELM is resistant to overfitting, except in case of very small
datasets. As long as there is enough memory space to calculations, ELM provides good performance
accuracy as the training sample increases and (2) since our experiments deal with very large dataset
and to overcome the memory requirement of ELM, we have proposed and tested the incremental
learning algorithm ELM++ which trains each batch of arriving data independently to create individual
models, which avoids the retraining of previous batch data and remembers the previously learned
information. To classify the test images, these generated models are combined overcoming the memory
space requirement.

5. Conclusions

Classification of unsupervised data is a challenging due to their variability and missing
of labels. The proposed work CUIL overcomes these challenges by combining the methods of
uCLUST and ELM++. uCLUST clusters the unsupervised metadata of the images based on which
the unlabeled images are grouped. The grouped images are incrementally trained using ELM++ to
create individual models. The test images are then classified using the incrementally created models.
CUIL shows better performance accuracy than individual testing results.

Our proposed work (CUIL) works better than the existing algorithm Learn++, because of
these reasons, (1) CUIL supports classification of structured and unstructured data while Learn++
supports only structured data, (2) CUIL uses a single classifier ELM whereas Learn++ uses multiple
classifiers and majority voting scheme to classify the data, (3) training time decreases in CUIL as it
uses feed-forward ELM network which does not involve any iterations, whereas Learn++ uses neural
networks which involves iterations for back propagating the errors, (4) testing time decreases in CUIL
as uCLUST clusters unstructured data with minimal time and single classifier ELM is used, whereas
Learn++ uses multiple classifiers.

Every model has some kind of limitation, as so ELM++ has these as the limitations, (1) difficulty in
fixing the random weights by trial and error method until the desired accuracy is achieved for the
training dataset and (2) difficulty in choosing the number of hidden neurons i.e., higher accuracy
is achieved when the number of hidden neurons increases. Our proposed work addresses the
problem of class-imbalance and the future work is to redesign the model removing the above said
limitations, address the problem of concept drift and to test the performance of CUIL for unstructured
text documents.

Author Contributions: Conceptualization, S.M. and S.J.; Formal analysis, S.M.; Methodology, S.M. and S.J.;
Software, S.M.; Supervision, S.J. and J.L.S.; Writing–original draft, S.M.; Writing–review and editing, S.J.

Funding: This research received no external funding



Algorithms 2018, 11, 158 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Park, S.B.; Zhang, B.T. Co-trained support vector machines for large scale unstructured document
classification using unlabeled data and syntactic information. Inf. Process. Manag. 2004, 40, 421–439.
[CrossRef]

2. Orru, G.; Pettersson-Yeo, W.; Marquand, A.F.; Sartori, G.; Mechelli, A. Using Support Vector Machine to
identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci. Biobehav. Rev.
2012, 36, 1140–1152. [CrossRef] [PubMed]

3. Li, J.; Rao, Y.; Jin, F.; Chen, H.; Xiang, X. Multi-label maximum entropy model for social emotion classification
over short text. Neurocomputing 2016, 210, 247–256. [CrossRef]

4. Xu, D.; Tian, Y. A comprehensive survey of clustering algorithms. Ann. Data Sci. 2015, 2, 165–193. [CrossRef]
5. Bora, D.J.; Gupta, D.A.K. Effect of different distance measures on the performance of k-means algorithm:

An experimental study in matlab. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 2501–2506.
6. Gepperth, A.; Hammer, B. Incremental learning algorithms and applications. In Proceedings of the European

Symposium on Artificial Neural Networks, Computational Intelligence, and Machine Learning, Bruges,
Belgium, 27–29 April 2016.

7. Joshi, P.; Kulkarni, P. Incremental learning: Areas and methods-a survey. Int. J. Data Min. Knowl.
Manag. Process. 2012, 2, 43–51. [CrossRef]

8. Losing, V.; Hammer, B.; Wersing, H. Incremental on-line learning: A review and comparison of state of the
art algorithms. Neurocomputing 2018, 275, 1261–1274. [CrossRef]

9. Sarwar, S.S.; Ankit, A.; Roy, K. Incremental learning in deep convolutional neural networks using partial
network sharing. arXiv 2017, arXiv:1712.02719.

10. He, H.; Chen, S.; Li, K.; Xu, X. Incremental learning from stream data. IEEE Trans. Neural Netw. 2011,
22, 1901–1914. [CrossRef] [PubMed]

11. Kim, Y.; Park, C.H. An efficient concept drift detection method for streaming data under limited labeling.
IEICE Trans. Inf. Syst. 2017, 100, 2537–2546. [CrossRef]

12. Prasad, D.V.; Madhusudhanan, S.; Jaganathan, S. uCLUST—A new algorithm for clustering unstructured
data. ARPN J. Eng. Appl. Sci. 2015, 10, 2108–2117.

13. Fontenla-Romero, O.; Perez-Sanchez, B.; Guijarro-Berdinas, B. An incremental non-iterative learning method
for one-layer feedforward neural networks. Appl. Soft Comput. 2017, 70, 951–958. [CrossRef]

14. Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme machine learning: Algorithm, theory and applications.
Artif. Intell. Rev. 2013, 44, 103–115. [CrossRef]

15. Huang, G.; Liu, T.; Yang, Y.; Lin, Z.; Song, S.; Wu, C. Discriminative clustering via extreme learning machine.
Neural Netw. 2015, 70, 1–8. [CrossRef] [PubMed]

16. Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Wozniak, M. Ensemble learning for data stream
analysis: A survey. Inf. Fusion 2017, 37, 132–156. [CrossRef]

17. Zang, W.; Zhang, P.; Zhou, C.; Guo, L. Comparative study between incremental and ensemble learning on
data streams: Case study. J. Big Data 2014. [CrossRef]

18. Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data:
Review of methods and applications. Expert. Syst. Appl. 2017, 73, 220–239. [CrossRef]

19. Jain, S.; Lange, S.; Zilles, S. Towards a better understanding of incremental learning. Algorithmic Learn.
Theory 2006, 4264, 169–183.

20. Liu, Y. Incremental Learning in Deep Neural Networks. Master of Science Thesis, Tampere University of
Technology, Tampere, Finland, 2015.

21. Ade, R.R.; Deshmukh, P.R. Methods for incremental learning: A survey. Int. J. Data Min. Know.
Manag. Process. 2013, 3, 119–125. [CrossRef]

22. Rajbabu, K.; Srinivas, H.; S.Sudha. Industrial information extraction through multi-phase classification
using ontology for unstructured documents. Comput. Ind. 2018, 100, 137–147.

23. Ienco, D.; Pensa, R.G. Positive and unlabeled learning in categorical data. Neurocomputing 2016, 96, 113–124.
[CrossRef]

http://dx.doi.org/10.1016/j.ipm.2003.09.003
http://dx.doi.org/10.1016/j.neubiorev.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22305994
http://dx.doi.org/10.1016/j.neucom.2016.03.088
http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.5121/ijdkp.2012.2504
http://dx.doi.org/10.1016/j.neucom.2017.06.084
http://dx.doi.org/10.1109/TNN.2011.2171713
http://www.ncbi.nlm.nih.gov/pubmed/22057060
http://dx.doi.org/10.1587/transinf.2017EDP7091
http://dx.doi.org/10.1016/j.asoc.2017.07.061
http://dx.doi.org/10.1007/s10462-013-9405-z
http://dx.doi.org/10.1016/j.neunet.2015.06.002
http://www.ncbi.nlm.nih.gov/pubmed/26143036
http://dx.doi.org/10.1016/j.inffus.2017.02.004
http://dx.doi.org/10.1186/2196-1115-1-5
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.5121/ijdkp.2013.3408
http://dx.doi.org/10.1016/j.neucom.2016.01.089


Algorithms 2018, 11, 158 19 of 19

24. Raghuwanshi, B.S.; Shukla, S. Class-specific extreme learning machine for handling binary class imbalance
problem. Neural Netw. 2018, 105, 206–217. [CrossRef] [PubMed]

25. Mirza, B.; Lin, Z. Meta-cognitive online sequential extreme learning machine for imbalanced and
concept-drifting data classification. Neural Netw. 2016, 80, 79–94. [CrossRef] [PubMed]

26. Zhong, J.; Liu, Z.; Zeng, Y.; Cui, L.; Ji, Z. A survey on incremental learning. In Proceedings of the
5th International Conference on Computer, Automation and Power Electronics, Colombo, Sri Lanka,
25–27 Feburary 2017.

27. Wang, J.H.; Wang, H.Y.; Chen, Y.L.; Liu, C.M. A constructive algorithm for unsupervised learning with
incremental neural network. J. Appl. Res. Technol. 2015, 13, 188–196. [CrossRef]

28. Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2014,
61, 32–48. [CrossRef] [PubMed]

29. Chen, L.; Yang, L.; Du, J.; Sun, C.; Du, S.; Xi, H. An extreme learning machine architecture based on volterra
filtering and pca. IEICE Trans. Inf. Syst. 2017, 100, 2690–2701. [CrossRef]

30. Zhao, J.; ZhihuiWang.; Park, D.S. Online sequential extreme learning machine without forgetting mechanism.
Neurocomputing 2012, 87, 79–89. [CrossRef]

31. Polikar, R.; Udpa, L.; Udpa, S.S.; Honavar, V. Learn++: An incremental learning algorithm for supervised
neural networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2001, 31, 497–508. [CrossRef]

32. Jinyin, C.; Huihao, H.; Jungan, C.; Shanqing, Y.; Zhaoxia, S. Fast Density Clustering Algorithm for Numerical
Data and Categorical Data. Math. Probl. Eng. 2017, 2017, 1–15. doi:10.1155/2629. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2018.05.011
http://www.ncbi.nlm.nih.gov/pubmed/29870928
http://dx.doi.org/10.1016/j.neunet.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27187873
http://dx.doi.org/10.1016/j.jart.2015.06.017
http://dx.doi.org/10.1016/j.neunet.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462632
http://dx.doi.org/10.1587/transinf.2017EDP7089
http://dx.doi.org/10.1016/j.neucom.2012.02.003
http://dx.doi.org/10.1109/5326.983933
https://doi.org/10.1155/2629
http://dx.doi.org/10.1155/2017/6393652
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Methodology
	Architecture Description
	uCLUST
	Algorithm of uCLUST
	Illustrative Example

	ELM++
	Algorithm of ELM++
	Illustrative Example


	Results and Discussion
	Dataset Description
	Scenario 1
	Scenario 2
	Statistical Inference
	Discussions

	Conclusions
	References

