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Abstract: This paper proposes a hybrid Zeigler-Nichols (Z-N) reinforcement learning approach for
online tuning of the parameters of the Proportional Integral Derivative (PID) for controlling the speed
of a DC motor. The PID gains are set by the Z-N method, and are then adapted online through the
fuzzy Q-Learning agent. The fuzzy Q-Learning agent is used instead of the conventional Q-Learning,
in order to deal with the continuous state-action space. The fuzzy Q-Learning agent defines its
state according to the value of the error. The output signal of the agent consists of three output
variables, in which each one defines the percentage change of each gain. Each gain can be increased
or decreased from 0% to 50% of its initial value. Through this method, the gains of the controller are
adjusted online via the interaction of the environment. The knowledge of the expert is not a necessity
during the setup process. The simulation results highlight the performance of the proposed control
strategy. After the exploration phase, the settling time is reduced in the steady states. In the transient
states, the response has less amplitude oscillations and reaches the equilibrium point faster than the
conventional PID controller.

Keywords: reinforcement learning (RL); PID controller; on line tuning; DC motor control; fuzzy
Q-Learning agent

1. Introduction

DC (Direct Current) motors are used in industries extensively. This is due to their dynamic
and reliable behavior. The main aspect of a DC motor is to control its speed. There are three main
techniques of controlling the speed of a DC motor. The first one relies on changing the armature
resistance, the second one relies on changing the field resistance and the last one relies on changing
the armature voltage. The disadvantage of the armature resistance and field circuit techniques is the
increase of power losses. Consequently, the best method is the change of the armature voltage [1].
The main method of changing the armature voltage in order to perform speed control in DC motors
is the PID. The PID is the most well-known industrial controller, due to its robust performance
in a wide range of applications and the ease of implementation. The implementation of a PID
controller requires the definition of three parameters, which are the proportional, the integral and
the derivative gain. For setting these parameters, there are a variety of methods, mostly empirical,
such as Z-N [2]. These methods tune the controller according to the control process, and then the
parameters are kept constant, no matter what is happening in the process. This characteristic has
many times lead to poor controlling results, due to the dynamic nature of the processes. In these
systems, intelligent PID controllers turn out to be very helpful [3] by adopting intelligent techniques
such as neural network [4–7], fuzzy logic [8–10], genetic algorithms [11–13] etc. Specifically, in terms of
speed control of the DC motors, many researchers have been used intelligent PIDs. Supervisor fuzzy
controllers have been used for adjusting online the gains of the PID controller in a two-layer control
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scheme [1,14]. Additionally, neural networks and adaptive neuro-fuzzy inference systems have been
used in order to tune online the parameters of the PID controller [15,16]. Genetic algorithms have been
used for tuning offline the three terms of the PID controller [17]. These methods require the knowledge
of an expert about the process, in order to be embedded in the control scheme. The main disadvantage
of these methods lies on cases where there is no information about the process. Additionally, many of
them can only optimize the controller offline, and cannot confront changes of the dynamic behavior of
the process.

This paper proposes a hybrid Z-N reinforcement learning approach for the online tuning of the
parameters of the PID. The PID controller is tuned by the Z-N method, and then its three gains are
adapted online through the fuzzy Q-Learning algorithm. This way, the gains of the controller are
online adjusted via the interaction with the environment. As a result, the knowledge of an expert is not
a necessity during the online tuning process. Q-Learning is a model-free approach and does not require
a model of the controlled system. The main advantage of this approach is that it does not require
prior knowledge, and its performance is not based on expert knowledge. This happens because its
learning mechanism is entirely based on the interaction with the controlled system. On the other hand,
Q-Learning is time consuming and needs to explore the state-action space in order to demonstrate good
performance. Additionally, it cannot be used in a straight forward manner in problems with continuous
state-action space. Recently, Q-Learning has been used in order to improve control processes. In [18],
a combination of artificial neural networks and Q-Learning were used for controlling a bioreactor.
An artificial neural network controller was trained by data, in order to initialize the Q-function.
This way, the exploration phase of the Q-Learning was significantly reduced, and the algorithm
converged very quickly. Additionally, in [19] a combination of virtual-reference-feedback-tuning
and batch-fitted-Q-Learning approach is applied to a Multi input Multi output nonlinear coupled
constrained vertical two-tank system for water level control. In this control scheme, firstly the
problem is mostly solved by designing a linear stabilizing virtual-reference-feedback-tuning based
feedback controller using few input-output samples from the process in a stable operating point. Next,
the resulting controller is used to collect many input-state transition samples from the process in a wide
operating range. Finally, a batch fitted Q-Learning strategy uses the database of transition samples to
learn a high-performance nonlinear state feedback controller for model reference tracking.

The main contributions of this paper are as follows:

• We deploy a Q-Learning algorithm for adapting online the gains of a PID controller with the
initial values that arise by the Z-N method. This PID controller is dedicated to control the speed
of a DC motor. This supervision scheme is independent of prior knowledge and is not based on
the expert knowledge.

• In order to cope with the continuous state-action space, a fuzzy logic system is used as fuzzy
function approximator.

The structure of this paper is as follows: Section 2 provides preliminaries about DC motors,
PID controllers, Reinforcement Learning, Q-Learning and fuzzy Q-Learning. Section 3 presents the
proposed control scheme. Section 4 presents the experimental results based on the simulated process.
Section 5 discusses the experimental results and sketches future work.

2. Preliminaries

2.1. DC Motor

An electric motor converts electric energy to mechanical energy by using interacting magnetic
fields. Equation (1) gives the relation between the motor torque and the field current. Equation (2)
gives the relation between the armature input voltage and the armature current. Equation (3) describes
the relation between back electromotive voltage and motor speed. Equation (4) shows the relation
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between motor torque and motor speed, Equation (5) gives the model of the DC motor speed system
while Equation (6) is the transfer function of the motor speed [20].

Tm(s) = KT Ia(s) (1)

Va(s) = (Ra + Las)Ia(s) + Vb(s) (2)

Vb(s) = Kbω(s) (3)

Tm(s) = J·s·ω(s) + b·ω(s) (4)

(Js + b)ω(s) = KT
Va(s)− Kbω(s)
(Ra + Las)

(5)

G(s) =
KT

La Js2 + (Ra J + Lab)s + (Rab + KbKT)
(6)

where Tm is the torque of the motor, KT torque constant, Va the input voltage, Ra the armature
resistance, La the armature inductance, Vb the back electromotive force, Kb back electromotive force
constant, ω angular velocity of the motor, TL load torque, J rotating inertial measurement of motor
bearing and b fraction constant.

2.2. PID

The PID controller is a three-term controller. The output of the PID controller depends on the error
(e) which is the plant output minus the reference signal or set point (r) and controls the plant input.
The PID control algorithm aims to minimize the error. The proportional gain (kp) is used in order to get
the control signal u(t) to respond to the error immediately, so as to increase the system response speed
and to reduce steady-state error. The integral gain (ki) is used to eliminate the offset error but causes
system response overshoot. In order to reduce the system response overshoot, the derivative gain (kd)
is used [21]. The block diagram of a PID controller can be seen in Figure 1 and its transfer function is:

GPID(s) = kp + ki·1
s
+ kd·s (7)
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2.3. Fuzzy Logic Systems (FLS)

Fuzzy logic has the advantage which allows complex processes to be expressed in general terms,
without the usage of complex models [22]. The main advantage of fuzzy logic systems is the use of
fuzzy if/then rules. These rules embed the knowledge of the expert and can express relations among
fuzzy variables using linguistic terms [22]. The generic form of a fuzzy rule is:

Ru : if (x1 is D1) and/or (x2 is D2) . . . . and/or (xm is Dm) then (c is E),

where Dj, j = 1, . . . , m is a fuzzy set of jth input, x = (x1, x2, . . . , xm) is the crisp input vector, c is
the output variable and E is a fuzzy set defined by the expert. The operators “and/or” combine the
conditions of the variable inputs that should be satisfied arising the firing strength wi(x) of the rule.
Two types of FLS are used conventionally, the FLS type Mamdani [23] and the FLS type Sugeno [24].
The main difference between these two types is the way the crisp output is generated; the Mamadani
uses a defuzzifier while the Sugeno uses the weighted average [3]. Due to Sugeno’s computational
efficiency (lack of defuzzifier), in this paper we are using the zero-order type Sugeno, where the
consequents of the rules are constant numbers. The global output of the FLS can be calculated by the
Wang-Mendel model [3].

a(x) =
∑N

i=1 wi(x) ai

∑N
i=1 wi(x)

(8)

where ai is the consequent of rule i.

2.4. Reinforcement Learning

Reinforcement learning refers to a family of algorithms inspired by human and animal learning.
The objective of this algorithm is to find a policy, i.e., a mapping from states to actions that maximizes
the expected discounted reward [25]. This goal is achieved through exploration/exploitation in the
space of possible state-action pairs. Actions that share good performance in a given state are given
a positive reinforcement signal (reward). Actions leading to poor performance are given a negative
reinforcement signal (punishment). Feedback is provided to the system in order to learn the “value” of
actions in different states.

2.4.1. Q-Learning

The Q-Learning is a reinforcement learning method. The agent computes the Q-Function,
which estimates the future discounted rewards of possible actions applied in states [26]. The output
of the Q-Function for a state x and an action a is represented as Q(x, a). The Q value of each action a
when performed in a state x can be calculated as follows:

Q′(x, a) := Q(x, a) + η
(

R
(
x, a, x′

)
+ γ max

a Q
(
x′, a

)
−Q(x, a)

)
(9)

where Q′(x, a) is the updated value of the state-action combination when the agent obtains the reward
R(x, a, x′) after executing the action a in the state x. Q-Learning assumes that the agent continues for
state x by performing the optimal policy, thus max

a Q(x′, a) is the maximum value of the execution of
the best action in the state x′ (the state comes out after performing a in state x). The learning rate η

defines in which degree the new information overrides the old one [27]. The discount factor γ defines
the significance of the future rewards [28]. Overall, the Q-Learning agent chooses the action a to be
applied in the current state x and identifies the next state x′. It acquires the reward from this transition
i.e., R(x, a, x′), and updates the value for the pair (x, a) assuming that it performs the optimal policy
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from state x and on. A Q-Learning agent applies an exploration/exploitation scheme in order to
compute a policy that maximizes the sum of future discounted rewards (REW).

REW =
t

∑
i=0

γιRi (10)

where t is the number of the time steps. The main characteristic which makes Q-Learning suitable to be
applied in our study is its model-free approach. On the other hand, Q-Learning cannot be applied in a
straightforward manner to the continuous action-state spaces that our problem involves. The simplest
solution in order for Q-Learning to be applied in continuous action-state spaces is to discretize the
action-state space. Discretizing the space may lead to sudden changes in actions, even for smooth
changes in states. Making the discretization more fine-grained will smooth these changes, but the
state-action combination increases. In problems with multidimensional state space, the number of the
combinations grows exponentially. On the other hand, by using other approximators such as neural
networks, two slow processes are combined. Q-Learning and neural networks are known for their
slow learning rate [29]. In order to overcome these limitations, fuzzy function approximation can be
used in combination with Q-Learning, as fuzzy systems are universal approximators [30]. Knowledge
of the expert can be embedded in order to assist the learning mechanism. Through this method,
actions change smoothly in response to smooth changes in states, without the need for discretizing the
space in a fine-grained way [31].

2.4.2. Fuzzy Q-Learning

In Q-Learning, Q-values are stored and updated for each state-action pair. In cases where the
number of state-action pairs is very large, the implementation might be impractical. Fuzzy Inference
Systems have the advantage of achieving good approximations [32] in the Q-function,
and simultaneously make possible the use of the Q-Learning in continuous states-space problems
(Fuzzy Q-Learning) [29]. In fuzzy Q-Learning, x is the crisp set of the inputs defining the state of the
agent. These are converted into fuzzy values and each fuzzy rule corresponds to a state. In other
words, the firing strength of each rule defines the degree to which the agent is in a state. Furthermore,
the rules do not have fixed consequents; meaning there are no fixed (predefined) state-action pairs but
through the exploration/exploitation algorithm arise the consequents of each rule (state-action pair).
Thus, the FIS has competing actions for each rule and the rules have the form:

if x is Si then α[i, 1]
or α[i, 2]
...

or α[i, k]

where α[i, k] is the kth possible action in rule i. For each possible action in rule i there is a corresponding
value q[i, k]. This corresponding value determines how “good” the corresponding action is, when the
rule i is fired. The state Si is defined by (x1 is Si,1 and x2 is Si,2 . . . and xn is Si,n), where Si,j, j = 1, . . . , n
are fuzzy sets. Specifically, the algorithm of the fuzzy Q-Learning is briefly presented below.

• Observe state x
• Take an action αi for each rule i according to exploration/exploitation algorithm
• Calculate the global output a(x) according to Equation (10)
• Calculate the corresponding value Q(x, a) according to Equation (11)
• Capture the new state information
• Calculate reward R(x, a, x′)
• Update q-values according to Equation (12)
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The fuzzy Q-Learning algorithm and its equation are described extensively in seven steps.

(1) Observation of the state x
(2) For each fired rule, one action is selected according to the exploration/exploitation strategy.
(3) Calculation of the global output a(x)

a(x) =
∑N

i=1 wi(x) ai

∑N
i=1 wi(x)

(11)

where ai is as specified in Section 2.4.2 (consequents of the rule i) and corresponds to the selected
action of rule i.

(4) Calculation of the corresponding value Q(x, a).

Q(x, a) =
∑N

i=1 wi(x) ai q
[
i, i†]

∑N
i=1 wi(x)

(12)

where q
[
i, i†] is the corresponding q-value of the fired rule i for the selection of the action i† by

the exploration algorithm.
(5) Application of the action a(x) and observation of the new state x′.
(6) Calculation of the reward R(x, a, x′).
(7) Updating the q values according to:

∆q
[
i, i†
]
= η ∆Q

wi(x)

∑N
i=1 wi(x)

(13)

where ∆Q = R(x, a, x′) + γ·Q(x′, a∗) − Q(x, a), Q(x′, a∗) = ∑N
i=1 wi(x′) ai q[i,i∗ ]

∑N
i=1 wi(x′)

and q[i, i∗] is the

selection of the action i∗ that has the maximum Q value for the fired rule i.

3. Control Strategy

The block diagram of the control strategy is depicted in Figure 2. The set point (r) is the desired
angular velocity of the rotor. The measured value of the rotor velocity, through the feedback control
loop, is subtracted from the set point and the value of the error (e) arises. The error is the input of both
the PID controller and the fuzzy Q-Learning agent. The PID gains are set offline by the Z-N method
and then they are tuned online by the fuzzy Q-Learning algorithm. The control process is the speed
of the motor, which has as input the control signal of the PID controller (voltage) and as output the
angular velocity of the rotor.
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The parameters of the DC motor can be seen in Table 1.

Table 1. Motor parameters.

Parameter Value

J 0.0113 N·m·s2/rad
b 0.028 N·m·s/rad
La 0.1 H
Ra 0.45 Ω
KT 0.067 N·m/A
Kb 0.067 V·s/rad

The transfer function of the given motor is:

G(s) =
0.067

0.00113 s2 + 0.0078854 s + 0.0171
(14)

and the transfer function of the PID controller tuning by the Z-N method is:

GPID(s) = 2.42 + 14.89
1
s
+ 0.1s (15)

More information about the DC motor model and the transfer function of the PID controller can
be found in [20].

The input signal (error) of the fuzzy Q-Learning agent defines the value of its only one state
variable and is conditioning in the range of [–1, 1]. For this input, we use seven Membership
Functions (MFs) (Figure 3). The PB, PM, PS, Z, NS, NM and NB denote Positive Big, Positive Medium,
Positive Small, Zero, Negative Small, Negative Medium and Negative Big, respectively. The one input
with the seven MF’s results to 7 states represented by an equal number of fuzzy rules.
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The output of the agent is a vector with three output variables, A = [Ap Ai Ad] each one for each
gain of the PID controller. Each output variable has a group of five fuzzy actions (fuzzy singletons).
For the output variable Ap the group of the fuzzy singletons is: Ap =

{
1
−0.5 + 1

−0.25 + 1
0 + 1

0.25 + 1
0.5

}
.

Where “+” is the union operator and “−” denotes a membership degree to a value of the
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membership function domain. For the output variable Ai the group of the fuzzy singletons is:
Ai =

{
1
−0.5 + 1

−0.25 + 1
0 + 1

0.25 + 1
0.5

}
and for the output variable Ad the group of the fuzzy singletons

is: Ap =
{

1
−0.5 + 1

−0.25 + 1
0 + 1

0.25 + 1
0.5

}
. Each value of the output variable represents the percentage

change of each gain according to its initial value, which has arisen by the Z-N method. The action
space of the agent consists of 125 actions and the total state-action space consists of 875 combinations.

As mentioned before, the agent learns through the interaction of the environment. In order to
acquire knowledge through its experience, an exploration/exploitation algorithm must be used in
order to define whether the agent is to perform exploration or exploitation. In order to perform high
exploration when the agent goes to a new state, agents explore for a certain number of rounds per state
(500 rounds/state). The agent then checks and performs the action that has not been performed at all
(if there are any). This allows all possible actions to be performed at least one time for each state. After
that, the agent performs exploitation for 99% and 1% exploration for a given state.

The agent reward (R) is defined as follows:

R =
1

1 + |e′| −
1

1 + |e| (16)

where e′ is the error in the next state. The fraction 1
1+|e| takes value in the range [0, 1]. If the value of

the error is zero, the value of this quantity becomes “1”. On the other hand, high positive or negative
values of error reduce this quantity. The result of subtracting this quantity with the quantity which has
the error in the next state, gives a reward which can take positive and negative values. Positive values
indicate that the error in the next state is reduced. Negative values indicate that the error in the next
state is raised. Higher values of reward indicate higher reduction of the error and vice versa. The sum
of future discounted rewards in this problem is defined as:

REW =
t

∑
i=0

γι(
1

1 + |ei|
− 1

1 +
∣∣∣e(i−1)

∣∣∣ ) (17)

4. Simulation Results

The simulation will compare the conventional PID tuned by Z-N with the proposed method.
This comparison aims to highlight the improvement of the conventional PID through the supervision
of the fuzzy Q-Learning algorithm. The simulation time is set to 4500 s with a simulation step time
of 0.001 s. The round of the fuzzy Q-Learning agent is 0.1 s. The value of the learning rate and the
discount factor equals to η = 0.1 and γ = 0.9 respectively. During the simulation, various set points
are applied in the range of [10, 250] rad/s with sample time of 30 s. Figure 4 presents the set point of
the motor’s velocity; the velocity of the motor which is controlled by the conventional PID controller,
tuned by the Z-N method and by the fuzzy Q-Learning PID controller. Figure 5 presents the control
signal of both controllers. In the beginning of the simulation, where the fuzzy Q-Learning agent mainly
explores, we can see that the rising time is the same for both controllers. On the contrary, the fuzzy
Q-Learning PID controller increases the amplitude of the oscillations in the transient states, and it
also increases the settling time. During the exploitation phase, we can see that the fuzzy Q-Learning
PID controller performs better. The rising time is again the same for both controllers, but now the
oscillations of the fuzzy Q-Learning PID have lower amplitude values in the transient states and the
settling time is less compared to the conventional PID controller. Characteristics of the output response
for both controllers can be found in Table 2 for two different time points. These two points are at 60 s
(exploration phase) and at 4260 s (exploitation phase).



Algorithms 2018, 11, 148 9 of 13

Algorithms 2018, 11, 148 9 of 13 

 
Figure 4. (a) Velocity of DC motor (ω) with conventional PID control strategy (blue line) and velocity 
set point (red line), and (b) velocity of DC motor (ω) with fuzzy Q-Learning PID control strategy (blue 
line) and velocity set point (red line). 

 

Figure 5. (a) Control signal of conventional PID control strategy and (b) control signal of fuzzy Q-
Learning PID control strategy. 

Figure 4. (a) Velocity of DC motor (ω) with conventional PID control strategy (blue line) and velocity
set point (red line), and (b) velocity of DC motor (ω) with fuzzy Q-Learning PID control strategy (blue
line) and velocity set point (red line).

Algorithms 2018, 11, 148 9 of 13 

 
Figure 4. (a) Velocity of DC motor (ω) with conventional PID control strategy (blue line) and velocity 
set point (red line), and (b) velocity of DC motor (ω) with fuzzy Q-Learning PID control strategy (blue 
line) and velocity set point (red line). 

 

Figure 5. (a) Control signal of conventional PID control strategy and (b) control signal of fuzzy Q-
Learning PID control strategy. 
Figure 5. (a) Control signal of conventional PID control strategy and (b) control signal of fuzzy
Q-Learning PID control strategy.



Algorithms 2018, 11, 148 10 of 13

Table 2. Performance characteristics.

Characteristic
Step Response at 60 s Step Response at 4260 s

PID Z-N Fuzzy Q-Learning PID PID Z-N Fuzzy Q-Learning PID

Settling time (s) 3.30 4.05 3.67 1.72
Rising time (s) 0.35 0.35 0.27 0.27
Overshoot (%) 54.2 58.3 71.0 67.5

The better performance of the fuzzy Q-Learning PID after the exploration phase is also indicated
by the values of the Integral Absolute Error (IAE) and the Integral Time Absolute Error (ITAE).
The IAE and the ITAE are defined as:

IAE =
∫
|e|dt (18)

ITAE
∫

t|e|dt (19)

At this point, it is worth mentioning that maximizing the value of REW does not mean that the
values of IAE and ITAE are minimized. Both the values of the IAE and the ITAE are minimized when
the error is zero. If the values of the error in both states are set to zero, then the value of the REW
is not maximized but becomes zero. On the other hand, when the value of the error in the current
state is very big and the value of the error in the next state is zero, the value of the REW is maximized,
while the IAE and the ITAE are not minimized. Figures 6 and 7 present the values of IAE and ITAE
for both control strategies through time. It is obvious that the conventional PID performs better in the
beginning (IAE and ITAE have lower values), but as the agent of the fuzzy Q-Learning PID controller
turns from the exploration to exploitation, the values of the IAE and ITAE turn to be lower. Finally,
Figure 8 presents how the three gains of the proposed control strategy are changed through time in
respect to the various changes of the set point.Algorithms 2018, 11, 148 10 of 13 
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5. Discussion

This paper demonstrates a fuzzy Q-Learning agent for tuning online the gains of a PID controller,
which is used to control the speed of a DC motor. The initial values of the controller’s gains have been
arisen from the Z-N method. The Q-Learning agent has as input variable, the error, and as output
variables, the percentage changes of the gains. Fuzzy logic is combined with Q-Learning algorithm in
order to deal with the continuous state-action space as the conventional Q-Learning algorithm can be
applied to discrete state-action space.

When a fuzzy Q-Learning agent is designed, three main points need to be taken into consideration.
The first point lies on the selection of the state variables. A state should be descriptive enough in
order to describe the conditions of the system, but without redundant information which will lead
to a very large state space. The second point lies on the definition of the reward. The reward must



Algorithms 2018, 11, 148 12 of 13

be accurate enough in order for the algorithm to converge quickly and accurately. Last but not
least, the exploration/exploitation algorithm has to be chosen in dependence to the nature of the
environment (stochastic, deterministic, single agent, multiagent, etc.) in order for the algorithm to
converge quickly by exploring the possible paths.

The fuzzy Q-Learning agent learns by interacting with the environment, and the total control
strategy indicates a better performance than the conventional PID controller. The simulation results
highlight this performance, as both the amplitude of the oscillations and the settling time are reduced.
Additionally, the values of the IAE and the ITAE confirm the better performance.

In future, it is our aim to add another state variable (change of error) in the fuzzy Q-Learning
algorithm to enhance the performance of the agent. On the other hand, this addition will increase
exponentially the state-action space and extensive exploration will be needed. Thus, it would be
prudent to turn to multiagent system approaches in order to decompose the problem and reduce the
state-action space.
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A.I.D.; Writing—original draft, P.K.; Writing—review & editing, A.I.D.
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