
algorithms

Article

Transform a Simple Sketch to a Chinese Painting by
a Multiscale Deep Neural Network

Daoyu Lin 1,2 ID , Yang Wang 2, Guangluan Xu 2,*, Jun Li 1,2 and Kun Fu 1,2

1 Department of Electronic, Electrical and Communication Engineering, University of Chinese Academy of
Sciences, Beijing 100190, China; lindaoyu15@mails.ucas.ac.cn (D.L.); lj120118@163.com (J.L.);
fukun@mail.ie.ac.cn (K.F.)

2 The Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,
Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; primular@163.com

* Correspondence: gluanxu@mail.ie.ac.cn; Tel.: +86-136-8107-8907

Received: 30 October 2017; Accepted: 8 January 2018; Published: 11 January 2018

Abstract: Recently, inspired by the power of deep learning, convolution neural networks can produce
fantastic images at the pixel level. However, a significant limiting factor for previous approaches
is that they focus on some simple datasets such as faces and bedrooms. In this paper, we propose
a multiscale deep neural network to transform sketches into Chinese paintings. To synthesize
more realistic imagery, we train the generative network by using both L1 loss and adversarial
loss. Additionally, users can control the process of the synthesis since the generative network is
feed-forward. This network can also be treated as neural style transfer by adding an edge detector.
Furthermore, additional experiments on image colorization and image super-resolution demonstrate
the universality of our proposed approach.

Keywords: deep neural network; sketch; arts synthesis; style transfer

1. Introduction

Chinese painting is one of the oldest artistic traditions in human history; Zhang Zeduan, one of
the Song Dynasty artists, was amazed by the tremendous achievements of Along the River during the
Qingming Festival (Figure 1a). It is hard for ordinary people to draw such a long painting without
continuous training. However, through the neural network, we only need to draw out pure sketches
that can produce impressive artworks.

An increasing number of researchers has already paid much attention to the synthesis of
magnificent artworks, and it is a significant problem in computer graphics and vision [1–4].
Image synthesis [5,6] is a process of creating new images from some forms of image description,
which can be sketches only or require users to draw the sketches according to the text labels. Recently,
inspired by the power of Convolutional Neural Networks (CNN) [7,8], generative models based
on deep neural networks can produce incredibly realistic images [9]. The gap between the image
produced by the CNN and the image we want to produce is called the loss function. We train the
CNN by minimizing the loss function so that the image it produces is similar to the real artwork.
When we choose Euclidean distance as the loss function (as the Euclidean distance is to minimize the
average of all pixels), the output of the CNN may be blurred. To solve this problem, the perceptual
loss functions [10] were proposed, which are not based on differences between pixels, but between
high-level image feature representations extracted from pretrained CNN. By using perceptual loss,
the generative model can produce more high-quality images.

Algorithms 2018, 11, 4; doi:10.3390/a11010004 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-8352-0081
http://dx.doi.org/10.3390/a11010004
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 4 2 of 18

(a) (b)

(c) (d)

Figure 1. (a) Part of Along the River during the Qingming Festival (original size: 38,414 × 1800);
(b) part of One Hundred Horses (original size: 16,560 × 2022); (c) part of Spring Morning in the Han
Palace (original size: 102,955 × 5228); (d) part of A Thousand Li of Rivers and Mountains (original size:
150,000 × 6004).

In this paper, we present a deep Generative Adversarial Network (GAN) [11] by inputting simple
sketches to synthesize surprising art paintings. By using both L1 loss and adversarial loss, the result
is more realistic and closer to the human sensory vision. Unlike other works that generate images
by sketches, they are usually generating single and straightforward scale images such as faces or
bedrooms [12,13]. To produce multi-scale Chinese paintings, we propose a multiscale generative model
that consists of a full convolution layer [14], and this generative model can create artworks that have
not only local detail information, but also the global framework of the painting. The overall model is
as Figure 2 shows.

The contributions of this paper include:

• We propose a deep generative adversarial network to produce surprising Chinese paintings by
inputting simple sketches.

• It can use multiscale images to train the generative model and the discriminative model by setting
these two models as fully-convolution networks.

• By adding an edge detector, the generative model can also be treated as a neural style
transfer method.

• The method we proposed is also effective in other image-to-image translation problems, such as
image colorization and image super-resolution.

The remaining content is organized as follows. We provide a brief review of related work
in Section 2. We present the methods and the architecture of the proposed network in Section 3.
The training and testing process, as well as the experiment results, are shown in Section 4. In Section 5,
we demonstrate the universality of our proposed approach. A summary containing a discussion and
further thoughts is presented in Section 6.

Algorithms 2018, 11, 4 3 of 18

Generative Network G

Holistically-Nested
Edge Detection

Edge Detection Model

Convolutional Layer

…

Discriminative Network D

…

Real painting

Fake painting

Training Phase

(a)

Generative Network G

Holistically-Nested
Edge Detection

Edge Detection Model

Convolutional Layer

…

Generated painting

Testing Phase

(b)

Figure 2. Overview of the proposed approach. Training a multiscale deep neural network that can
generate a Chinese painting from a sketch. We use an edge detection model to produce the input sketch.
(a) By training, the discriminative network can make a distinction between the real and fake paintings,
and the generative network aims at fooling the discriminative network by training; (b) after training,
the generator can create realistic paintings.

2. Related Work

Learning from synthetic images from image datasets has always been a research interest in
computer graphics and computer vision. Previously, the most successful method was often a
nonparametric approach [5,15–18], which reuses existing image fragments of synthetic images.
Over the past few years, parametric models [19–23] based on deep CNN have yielded promising
results. Those image synthesis methods cannot create realistic high-resolution images, but they have
implicit generalization capabilities, which are difficult for data-driven nonparametric methods.

A common approach to image synthesis is to learn a low-dimensional potential representation
that can be used later to reconstruct an image, like a Variational Autoencoder (VAE) [19,20] or a
GAN [21]. In general, image synthesis in this way can be conditioned on image attributes [24],
grayscale images [25] and low-resolution input images.

2.1. Convolutional Networks

Convolutional networks [8], also known as convolutional neural networks or CNNs, are a
specialized kind of neural network for processing images. Convolutional networks were inspired by
biological processes in which the connectivity pattern between neurons is inspired by the organization
of the animal visual cortex. Individual cortical neurons respond to stimuli only in a restricted region of

Algorithms 2018, 11, 4 4 of 18

the visual field known as the receptive-field. The receptive-fields of different neurons partially overlap
such that they cover the entire visual field. Convolutional networks can learn high-level semantic
features automatically rather than requiring handcrafted features, which have been tremendously
successful in practical applications such as image classification, object location and some low-level
vision jobs. From LeNet [8] to AlexNet [7] and GoogleNet [26], learning deeper convolutional neural
networks has become a tendency in recent years.

2.2. Generative Adversarial Nets

Generative adversarial networks [21] were first introduced in 2014. The goal of the adversarial
approach is to learn deep generative models. The generator network directly produces samples
x = G(z; θg). However, the discriminator network endeavors to make a distinction between samples
drawn from the training data and samples drawn from the generator. The discriminator produces a
probability value given by D(x; θg), demonstrating the probability that x is a real training example
instead of a fake sample drawn from the model. In follow-up work, a Deep Convolutional GAN
(DCGAN) [9] performed very well in image synthesis tasks and showed that its latent representation
space captures important factors of variation. Improving GANs [27] provided a great variety of
new architectural features and training procedures, including feature matching and mini batch
discrimination, which can produce very clean and sharp images and learn codes that contain
valuable information about these textures. InfoGAN [28] is an information-theoretic extension to
the generative adversarial network that is able to learn disentangled representations in a completely
unsupervised manner.

2.3. Sketch to Image and Style Transform

In the early age, image synthesis systems were usually built on sketch retrieval [29] and allow
users to create novel, realistic images by using different sketch styles. Sketch2Photo [16] can compose
a realistic picture from a simple freehand sketch annotated with text labels. The composed picture
is generated by seamlessly stitching several photographs, which correspond to the sketch and text
labels. Photosketcher [15] is an interactive system for the synthesis of novel images that use only user
sketches as input. It is dedicated to image content and does not require keywords or other metadata
associated with the image.

Recently, some sketch to image methods built on CNN have emerged. Sketch Inversion [13]
is a deep neural network for inverting face sketches to synthesize photorealistic face images in the
wild. Scribbler [12] is a deep adversarial image synthesis architecture that is conditioned on sketched
boundaries and sparse color strokes to generate realistic cars, bedrooms or faces. Pix2pix [30] is
a conditional adversarial network (cGAN) [31]; it learns the mapping from an input image to an
output image.

The pioneering work of Gatys et al. [2,3] performed artistic style transfer, combining the content
of one image with the style of another by jointly minimizing the feature reconstruction loss and a style
reconstruction loss also based on features extracted from a pretrained convolutional network.

Johnson et al. [10] introduced a fast approach based on the algorithm proposed by Gatys et al. [2].
They train an equivalent feed-forward generator network for each specific style, which is three orders
of magnitude faster than previous works.

3. Method

3.1. Generative Adversarial Nets

A generative adversarial model consists of two neural networks: generative model G and
discriminative model D. Normally, the generative model G aims at mapping from a latent space
to a particular data distribution of interest. In contrast, the discriminative model D learns to determine
whether a sample is from the true data or the synthesized instances produced by the generator.

Algorithms 2018, 11, 4 5 of 18

The training objective of generative model G is to increase the error rate of the discriminative model D
(i.e., “fool” the discriminator by making new synthesized instances that seem to have come from the
true data distribution).

To make this concept more precise, the following minimax game can be done with training
adversarial networks.

min
G

max
D

V(D, G) = Ex∼pdata(x) log D(x) +Ez∼pz(z)[log(1− D(G(z)))] (1)

The discriminator D(x) takes some image x as input and yields the possibility, and the image x
is sampled from training data pdata(x). The generator G(z) aims at producing samples that fool D,
where z follows a prior noise distribution pz(z).

3.2. Conditional Generative Adversarial Nets

In a simple generative model, there is no control on modes of the data being produced. However,
it is probable to direct the data generating process by conditioning the model on extra information.
With additional information being added to GANs, it can be developed into cGANs. The objective of
cGANs is:

LcGAN(G, D) = Ex,y∼pdata(x,y)[log D(x, y)] +Ey∼pdata(y),z∼pz(z)[log(1− D(G(y, z), y)] . (2)

As noticed, y is a kind of auxiliary information. Just as shown in Figure 2, y means the input sketch.

3.3. Network Architecture

We designed a multiscale GAN to deal with the huge size, magnificent background and exquisite
details of Chinese painting. To make the generative model and the discriminative model handle
multiscale input images, they are all made up by convolutional layers.

In the generative model, to synthesize the output image whose resolution is the same as the input
sketch, all convolutions are 3× 3 spatial filters applied with stride = 1 and pad = 1. Using a small-sized
filter can effectively reduce the number of parameters. Without changing the receptive-fields, we can
make networks deeper, which can obtain a more non-linear fitting ability. Unlike the U-Net [32]
structure used by Pix2pix [30] that uses several downsampling steps and then the same number of
upsampling steps by using the deconvolutional layers [33], we used all stride one convolutional layer
to avoid the using of deconvolutional layers, which will produce checkerboard artifacts [34] in the
output images. Tables 1 and 2 show the details of the architecture including the generative model and
discriminative model, respectively.

Table 1. Generative model network architectures. Conv means convolutional layer; BN means batch
normalization; ReLU means rectified linear unit.

Generative Model

Name Kernel Size Stride Pad Norm Activation

Conv1 3 × 3 × 3 × 64 1 1 - ReLU
Conv2 3 × 3 × 64 × 64 1 1 BN ReLU
Conv3 3 × 3 × 64 × 64 1 1 BN ReLU
Conv4 3 × 3 × 64 × 64 1 1 BN ReLU
Conv5 3 × 3 × 64 × 64 1 1 BN ReLU
Conv6 3 × 3 × 64 × 64 1 1 BN ReLU
Conv7 3 × 3 × 64 × 64 1 1 BN ReLU
Conv8 3 × 3 × 64 × 64 1 1 BN ReLU
Conv9 3 × 3 × 64 × 64 1 1 BN ReLU

Conv10 3 × 3 × 64 × 3 1 1 - ReLU

Algorithms 2018, 11, 4 6 of 18

Table 2. Discriminative model network architectures. Conv means Convolutional layer; BN means
Batch Normalization; Leaky means leaky rectified linear unit.

Discriminative Model

Name Kernel Size Stride Pad Norm Activation

Conv1 4 × 4 × 3 × 64 2 1 - Leaky
Conv2 4 × 4 × 64 × 128 2 1 BN Leaky
Conv3 4 × 4 × 128 × 256 2 1 BN Leaky
Conv4 4 × 4 × 256 × 512 2 1 BN Leaky
Conv5 4 × 4 × 512 × 512 2 1 BN Leaky
Conv6 4 × 4 × 512 × 512 2 1 BN Leaky
Conv7 4 × 4 × 512 × 1 2 1 BN -

There are only convolutional layers in our networks. Let X be the input. The basic convolutional
layers are expressed as:

F(X) = Wk ∗ X + Bk . (3)

In Equation (3), Wk represents the weights of the filters and Bk represents the biases, while ∗
denotes convolution operation. The Rectified Linear Unit (ReLU) is the activation function behind the
convolutional layer, which is defined as:

f (x) = max(0, x) . (4)

where x is the input to a neuron. Combining Equations (3) and (4), a convolutional layer followed by a
ReLU can be expressed as:

F(X) = max(0, Wk ∗ X + Bk) . (5)

We also used Batch Normalization (BN) in our networks. BN is a normalization strategy
that makes the distribution of layers’ input consistent at the output of layers; it eliminates the effect
of the internal covariant shift. Covariate shift would amplify permutation at the deeper layers.
If it happens, the inputs of the activation function will stay in the saturated region. In that region,
the gradient will be very small, and the phenomenon of the vanishing gradient would happen and
stop neural network training. The BN layer can be applied to any input of layers. Our generative and
discriminative model is the combination of convolutional layers, ReLU and BN.

3.4. Loss Function

The training data are a pair of images composed of a sketch and corresponding paintings; as shown
in Figure 3. We use the loss function to define the gap between the generated image and the real
paintings, and the model is then trained by minimizing the loss function. We use both L1 loss and
adversarial loss to train the generative model.

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y− G(x, z)‖1] (6)

L1 loss is a good way to reconstruct low-frequency information, while adversarial loss can
reconstruct high-frequency information very well, so it can produce realistic images by combining L1
loss (Equation (6)) and adversarial loss (Equation (2)). Our final objective is below.

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (7)

Algorithms 2018, 11, 4 7 of 18

(a) (b) (c) (d)

Figure 3. Exemplary pairs from our training data, sketches (left) and paintings (right). (a) Along the
River during the Qingming Festival; (b) One Hundred Horses; (c) Spring Morning in the Han Palace;
(d) A Thousand Li of Rivers and Mountains.

4. Experiments and Results

We used four of the top ten paintings in ancient China as training data, including Along the River
during the Qingming Festival (Figure 1a), One Hundred Horses (Figure 1b), Spring Morning in the Han
Palace (Figure 1c) and A Thousand Li of Rivers and Mountains (Figure 1d). The dataset was generated
by splitting images in Figure 1 into 256× 256 sub-images with no overlap. To generate multiscale
images, we resize the original images in Figure 1 to 1/2 and 1/4 of the original size by bilinear
interpolation and then split into 256 × 256 sub-images with no overlap. Therefore, we obtained
23,520 small-level images, 5880 middle-level images and 1470 high-level images. We obtained
30,870 sub-images, and we randomly divided the training set and test set according to the ratio of 8:2.
We use HED [35] to get the sketch corresponding to the painting, as shown in Figure 3. HED performs
image-to-image prediction using a deep learning model that leverages fully-convolutional neural
networks and deeply-supervised nets, which can automatically learn rich hierarchical representations
to edge and object boundary detection. This edge detection algorithm addresses two important issues
in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale
and multi-level feature learning. Therefore, HED is suitable for extracting edges of Chinese paintings
with complex textures.

4.1. Training Details

We use Google’s TensorFlow framework [36] to implement this multi-scale deep neural network,
and we train the generative model and discriminative model on NVIDIA graphics cards, GTX 1080.
In addition to scaling the images to the range [0,1], no other pre-processing was done to train images.
We trained all models with mini-batch stochastic gradient descent, and the batch size is 1. We set the
slope of the leak to 0.2 in the leaky ReLU. To accelerate training, we used the Adam optimizer with
tuned hyperparameters, and the learning rate was set to 0.0002. Additionally, we set the momentum
term β1 = 0.5 to help stabilize training. We also set the BatchNormLayer [37] decay factor 0.9 for the
exponential moving average. Our network can produce high quality and diverse results as shown
in Figure 4.

Algorithms 2018, 11, 4 8 of 18

Figure 4. Our deep network takes user sketches to synthesize Chinese paintings. The input sketch
can be any size, and our deep network can synthesize the Chinese painting with fine details in real
time. Despite the diverse sketch styles, our network can produce high quality and diverse results.
(Left) Input sketch; (right) generated Chinese painting.

4.2. Network Architecture Analysis

To investigate the tradeoffs between the depth of network and PSNR, we change the length of the
generator from two to 13. The result is shown in Figure 5a. It can be seen from Figure 5a that when the
network length is greater than 7, the PSNR increases slowly with the increase of the network length.
The trade-off between performance and speed of generator is shown in Table 3. In general, the deep
network performs better than the shallow one at the expense of computational cost. We set 10 layers in
the generative network (shown in Table 1) in the following experiments, to strike a balance between
performance and speed.

2 4 6 8 10 12

Length of generator

29.5

30.0

30.5

31.0

P
S
N

R
 (

d
B

)

(a) (b)

0 20 40 60 80 100
¸

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

30.9

P
S

N
R

 (d
B

)

(c)

Figure 5. (a) Length of the generator vs. the PSNR of generated testing painting; (b) length of the
discriminator vs. the size of the recptive field; (c) λ vs. the PSNR of the generated testing painting.

Table 3. We evaluate the trade-off between performance and speed in networks with different depths.

Length of Generator 7 8 9 10 11 12 13

PSNR (dB) 30.829 30.832 30.837 30.846 30.842 30.852 30.856
Times (512× 512) 0.023 s 0.027 s 0.029 s 0.032 s 0.035 s 0.039 s 0.044 s

The receptive-field is defined as the region in the input space at which a particular CNN’s feature
is looking. A large receptive-field can provide more context for predicting image details. The size
of the receptive-field is determined by the kernel size, stride size and the length of the network.
The receptive-field growth of our discriminator. Since the size of the input image is 256, we chose the
network structure shown in Table 2, with a perceived field size of 382. In Equation (7), we analyze the

Algorithms 2018, 11, 4 9 of 18

effect of λ on the generated painting, as shown in Figure 5c, when λ = 50 obtains the best PSNR in
testing images.

4.3. Compare to Pix2pix

To compare with Pix2pix, we trained the Pix2pix framework using the same data, as well as the
same training parameters. Pix2pix uses several downsampling steps. The same number of upsampling
steps achieved by deconvolutional layers is used. Different from Pix2Pix, we used the all stride one
convolutional layer to avoid producing checkerboard artifacts in the output images. Additionally,
our generator is deeper than Pix2pix, which obtains a more non-linear fitting ability. Figure 6 shows
the contrast of the results between our work and Pix2pix; the first row is the input sketch, and the
second row shows the results of our proposed networks. The third row shows the results produced by
Pix2pix, and the fourth row is the real image corresponding to the sketch. Table 4 shows quantitative
evaluations of Pix2pix and our method. Compared to the results produced by Pix2pix, our multi-scale
deep network can produce clearer paintings, no matter whether for detailed information or overall
images. For example, our method can produce the facial details of the characters and the details of the
trees. As is shown in our training of facial images in Figure 7, some input facial images do not have a
nose sketch, but the ground truth images include a nose. Thus, our generative model has the ability to
determine the location of the nose by sketches of the eye and mouth, shown in Figure 6.

Figure 6. Comparison of experimental results to Pix2pix. From top to bottom: input sketch, our deep
network, Pix2pix and the ground truth.

Figure 7. Some facial images in the training data.

Table 4. Quantitative evaluation of Pix2pix and our work. We evaluated average PSNR/SSIM for
images in Figure 6.

Methods
Images Column 1 to 3 Column 4–6 Column 7–9

Pix2Pix (PSNR/SSIM) 28.38/0.4534 28.08/0.3421 28.85/0.5312
Ours (PSNR/SSIM) 30.95/0.7282 28.76/0.5854 31.84/0.6863

Algorithms 2018, 11, 4 10 of 18

4.4. Validity of Multiscale

To test the validity of multiscale inputs, we input the multiscale sketch. The results are shown in
Figure 8, indicating that our generative model works perfectly in multiscale inputs. From the first line,
we can see that the proposed method not only can produce the detail information of the face, including
eyes, mouth, and so on, but also can vividly depict the shape of the whole body. The resulting pictures
in the second line show that our model can generate both small objects like trees and huge objects like
distinct peaks and mountains.

×1

×2

×4

Input Output GT Input Output GT

Figure 8. Multi-scale input and its corresponding output. We reduce the original image to 1/2 and 1/4
of the original size by bilinear interpolation to generate multiscale images. (Top) The small level scale
input sketch; (middle) the middle-level scale input sketch; (bottom) the large level scale input sketch.

4.5. Style Transfer

At the same time, our models can also be treated as a neural style transfer: input the original
image; extract the edge of the original image as a sketch; and input the sketch into the model. Then,
we can get the image with the Chinese painting style. The generative model can handle any size of
input image. As shown in Figure 9, we have style transitions for large 2300× 768 images. Because of
the graphics memory constraints, we divided this huge image into three parts to process. Different
from other style transfer algorithms [2,38], our method can reduce distortions better.

(a)

Figure 9. Cont.

Algorithms 2018, 11, 4 11 of 18

(b)

Figure 9. Transforming a real image into a Chinese painting. Our network can handle any size of
images. (a) Input image; (b) Chinese painting produced by our network. The input image has an
enormous size of (2300, 768); because of the graphics memory constraints, we divided this huge images
into three parts to process.

Because our network uses a feed-forward approach, it performs significantly faster than previous
deconvolution-based approaches. Therefore, it is possible to run style transfer in real-time or on video.
As shown in Figure 10, we transform an aerial photograph to the Chinese painting style video; please
see the additional files.

Figure 10. Transforming an aerial photograph into the Chinese painting style video. For the whole
video, please see the additional files.

4.6. Time and Memory Usage

Finally, we compared the time complexity of the proposed methods and other style transfer
algorithms, as shown in Figure 11a. Although the computation time between Ulyanov et al.’s [39]
and our method is similar (the comparative results are shown in Figure 12), our result can keep the
structure of the input image. Table 5 compares the runtime of our method and other methods for
several image sizes. Compared to Gatys et al. [2], our method is three orders of magnitude faster. Our
method processes 512× 512 images at about 30 FPS, making it feasible to run in real time or on video.

Algorithms 2018, 11, 4 12 of 18

128 X 128 256 X 256 512 X 512 1024 X 1024
Image Size

0

1

2

3

4

5

6

lo
g(

Ti
m

e)

log(Time) in ms V.S. Image Size

Ours
Ulyanov et al.
Gatys et al.
Li et al.

(a)

128 X 128 256 X 256 512 X 512 1024 X 1024
Image Size

0

2

4

6

8

10

12

M
em

or
y

U
sa

ge
 (G

b)

Memory Usage in Gb V.S. Image Size

(b)

Figure 11. (a) Speed comparison (in log space) between our method and Gatys et al. [2], Li et al. [38]
and Ulyanov et al. [39]. The feed-forward methods (ours and Ulyanov et al. [39]) are significantly faster
than Gatys et al. [2] (500-times speed up) and Li et al. [38] (5000-times speed up). (b) Memory usage vs.
image size, the required memory is linearly related to the size of input image.

Figure 12. Example results of style transfer using our image transformation networks. (left) Input
image; (middle) results of Ulyanov et al. [39]; (right) ours.

Table 5. Speed (in seconds) for our style transfer network vs. the optimization-based baseline for
varying numbers of iterations and image resolutions. Both methods are benchmarked on a GTX
1080 GPU.

Image Size
Methods Gatys et al. [2] Ulyanov et al. [39] Ours

128× 128 1.542 s 0.004 s 0.002 s
256× 256 6.483 s 0.015 s 0.008 s
512× 512 25.23 s 0.051 s 0.032 s

1024× 1024 106.2 s 0.212 s 0.122 s

Regarding memory, our generative model requires 2 MB to save its parameters. In the process
of generating Chinese paintings, the required memory is linearly related to the size of input sketch,
as shown in Figure 11b: for 256× 256 pictures, it takes about 600 Mb; for 512× 512 pictures, it consumes
2.5 Gb memory.

Algorithms 2018, 11, 4 13 of 18

5. Other Applications

Besides inputting simple sketches to synthesize surprising art paintings, the method we proposed
also can be treated as a general-purpose solution to image-to-image translation problems, such as
image colorization, image super-resolution, and so on. To verify the universality of the proposed
method, we apply it in colorization and super resolution.

5.1. Image Colorization

The goal of colorization is not to recover the actual ground truth color, but rather, to produce a
plausible colorization that the user finds useful even if the colorization differs from the ground truth
color. Colorization can seem like a daunting task because so much information is lost (two out of three
color dimensions) in converting a color image to its underlying grayscale representation. Because
grass is usually green and the sky is usually blue, the semantics of an image scene provide many clues
for a plausible colorization.

To verify the effectiveness of the proposed method, we artificially colorize grayscale satellite
imagery. The dataset used is the UC Merced Land Use dataset [40]; this dataset consists of images
of 21 land use classes (100 256× 256-pixel RGB images for each class) selected from aerial optical
images acquired by the U.S. Geological Survey. Given the lightness channel L, our system predicts the
corresponding a and b color channels of the image in the CIE Lab color space. Lab color space is an
alternative system for representing pixel colors versus the standard RGB values. It is useful because
the L channel is statistically independent of the pure color a, b channels. We divide the training set
and test set according to the ratio of 8:2. After training, we display the resulting colorizations of our
method in Figure 13, the grayscale image on the left and the artificial colorization of a grayscale image
on the right. The result demonstrates that our method can produce a realistic colorization.

Figure 13. Example artificial colorization of satellite images: grayscale images (left), colorful images
(middle) and ground truth (right).

5.1.1. Comparisons with Other Approaches

We compare against other methods in Figure 14. Our approach accurately colorized the ocean
and beach, while the other two approaches biased tones towards either the ocean or the beach.

Following the previous work [25], we conducted a user study by asking “Does this image look
natural?” to evaluate the naturalness of the ground truth, as well as the results of our model and other
approaches. The images are randomly selected and displayed one by one to the user. This research
was done by five different users. For each type, we show approximately 100 images from 400 images
in total. The users are instructed to use their intuition and feelings rather than spending too much
time on the detail of the image. We can see the result in Table 6. For this, 93.80% of our method’s
images look natural, 96.60% of the ground truth. This strongly suggests that our model can create
realistic colorizations.

Algorithms 2018, 11, 4 14 of 18

 Figure 14. We compare against the other methods. The first column contains the input image;
the second column is the result of [25]; the third column is the result of [41]; the fourth column
is our result; and the last row is the ground truth.

Table 6. Results of our user study evaluating the naturalness of the colorizations.

Approach Iizuka et al. [25] Zhang et al. [41] Ours Ground Truth

Naturalness 78.20% 80.80% 93.80% 96.6%

5.2. Image Super-Resolution

Single Image Super-Resolution (SR), which aims to recover a high-resolution image from a
low-resolution image, is a widespread problem in image processing. A high resolution with higher
pixel density contains more details, which play an essential part in some applications. To train the
network we proposed, we use 91 images from [42] and 200 images from the training set of [43].
Following previous works [44–46], we only consider the luminance channel in YCbCr color space,
because humans are more sensitive to luminance changes. For benchmark, we use two datasets:
Set5 [47], Set14 [46].

In Figure 15, we showed the super-resolution results of our method, and it can reconstruct detailed
textures and edges in the high-resolution images.

Figure 15. Super-resolution results of images in Set5 [47] and Set14 [46]. Our method takes the bicubic
interpolation of low-resolution images (left) as input and high-resolution images (right, 4×) as output.

Algorithms 2018, 11, 4 15 of 18

5.2.1. Comparisons with Other Approaches

Our proposed work is compared with other SR algorithms: A+ [48], SelfExSR [49] and
SRCNNs [50]. Table 7 summarizes quantitative results on the four testing datasets. Our method
outperforms all previous methods in these datasets. In Figure 16, we compare our method with some
state-of-the-art methods. Our method reconstructs detailed textures and sharper edges in the HR
images and provides noticeable improvement compared to other works.

Ground-truth HR

HR (PSNR, SSIM) Bicubic (23.50, 0.86) A+ (25.75, 0.90)

SelfEx(20.39, 0.81) SRCNN (27.53, 0.92) Ours (27.67, 0.93)

Figure 16. Image “ppt3” (Set14, ×3): there are sharper edges between “H”, “o” and “w” in our result;
while in other works, the text is blurry. SR, Super-Resolution.

Table 7. Quantitative evaluation of state-of-the-art SR methods. We evaluated average PSNR/SSIM for
scale factors ×2, ×3 and ×4 on datasets Set5, Set14.

Dataset Scale Bicubic A+ SelfEx SRCNN Ours
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5
×2 33.66/0.9299 36.54/0.9544 36.54/0.9537 36.49/0.9537 36.66/0.9542
×3 30.39/0.8682 32.58/0.9088 32.43/0.9057 32.58/0.9093 32.75/0.9090
×4 28.42/0.8104 30.28/0.8603 30.14/0.8548 30.31/0.8619 30.48/0.8628

Set14
×2 30.24/0.8688 32.28/0.9056 32.26/0.9040 32.22/0.9034 32.42/0.9063
×3 27.55/0.7742 29.13/0.8188 29.05/0.8164 29.16/0.8196 29.28/0.8209
×4 26.00/0.7027 27.32/0.7491 27.24/0.7451 27.40/0.7518 27.49/0.7503

6. Conclusions and Future Work

In this paper, we propose a multiscale deep neural network to transform sketches into Chinese
paintings that can also be treated as neural style transfer. To synthesize more realistic imagery, we train
the generative network by using both L1 loss and adversarial loss. Furthermore, additional experiments
on remote sensing images and street images demonstrate the universality of our proposed approach.
The models we proposed can produce surprising artworks, but there is still a big difference between
the works produced by artists. In future work, we may focus on some abstract artworks, which is still
a difficult problem for artificial intelligence.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Grant No. 41501485 and No. 61331017.

Author Contributions: Yang Wang, Guangluan Xu, Jun Li and Kun Fu conceived and designed the experiments;
Daoyu Lin performed the experiments and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Song, M. Neural Style Transfer: A Review. arXiv 2017, arXiv:1705.04058.
2. Gatys, L.A.; Ecker, A.S.; Bethge, M. A neural algorithm of artistic style. arXiv 2015, arXiv:1508.06576.
3. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2414–2423.

Algorithms 2018, 11, 4 16 of 18

4. Shih, Y.; Paris, S.; Barnes, C.; Freeman, W.T.; Durand, F. Style Transfer for Headshot Portraits; Association for
Computing Machinery (ACM): New York, NY, USA, 2014.

5. Efros, A.A.; Freeman, W.T. Image quilting for texture synthesis and transfer. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA,
12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 341–346.

6. Wei, L.Y.; Levoy, M. Fast texture synthesis using tree-structured vector quantization. In Proceedings of
the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA ,
23–28 July 2000; ACM Press/Addison-Wesley Publishing Co.: Boston, MA, USA, 2000; pp. 479–488.

7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems,
Lake Tahoe, Nevada, 3–6 December 2012; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

8. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
9. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional

Generative Adversarial Networks. arXiv 2015, 1–15, arXiv:1511.06434.
10. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution.

In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Berlin, Germany, 2016; pp. 694–711.

11. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Networks. arXiv 2014, 1–9, arXiv:1406.2661.

12. Sangkloy, P.; Lu, J.; Fang, C.; Yu, F.; Hays, J. Scribbler: Controlling Deep Image Synthesis with Sketch and
Color. arXiv 2016, arXiv:1612.00835.

13. Güçlütürk, Y.; Güçlü, U.; van Lier, R.; van Gerven, M.A. Convolutional sketch inversion. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer:
Berlin, Germany, 2016; pp. 810–824.

14. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

15. Eitz, M.; Richter, R.; Hildebrand, K.; Boubekeur, T.; Alexa, M. Photosketcher: Interactive sketch-based image
synthesis. IEEE Comput. Graph. Appl. 2011, 31, 56–66.

16. Chen, T.; Cheng, M.M.; Tan, P.; Shamir, A.; Hu, S.M. Sketch2photo: Internet image montage.
ACM Trans. Graph. 2009, 28, doi:10.1145/1618452.1618470.

17. Shih, Y.; Paris, S.; Durand, F.; Freeman, W.T. Data-driven hallucination of different times of day from a single
outdoor photo. ACM Trans. Graph. 2013, 32, doi:10.1145/2508363.2508419.

18. Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A. Graphcut textures: Image and video synthesis using
graph cuts. ACM Trans. Graph. 2003, 22, 277–286.

19. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
20. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic Backpropagation and Approximate Inference in Deep

Generative Models. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China,
21–26 June 2014; pp. 1278–1286.

21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Advances in Neural Information Processing Systems, Proceedings of the Neural
Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Curran Associates, Inc.: Red Hook,
NY, USA, 2014; pp. 2672–2680.

22. Van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals, O.; Graves, A. Conditional image generation with
pixelcnn decoders. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information
Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates, Inc.: Red Hook, NY, USA, 2016;
pp. 4790–4798.

23. Hertzmann, A.; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA,
12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 327–340.

24. Yan, X.; Yang, J.; Sohn, K.; Lee, H. Attribute2image: Conditional image generation from visual attributes.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October
2016; Springer: Berlin, Germany, 2016; pp. 776–791.

Algorithms 2018, 11, 4 17 of 18

25. Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be Color!: Joint End-to-end Learning of Global and Local
Image Priors for Automatic Image Colorization with Simultaneous Classification. ACM Trans. Graph. 2016,
35, 110:1–110:11.

26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

27. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for
Training GANs. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information
Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates, Inc.: Red Hook, NY, USA, 2016;
pp. 1–10.

28. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets. arXiv 2016,
arXiv:1606.03657.

29. Dixon, D.; Prasad, M.; Hammond, T. iCanDraw: Using sketch recognition and corrective feedback to assist a
user in drawing human faces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Denver, CO, USA, 7–11 May 2010; ACM: New York, NY, USA, 2010; pp. 897–906.

30. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks.
arXiv 2016, arXiv:1611.07004.

31. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.

In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin, Germany, 2015; pp. 234–241.

33. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the 2010
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June
2010; pp. 2528–2535.

34. Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. 2016. Available online:
http://distill.pub/2016/deconv-checkerboard/ (accessed on 15 July 2017).

35. Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403.

36. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
2016, arXiv:1603.04467.

37. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of The 32nd International Conference on Machine Learning, Lille, France,
6–11 July 2015; pp. 448–456.

38. Li, C.; Wand, M. Combining markov random fields and convolutional neural networks for image synthesis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 2479–2486.

39. Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V. Texture networks: Feed-forward synthesis of textures
and stylized images. In Proceedings of the 33rd International Conference on Machine Learning, New York,
NY, USA, 20–22 June 2016.

40. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings
of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose,
CA, USA, 2–5 November 2010; ACM: New York, NY, USA, 2010; pp. 270–279.

41. Zhang, R.; Zhu, J.Y.; Isola, P.; Geng, X.; Lin, A.S.; Yu, T.; Efros, A.A. Real-Time User-Guided Image
Colorization with Learned Deep Priors. ACM Trans. Graph. 2017, 36, doi:10.1145/3072959.3073703.

42. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans.
Image Process. 2010, 19, 2861–2873.

43. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth
IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423.

http://distill.pub/2016/deconv-checkerboard/

Algorithms 2018, 11, 4 18 of 18

44. Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA,
27 June–2 July 2004.

45. Glasner, D.; Bagon, S.; Irani, M. Super-resolution from a single image. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 349–356.

46. Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the
International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; pp. 711–730.

47. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, A. Low-Complexity Single-Image Super-Resolution based
on Nonnegative Neighbor Embedding. In Proceedings of the 23rd British Machine Vision Conference
(BMVC), Guildford, UK, 3–7 September 2012.

48. Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted anchored neighborhood regression for
fast super-resolution. In Proceedings of the Asian Conference on Computer Vision, Singapore,
1–5 November 2014; Springer: Berlin, Germany, 2014; pp. 111–126.

49. Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 5197–5206.

50. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution.
In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
Springer: Berlin, Germany, 2014; pp. 184–199.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Convolutional Networks
	Generative Adversarial Nets
	Sketch to Image and Style Transform

	Method
	Generative Adversarial Nets
	Conditional Generative Adversarial Nets
	Network Architecture
	Loss Function

	Experiments and Results
	Training Details
	Network Architecture Analysis
	Compare to Pix2pix
	Validity of Multiscale
	Style Transfer
	Time and Memory Usage

	Other Applications
	Image Colorization
	Comparisons with Other Approaches

	Image Super-Resolution
	Comparisons with Other Approaches

	Conclusions and Future Work

