
algorithms

Article

Iteration Scheme for Solving the System of Coupled
Integro-Differential Equations for Excited and
Ionized States of Molecular Systems

Anton Kasprzhitskii * ID , Georgy Lazorenko and Victor Yavna

Department of Physics, Rostov State Transport University, Narodnogo Opolcheniya Sq., Rostov-on-Don 344038, Russia;
glazorenko@yandex.ru (G.L.); vay@rgups.ru (V.Y.)
* Correspondence: akasprzhitsky@yandex.ru; Tel.: +7-928-757-95-39

Received: 13 November 2017; Accepted: 19 December 2017; Published: 22 December 2017

Abstract: Investigation of the interaction of electromagnetic radiation with molecular systems
provides most of the information on their structure and properties. Interpretation of experimental
data is directly determined by the knowledge of the structure of energy levels and its change
in the transition of these systems to an excited state. A key task of the methods for calculating
the molecular orbitals of excited states is to accurately describe the emerging vacancies of the
molecular core, leading to radial relaxation of the electron density. We propose an iterative scheme for
solving a system of coupled integro-differential equations for obtaining molecular orbitals of electron
configurations with excited/ionized deep and subvalent shells in a single-center representation.
The numerical procedure of the iterative scheme is reduced to solving a boundary value problem
based on a combination of the three-point difference scheme of Numerov and Thomas algorithm.
To increase the rate of convergence of the computational procedure, an accurate account is taken
of the behavior of the electron density near the nuclei of the molecular system. The realization of
the algorithm of the computational scheme is considered on the example of a diatomic hydrogen
fluoride molecule. The energy characteristics of the ground and ionized states of the molecule are
estimated, and also the spatial distribution of the electron density is presented for the example of the
σ-symmetry shell.

Keywords: integro-differential equations; single center method; molecular orbital; excited states;
ionized states; deep shell; subvalent shell

1. Introduction

Theoretical study of the absorption processes [1], photoionization [2], elastic [3], and inelastic [4]
scattering of an X-ray photon by a molecular system is a complex problem that requires an exact
description of the excited states with emerging vacancies in deep and subvalent electronic shells.
Existing methods for calculating wave functions can be classified according to the form of their
representation as multicenter (MC) [5] and single-center (SC) [6].

In the MC representation, molecular orbitals (MO) in different regions of space are described with
respect to the centers associated with the nuclei of the molecular system. In this approach, the main
limitation is related to the choice of the basic set of wave functions affecting the accuracy and amount
of calculation [7,8]. In the calculations, the construction of basic functions in the form of a superposition
of Slater [9] or Gaussian [10] orbitals are widely used. The most well-known realization of the MC
approach is the method of linear combination of atomic orbitals (MO LCAO) [11,12]. Its equations
were first written by Roothaan [5]. In this case, the problem of minimizing the energy functional is
reduced to finding the coefficients for the expansion of MO in basic atomic orbitals. A fairly complete
overview on the use of the MO LCAO presented in [13], shows that the main drawback of the method
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is the principal difficulties in obtaining excited states of molecular systems caused by the problem of
choosing the optimal basis set.

Another approach is to extend the methods for calculating the wave functions of atomic electrons
to molecular systems that have been developed in the SC method of MO calculation [6,14,15]. The SC
approach is based on the MO representation in the form of an expansion in the basis of functions
centered relative on one point of space. The application of the SC method has a number of advantages,
especially when studying electron-photon interaction processes in many-electron systems [15–17].
From the computational point of view, the simplicity of using SC in comparison with MC is due to
the developed theory and methods of atomic calculations. The transition to molecular systems is
determined by introducing summation over the orbital angular momenta, since one-electron atomic
wave function is formally the SC component of the MO decomposition. This approach avoids the
problems associated with the redundancy of the basis, or at least controls them, in contrast to the MC
approach. In addition, the absence of multicenter integrals makes it possible to substantially simplify
the procedure for performing calculations.

Historically, the first way to implement the SC method was to represent the partial harmonics
of the SC expansion in the form of a linear combination of Slater-type orbitals and directly minimize
the expressions for the total energy [6,11]. In a different approach, described in detail in [15,16],
another variant of the SC method is proposed, which reduces to solving the secular equation. In this
case, both the discrete function and the continuous spectrum function are used as basis functions,
which are a solution of the Hartree-Fock equations. This realization of the SC approach is not free
from the problems of choosing optimal basis sets, as well as from the slow convergence of the SC
expansion series of the MO. Moreover, it has a strong influence on the energy of the state of the partial
SC harmonics of the MO decomposition with large orbital moment values under low contribution of
these harmonics to the function norm. The last two drawbacks can also be attributed to the SC method
in general.

The application of the variational principle for obtaining the wave functions of electrons in
the case of an atom leads to the well-known system of integro-differential Hartree-Fock equations.
In molecular SC systems, the representation allows to obtain a system of integro-differential equations
connecting different partial harmonics of MO. This approach is most accurate due to the elimination
of the problem of selecting basic sets for describing the MO. In works [17–22], this method was
realized when calculating the wave function of an excited photoelectron of a discrete and continuous
spectrum on the basis of a system of coupled integro-differential equations. Herewith, despite the
application of the widely known method of solving the differential equations of Numerov [23],
the developed approach has a number of drawbacks related to the use of the approximation of the
frozen core, and also the restriction of the SC expansion of the MO to the harmonics. It makes an
essential contribution to the expansion of the wave function, due to its slow convergence. In particular,
the accuracy of describing vacancies in the excited and ionized states restricts the application of the
approximations of “Z + 1” and “frozen core”. In calculating the weakly excited states of molecular
systems, the delta-SCF [24] method based on the DFT theory has been developed, requiring the
search for a suitable exchange-correlation potential for an accurate description of the electron-electron
interaction. At the same time, the application of the method is limited when solving a wide class of
problems of elastic and inelastic X-ray photon scattering, as well as photoexcitation processes, which is
due to the need to obtain highly-excited electronic states. At the same time, the slow convergence
of the MO in the SC representation has a significant effect on the accuracy of the calculated values.
According to the estimate made in [18], in order to describe the one-electron energies of MO molecules
with ligands of the second period of the Mendeleyev periodic table with an accuracy of ~3%, one must
take into account the partial harmonics with orbital angular momentum l ≥ 50 in the SC expansion of
MO. The increase in the number of terms of the SC expansion leads to an increase in the system of
differential equations, which causes more computational capacity giving an insignificant contribution
of the obtained higher harmonics of the expansion to the observed quantities, but important for
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the energy characteristics of the systems [22]. In [17,25,26] the problem of slow convergence of the
SC of MO expansion was solved by “effective” accounting of the influence of partial harmonics
with large values of the orbital angular momentum, by increasing the participation coefficient
of the last from the accounted partial harmonics in the limited SC expansion when calculating
the photoelectron MO. At the same time, such an “effective” technique in calculating individual
spectroscopic quantities does not allow to correctly describe the electron-electron Coulomb interaction,
including the photoabsorption cross-section.

The paper proposes an iterative scheme for calculating the excited and ionized states of molecular
systems obtained outside the framework of the widely used approximations of “Z + 1” and “frozen
core”. The numerical procedure is based on solving a system of coupled integro-differential equations
for all MOs included in the electronic configuration of the state. The higher harmonics of MO are
represented as a composition of the wave functions of the electron shells of atoms expanded in a
series of spherical harmonics. This ensures the required description accuracy of electron density
near the nuclei of the molecular system. The proposed computational procedure is based on a
combination of three-point difference Numerov scheme and Thomas algorithm. The theoretical basis
and details of the iteration scheme are described. The efficiency of higher harmonics consideration in
the MO decomposition is illustrated by the example of calculating the energy characteristics of the
main electronic configuration of a hydrogen fluoride molecule with an increase in the ligand charge.
The space expansion of electron density is also presented. The energy characteristics of the ionized
states of the σ-symmetry molecule are estimated.

2. Materials and Methods

2.1. Basic Equation of Iteration Scheme

Integro-differential equations underlie the iterative scheme of obtaining radial parts of MO.
They are the generalization of Hatree-Fock equation first recorded for an atom [27]. The equations were
obtained on the basis of minimizing the energy functional in the Born-Oppenheimer approximation [28]
for the wave function on N-electron molecular system Ψ = (N!)−1/2det‖φnγ‖, represented as
antisymmetrized product of one-electron MO φnγ. After the variation procedure we obtain a set of
coupled integro-differential Hartree-Fock equations systems each of which corresponds to a certain MO
nγ of molecule electron configuration. In this case, the single-electron MO φnγ, in the nonrelativistic
SC representation, has the form [6]:

Φnγµ(r, ϑ, ϕ) =
1
r ∑l Pnγ

l (r)Yµ
l (ϑ, ϕ), (1)

where Pnγ
l (r) is the radial and Yµ

l (ϑ, ϕ) is the angular part of l, the symmetry partial harmonic of
MO with the fixed (for a linear molecule) value of the µ, the projections of angular momentum to
the quantization axis OZ (molecule axis); n is the main quantum number; γ is the symmetry of MO;
and r, ϑ, ϕ are the spherical coordinates.

Considering Equation (1) the system of coupled integro-differential equations for MO nγ has
the form:

d2Pnγ
l (r)

dr2 = ∑l′ Ω
nγ
l,l′(r)Pnγ

l′ (r) + 2Xnγ
l (r), (2)

where Ωnγ
l,l′(r) is the local potential, describing the electron interaction of MO nγ with the nuclei of the

molecular system and the direct Coulomb interaction with the electrons of other MO; Xnγ
l (r) is the

nonlocal potential, describing the exchange Coulomb interaction of MO electrons nγ with electrons of
other MO.
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Local potential Ωnγ
l,l′(r) has the following form:

Ωnγ
l,l′(r) =

[
l(l + 1)

r2 − 2Z0

r
− εnγ

]
δl,l′ + 2Wnγ

l,l′ (r) + 2Vnγ
l,l′ (r), (3)

where Z0 is the charge of molecular nucleus, located at the chosen origin of coordinates, Wnγ
l,l′ (r) is the

potential of crystal field, describing the electron interaction of MO nγ with the nuclei of molecular
system; Vnγ

l,l′ (r) is the potential of the direct Coulomb interaction of MO nγ electrons with the electrons
of other MO; and εnγ is the single-electron energy nγ of MO.

The expression for the potential of crystal field in Equation (3) has the form:

Wnγ
l,l′ (r) = ∑µ

λ
nγ
µ ω

nγµ
l,l′ (r), (4)

ω
nγµ
l,l′ (r) = −∑NL

α=1 Zα ∑l+l′ ,∆k=2
k=|l−l′ | Ck

lµ l′µCk∗
0 (θα, ϕα)

(
rk

α<

rk+1
α>

)
, (5)

where λ
nγ
µ is the number of nγ electrons of MO with µ, the projections of angular momentum to

the quantization axis OZ (molecule axis); NL is the number of ligands in the molecule; Zα is the
charge of the α-th ligand; Cl

m =
√

4π/2l + 1Ylm(θ, ϕ) is the spherical harmonic; rα> = max(r, Rα)
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In order to simplify Equations (6)–(9), the summing is omitted over the μ-projection of angular 
momentum of the electrons participating in Coulomb interaction. 
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rα< = min(r, Rα), Rα, θα, ϕα are the coordinates of the α-th ligand; and Ck
lµ l′µ is the matrix element

of the spherical harmonic, the calculation methods of which are presented in [28].
The potential, describing the direct Coulomb interaction of electrons nγ with the electrons from

other MO (Equation (3)) has the form:

Vnγ
l,l′ (r) = ∑n′γ′

(
1 + δnγ,n′γ′

)
α

nγ
n′γ′ ·F

n′γ′
l,l′ (r), (6)

Fn′γ′
l,l′ (r) =

1
r ∑l1,l2 ∑kmax , ∆k=2

k=kmin
Ck

l1l2 Ck
l′ l Yn′γ′

l1l2k(r), (7)

where α
nγ
n′γ′ is the coefficient for the potential describing the direct Coulomb interaction between

nγ and n′γ′ MO depending on the quantum number of electron configuration of a molecule;
kmin = max(|l − l′|, |l1 − l2|); and kmax = min(l + l′, l1 + l2).

Nonlocal potential describing the interchange Coulomb interaction of electrons nγ of MO with
the electrons of other MO in Equation (2) has the form:

Xnγ
l (r) = ∑n′γ′ β

nγ
n′γ′ ∑l′ Gnγ,n′γ′

l,l′ (r), (8)

Gnγ,n′γ′
l,l′ (r) =

1
r ∑l1,l2 ∑kmax , ∆k=2

k=kmin
Ck

l1 l′C
k
l2 l Yn′γ′ ,nγ

l1 l′k (r) Pn′γ′
l2

(r), (9)

where β
nγ
n′γ′ is the coefficient for the potential describing interchange Coulomb interaction between

nγ and n′γ′ of MO depending on the quantum number of electron configuration of a molecule;
kmin = max(|l1 − l′|, |l2 − l|); and kmax = min(l1 + l′, l + l2).

The radial part of the electronic potential is determined in the expressions of the direct and
interchange potentials. It is calculated on the basis of radial parts of partial harmonics of SC expansion
of MO:

YS,R
l1l2k(r) =

(∫ r

0

[ x
r

]k
+
∫ ∞

r

[ r
x

]k+1
)

PS
l1(x)PR

l2 (x)dx, (10)

In order to simplify Equations (6)–(9), the summing is omitted over the µ-projection of angular
momentum of the electrons participating in Coulomb interaction.
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2.2. The Inclusion of Higher Spherical Harmonics in SC Expansion of MO

To accurately describe the electron density in the vicinity of the molecular system nuclei and
solve the problem of slow convergence of the functional series (1), MO nγ for calculating the system of
coupled differential equations has the following form:

Φnγµ(r, ϑ, ϕ) = Anγµ

[
1
r ∑l0

l=lmin
Pnγ

l (r)Yµ
l (ϑ, ϕ) + ∑n′γL Λn′γL

µ ψ
n′γL
µl0

(r)
]

, (11)

where Anγµ is the normalization factor; ΛnγL
µα is the contribution coefficients of the wave function

ψ
nγL
µl0

(r) with the main quantum number n and symmetry γ of the L-th ligand of the molecular system
in the form:

Ψ
nγL
µl0

(r) =
1
r ∑

l>l0

PnγL
l (r)Yµ

l (ϑ, ϕ) (12)

The functions ψ
nγL
µl0

(r) are the wave functions of the electron shells of atoms entering the molecular
system as ligands (atoms are not at the origin) expanded in a series of spherical harmonics.

In this case, the partial harmonics of MO in Equation (11) with the values of the orbital angular
momentum l > l0 are obtained by solving the system of Equation (2). The terms of the expansion
Equation (11) with orbital angular momenta l > l0 are obtained on the basis of the linear combination
ψ

nγL
µl0

(r) with the contribution coefficients ΛnγL
µα . Such a representation of MO is due to the fact that

the shape of the partial spherical harmonics with large values of the orbital angular momentum is
determined to within a coefficient by the ligand potential of the molecular system.

The choice of the value of l0 in Equation (11) is a result of a numerical experiment and depends
on the nature of the molecular system and the number of partial harmonics involved in the formation
of the chemical bond of the compound.

To determine the contribution coefficients ΛnγL
µα in Equation (11) the partial harmonics are linked

in using the equation:
Pnγ

l0
(r) = ∑n′γL Λn′γL

µα Pn′γL
l0

(r). (13)

That is, radial part of the l0-th partial harmonic of the nγ molecular orbital is represented as a
superposition of radial partial harmonics of ligand functions with weighting coefficients ΛnγL

µα .
Equation (13) allows compiling a system of algebraic equations for determining the contribution

coefficients ΛnγL
µα of ligand functions with γ symmetry in the form of:

∑n′γL〈P
jγL
l0

∣∣∣Pn′γL
l0
〉Λn′γL

µα = 〈PjγL
l0

∣∣∣Pnγ
l0
〉, (14)

Thus, the determined MO is normalized to unity.

2.3. The Expansion of the Wave Functions of the Electron Shells of an Atom in a Series of Spherical Harmonics

The procedure of obtaining the ligand functions ψ
nγL
µl0

(r) used in Section 2.2 is based on the

recalculation of the wave functions of the electron shells of atoms PA
nl(r), entering the molecular system

in a new unified system of coordinates.
In the transition to a uniform coordinate system of the wave function of an electron shell related

to a certain atom is represented in the form of an expansion in a series of spherical harmonics [29]:

ΦA
nlm(r, ϑ, ϕ) =

∞

∑
L=0

Γnlm
LM (R)YLM(Ξ, φ) (15)

where ΦA
nlm(r, ϑ, ϕ) is the wave function of nl electron shell in the atomic system of coordinates;

r, ϑ, ϕ are the spherical coordinates of the atomic system; Γnlµ
LM(R) is the coefficient of expansion in

spherical harmonics in the molecular spherical coordinates system; L is the orbital angular momentum
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of expansion of the wave function in the molecular coordinates system; M is the projection of the orbital
angular momentum in the molecular coordinates system; and R, Ξ, φ are the spherical coordinates in
the molecular system.

The coefficient of expansion of the series in Equation (15) can be represented in the form [29]:

Γnlm
LM (R) =

∫ π

0

PA
nl(r)

r
ΘlM(ϑ)ΘLM(Ξ) sin ΞdΞ, (16)

Θlm(β) = sin(β)m ∑l−m
s=0 Tlm

s cos(sβ), (17)

r2 = R2 + R2
M − 2RRMcosϕ12, (18)

cos ϑ = (RcosΞ− RM cos

Algorithms 2018, 11, 1 5 of 14 

The functions ߰ఓ௟బ௡ఊ௅(ݎ)  are the wave functions of the electron shells of atoms entering the 
molecular system as ligands (atoms are not at the origin) expanded in a series of spherical harmonics. 

In this case, the partial harmonics of MO in Equation (11) with the values of the orbital angular 
momentum ݈ > ݈଴ are obtained by solving the system of Equation (2). The terms of the expansion 
Equation (11) with orbital angular momenta ݈ > ݈଴  are obtained on the basis of the linear 
combination ߰ఓ௟బ௡ఊ௅(ݎ) with the contribution coefficients Λఓఈ௡ఊ௅. Such a representation of MO is due to
the fact that the shape of the partial spherical harmonics with large values of the orbital angular 
momentum is determined to within a coefficient by the ligand potential of the molecular system. 

The choice of the value of ݈଴ in Equation (11) is a result of a numerical experiment and depends 
on the nature of the molecular system and the number of partial harmonics involved in the formation 
of the chemical bond of the compound. 

To determine the contribution coefficients Λఓఈ௡ఊ௅ in Equation (11) the partial harmonics are linked 
in using the equation: 

௟ܲబ௡ఊ(ݎ) = ∑ Λఓఈ௡ᇲఊ௅௡ᇲఊ௅ ௟ܲబ௡ᇲఊ௅(ݎ). (13) 

That is, radial part of the ݈଴-th partial harmonic of the ݊ߛ molecular orbital is represented as a 
superposition of radial partial harmonics of ligand functions with weighting coefficients Λఓఈ௡ఊ௅.  

Equation (13) allows compiling a system of algebraic equations for determining the contribution 
coefficients Λఓఈ௡ఊ௅ of ligand functions with ߛ symmetry in the form of:  ∑ ർ ௟ܲబ௝ఊ௅ቚ ௟ܲబ௡ᇲఊ௅඀ Λఓఈ௡ᇲఊ௅ =௡ᇲఊ௅ ൻ ௟ܲబ௝ఊ௅ห ௟ܲబ௡ఊൿ, (14) 

Thus, the determined MO is normalized to unity. 

2.3. The Expansion of the Wave Functions of the Electron Shells of an Atom in a Series of Spherical 
Harmonics 

The procedure of obtaining the ligand functions ߰ఓ௟బ௡ఊ௅(ݎ) used in Section 2.2 is based on the
recalculation of the wave functions of the electron shells of atoms ௡ܲ௟஺  entering the molecular ,(ݎ)
system in a new unified system of coordinates.  

In the transition to a uniform coordinate system of the wave function of an electron shell related 
to a certain atom is represented in the form of an expansion in a series of spherical harmonics [29]:  

௡௟௠஺ߔ ,ݎ) ,ߴ ߮) =෍Γ௅ெ௡௟௠(ܴ) ௅ܻெ(Ξ, ߶)ஶ
௅ୀ଴  (15) 

where ߔ௡௟௠஺ ,ݎ) ,ߴ ߮) is the wave function of ݈݊ electron shell in the atomic system of coordinates; ݎ, ,ߴ ߮ are the spherical coordinates of the atomic system; Γ௅ெ௡௟ఓ(ܴ) is the coefficient of expansion in 
spherical harmonics in the molecular spherical coordinates system; ܮ	  is the orbital angular 
momentum of expansion of the wave function in the molecular coordinates system; ܯ  is the 
projection of the orbital angular momentum in the molecular coordinates system; and ܴ, Ξ, ߶ are the 
spherical coordinates in the molecular system. 

The coefficient of expansion of the series in Equation (15) can be represented in the form [29]: Γ௅ெ௡௟௠(ܴ) = ׬ ௉࢔೗࡭ ௥గ଴(࢘) Θ௟ெ(ߴ)Θ௅ெ(Ξ) sin Ξ ݀Ξ, (16) Θ௟௠(ߚ) = sin(ߚ)௠ ∑ ௦ܶ௟௠ܿ(ߚݏ)ݏ݋௟ି௠௦ୀ଴ , ଶݎ(17) = ܴଶ + ܴெଶ − 2ܴܴெܿ߮ݏ݋ଵଶ, (18) ܿݏ݋ ߴ = (RcosΞ − ܴெ cosΥ) ⁄ݎ ଵଶ߮ݏ݋ܿ (19) , = cos(Ξ) cos(Υ) + sin(Ξ)sin(Υ)cos(߶ − Υ (20) ,(ܨ ܨ   are the origin coordinates of the molecular system in the atomic system, ܶ௦௟௠ are the 
coefficients of the theta-function representation in the trigonometric form.  
)/r, (19)

cosϕ12 = cos(Ξ) cos(
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, F are the origin coordinates of the molecular system in the atomic system, Tlm
s are the

coefficients of the theta-function representation in the trigonometric form.
Integration in Equation (16) is performed on the basis of Equation (17) and also relations in

Equations (18) and (19), which connect the coordinates in different systems. It enables the expansion
of the wave function of the electron shells of atoms with respect to the chosen molecular center.

3. Solution Procedure

3.1. Scheme for Numerical Solution for the System of Equations for MO

The numerical procedure of MO finding is reduced to solving a system of coupled differential
Equation (2) for the radial parts of partial harmonics Pnγ

l (r) of Equation (1).
The Equation (2) in general can be represented in a matrix form:

P
′′
= ΩP + X, (21)

where Ω, X are two-dimensional and one-dimensional matrices respectively, each element of which
is a real function specified in the coordinate grid; P is a one-dimensional matrix of the MO
partial harmonics.

Three-point difference Numerov scheme is applied to solve the equation [30,31]:

An+1Pn+1 − BnPn + An−1Pn−1 = Jn + O
(

h6
)

, (22)

where An = I− h2

12 Ωn; Bn = 2I− 10 h2

12 Ωn, Jn = h2

12 (Xn+1 + 10Xn + Xn−1); I is the identity matrix; and n
is the number of point at the coordinate grid.

The exponential decay of the partial harmonics of MO as r→ 0 ( r→ ∞ ) allows to reduce the
Cauchy problem for a second order differential equation to the boundary-value problem, using the
Thomas algorithm [32] for the solution. This algorithm connects the values of a function at neighboring
points in the following way:

Pn = KnPn+1 + Mn. (23)

Substituting Equation (17) into Equation (16) enables obtaining the following recurrence relations:

Kn = D−1
n An+1; Mn = D−1

n (An+1Mn−1 − Gn); Dn = Bn −An−1Kn−1. (24)

Finding a solution is carried out by independent calculation of coefficients Kn and Mn sweeping
the values in the range of n = 1 . . . Z, «on the left» from the selected crosslinking point Z and
«on the right» by reversing the values n = N . . . Z. Thus, an independent set of coefficient values
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can be obtained «on the left» KL
n , ML

n and «on the right» KR
n , MR

n from the crosslinking point Z of
the solutions.

Boundary conditions are used in order to obtain take-off ratios of recurrence relationships
(Equation (24)). The conditions are imposed on the radial parts of partial harmonics of MO and
are determined by their exponential attenuation if r → 0 ( r → ∞ ). Application of such conditions to
Equation (24) results in matrix equations

To obtain the starting coefficients of the recurrence relations (Equation (24)), the boundary
conditions are applied on the radial parts of the MO partial harmonics, which are due to their
exponential attenuation as r→ 0 (r→ ∞). Applying these conditions to (24) leads to matrix equations
in the form:

KL
2 =

(
B2 −A1KL

2

)
A3 (25)

KR
N−1 =

(
BN−1 −ANKR

N−1

)
AN−2. (26)

The iterative solution of Equations (25) and (26) allow restoring the coefficient values KL
n , ML

n ,
and KR

n , MR
n at all points of the coordinate grid.

The solution of Equation (21) must satisfy the smoothness requirement corresponding to the
equality of the first-order derivatives of a function obtained by sweeping the values “on the left” and
“on the right” at the crosslinking point Z:

(PL
Z)
′
= (PR

Z )
′

(27)

This condition leads to a system of linear inhomogeneous equations with respect to the value of
the partial harmonic at the crosslinking point PZ:

(
[
KL

Z

]−1
− KR

Z+1)PZ = MR
Z+1 +

[
KL

Z

]−1
ML

Z. (28)

The algorithm for implementing the numerical procedure of solving the system of Equation (21)
consists in determining the eigenvalues εnγ and corresponding MO of the γ-type symmetry.

The solution of the homogeneous system of equations obtained from Equation (21) by zeroing
out the nonlocal summand X = 0 is performed at the stage of initialization of the iterative procedure
using the initial approximation (see Section 3.2) for MO. This is, in fact, the solution of the Hartree
equation, which does not take into account the exchange terms. When the numerical procedure
is implemented, the homogeneous Equation (28) is solved, which right-hand side is equal to zero.
Moreover, the existence of non-zero solutions is determined by the criterion:

det‖
[
KL

Z

]−1
− KR

Z+1‖ = 0. (29)

The selection of solutions on the energy scale until reaching the corresponding MO nγ.
For example, the σ symmetry states for diatomic molecules can be selected by the principal quantum
number. In this case, the search for highly excited states of the discrete spectrum involves the
sequential determination of all lower one-electron energies. The implemented procedure for finding
solutions accounts the obtained spectrum of state energies and uses them as “reference points” on
the one-electron energy scale εnγ of MO within the range of [−E, 0] at subsequent iterations of the
computational procedure. This approach ensures time saving for calculations and increases the
efficiency of the algorithm for finding solutions of Equation (21).

The final set of radial parts of the partial harmonics Pnγ
l (r) c l ≤ l0 is found for MO when solving

Equation (21). Following the procedure given in Section 2.2, the partial harmonics with orbital angular
momenta l > l0 are determined by the superposition of ligand functions. The participation coefficients
ΛnγL

µα of the ligand wave functions Ψ
nγL
µl0

(r) are determined by the solution of the system of algebraic
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Equation (14). Here, the functions Ψ
nγL
µl0

(r) are preformed according to the numerical procedure given
in Section 2.3 on the basis of the wave functions of electron shells of atoms, obtained by solving the
Hartree-Fock equations.

Equation (21) has a unique solution for any value of one-electron energy εnγ when accounting
nonlocal terms X. Therefore, the selection of solutions is based on the overlap integral, which is
obtained according to the expression:

〈Φnγ|Φnγ〉 = ∑
l

∫
P2

nγl(r)dr (30)

The criterion for selecting solutions for MO at the intermediate iteration step of the computational
procedure is the correspondence of the overlap integral of the wave function (Equation (30)) to the
value obtained at the first iteration of the matching process.

3.2. Starting Wave Function MO and Stopping Criteria

Initial approximation for the radial parts of MO partial harmonics of molecule electronic
configuration is formed on the basis of the procedure described in Section 2.2. The wave functions of
the electron shells of the atom located in the origin of the molecular coordinate system are used for
the radial parts of MO partial harmonics with l ≤ l0. Ligand functions ψ

nγL
µl0

(r) are calculated for the
formation of MO partial harmonics with l > l0 using the procedure described in Section 2.3.

The calculation is based of preliminary obtained wave functions for the electron shells of neutral
atoms in the Hartree-Fock approximation.

The iterative scheme for calculating the MO includes two basic computational cycles. The cycle of
recalculation of MO wave functions is being performed till the defined accuracy of the found solution
of Φi

nγ on the i-th step is reached in comparison with the i-1-th of the process. Here, an accuracy
estimation of the matching process starting is carried out on each step starting from the second one
according to the formula:

∆eτ =
∑nγ ‖Φi

nγ −Φi−1
nγ ‖

Nnγ
. (31)

The accuracy ∆ετ of determining εnγ is used for recalculating the wave function of MO in the new
potential when solving Equation (28).

3.3. Summary of the Iterative Scheme

A general iterative scheme for implementing a numerical procedure of calculating the excited
and ionized states of molecular systems is represented in Scheme 1.
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The construction of the MO wave functions is performed on the preparatory stage according to the
Section 2.2. In particular, the ligands functions Ψ

nγL
µl0

(r) are formed on the basis of the wave functions
of the electron shells of atoms, expanded into series of spherical harmonics (see Section 2.3). The local
potential Ωnγ

l,l′(r) is calculated from Equation (3) for the orbital angular momenta l ≤ l0, which includes
the potential of crystal field Wnγ

l,l′ (r), and direct Coulomb interaction Vnγ
l,l′ (r) (see Section 2.1).

At the first iteration, a homogeneous system of Equation (21) is solved for every MO with X = 0.
One-electron energies εnγ are searched for in accordance with condition (29) within the interval [−E, 0].
There is a direct correspondence between the solution number and the principal quantum number
of MO with the chosen symmetry type. The found one-electron energy εnγ provides the radial parts
Pnγ

l (r) of MO with the use of Equation (28). Wave functions of MO with higher harmonics l > l0 are
formed via Equation (11) on the basis of the partial harmonics MO nγ with l ≤ l0 (see Section 2.2).

Participation coefficient ΛnγL
µα of ligand function Ψ

nγL
µl0

(r) is determined by the solution of the
system of Equation (14). The MO is normalized to unity for determining Anγµ in Equation (11).
The resulting normalization integrals { 〈Φnγ|Φnγ 〉} are used as selection criteria of the solution on the
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subsequent steps of the iteration scheme. The found single-electron energies {εnγ} allow to determine
intervals on the energy scale for searching the energy values of the new iteration, thereby increasing
the efficiency of the computational scheme.

Hereafter, an iterative procedure is realized aiming to minimize the energy of molecular system.
The criterion of achieving a positive result is a decrease in the deviation of MO wave function calculated
in accordance with Equation (31) below a specified value. The cycle of the numerical procedure on
the i-th iteration involves recalculation of the electronic potentials Vnγ

l,l′ (r) and Xnγ
l (r) using the MO

wave functions
{

Φi−1
nγ

}
obtained on the i-1-st iteration step. The solution of Equation (21) is searched.

On the first step, the value εnγ is set in accordance with the criterion of Equation (29). The next step is
searching the value of εnγ in the energy range εnγ ± ∆ for which the overlap integral 〈Φnγ|Φnγ〉 i of
the given solution Φi

nγ(r) coincides with the normalization integral determined at the first iteration of
the process.

4. Results and Discussions

The program code realizing the above iterative scheme, as well as the results of calculating the
ground and excited states are available at the electronic address [33].

The hydrogen fluoride (HF) molecule was chosen for testing the numerical procedure due to the
following circumstances:

1. A relatively small number of molecule shells allows the exploration of the possibility of the
developed iterative scheme and the procedure for taking into account the higher harmonics in
the SC expansion of MO when they are implemented on the ECM with limited CPU time;

2. The spectrum of free states and the structure of the wave functions have been thoroughly
investigated [34].

In the calculations, the reference system associated with the F atom is chosen. To systemize the
one-electron states, the quantum numbers characteristic for molecules of the point symmetry group
C∞ν are used. The MO calculations for the HF molecule are performed for the equilibrium distance
between the nuclei of hydrogen atoms and fluorine R0 = 1.733 a.u. [35].

Comparative calculations of the energy characteristics (one-electron MO energies and total energy)
of the ground state 1σ22σ23σ21π4 of the HF molecule are given in Table 1.

Table 1. One-electron MO energy and the total energy of the HF molecule (in atomic units).

Type 1σ 2σ 3σ 1π Total Energy

a −26.2923 −1.5990 −0.7674 −0.6464 −100.0577
b −26.2905 −1.5995 −0.7656 −0.6492 −100.0594
c −26.2915 −1.5995 −0.7656 −0.6492 −100.0616

In section (a) of Table 1, the calculation was performed via the MC method of MO LCAO using
the General Atomic and Molecular Electronic Structure System [12]. The calculation results in section
(b) of Table 1 were obtained in this work using the MO expanded into a series (1) and limited l ≤ 8.
They show sufficient accuracy which correlate with the calculation methods. The use of higher
harmonics of the ligand wave functions for an accurate description of MO in the molecular nuclei
region (see Section 2.2) gives an additional contribution to the total energy and regularly changes the
energy level of the 1σ-state of the HF molecule. The changes in the energy quantities observed in
section (c) of Table 1 are primarily due to the contribution of the 1s state of the H atom, which is a
ligand in this case. Construction of MO is determined by the selection of l0 which includes the ligand
functions in the MO structure. Figures 1 and 2 illustrate the procedure of determining l0 with respect
to the calculation (section (c), Table 1). Figure 1 displays SC expansion of MO 2σ of the ground state
of HF molecule (calculation is performed for the SC series (1) with l ≤ 60). Figure 2 displays the
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SC expansion of the wave function of H atom 1s state (the solution of the Hratree-Fock equations),
decomposed in the molecular coordinate system (see Section 2.3).
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Figure 1. Radial parts of partial harmonics of SC expansion of 2σ–MO of the ground HF molecule state.
Calculation of the ground state is performed for the equilibrium distance (R0 = 1.733 a.u. [35]) between
the atom nuclei of H and F: (a) SC expansion of MO into a series (1) c l ≤ 60; and (b) SC expansion of
MO into a series (1) c l ≥ 8.
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Figure 2. Radial parts of partial harmonics of SC series of H atom 1s wave function found via a solution
of Hatree-Fock equations in the molecular axis of reference: (a) SC expansion into series (1) with l ≤ 60;
and (b) SC expansion into series (1) with l ≥ 8.

The example of MO 2σ shows (see Figure 1b) that the form of radial parts of the partial harmonics
of SC expansion of MO starting with l = 8 (l is the partial harmonic denoted in the figure) is in good
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agreement with the form of radial parts of the partial harmonics of SC expansion of the wave function
of H atom 1s state (see Figure 2b). It can be concluded that the influence of the ligand field with
the charge ZL = 1 on radial parts of the partial harmonics of SC expansion of 2σ–MO with orbital
moments l ≥ 8 is decisive. Thus, in accordance with the procedure proposed above (see Section 2.2)
the crosslinking of MO (1) with ligand functions ψ

nγL
µl0

(r) is done starting from l0 = 8.
A significant influence of the higher harmonics of the SC expansion on the energy characteristics

of the molecular system is observed with the growth of the ligand ZL charge. To estimate this effect,
the calculation of the total energy of the electron configuration 1σ22σ23σ21π4 is performed depending
on the charge ZL which varied within the range of ZL = 2 ÷ 5 (instead of case ZL = 1). The results
obtained for the total energies are given in Table 2.

The values of the total energies on the basis of MO with SC expansion limited to l ≤ 4 are given
in column (a) of Table 2. The calculation results accounting the ligand functions with expansion up to
l = 60 are given in the column (b) of Table 2.

Table 2. Total energy of the electron state is 1σ22σ23σ21π4 (in atomic units).

ZL Total Energy (a) Total Energy (b)

2 −101.0902 −101.0951
3 −102.8639 −102.9189
4 −105.1593 −105.4553
5 −107.7773 −108.5403

It is obvious that higher harmonics of the SC expansion of MO begin to significantly affect
the energy characteristics of the molecular system. The calculation results of the MO electron state
1σ22σ23σ21π4 show that this iterative scheme solves the main problem of the SC methods. That is the
description of MO behavior in the area of ligand nuclei.

It is also evident that with increasing the ligand charge, the contribution of the higher harmonics
of MO, taken into account by this SC approach, increases substantially. Thus, the represented iterative
scheme of the SC calculation of MO becomes effective when studying molecules with nonhydrogen
ligands. The results of the research show that taking into account the higher harmonics of the expansion
of the wave functions of the ligands electron shells is a necessary condition in performing calculations
in the SC representation for obtaining accurate energy characteristics of molecular systems.

The possibilities of obtaining the excited states represented by the iterative scheme are considered
on the example of ionization of σ symmetry shells of HF molecule ground state.

Table 3 displays the results of accounting the ligand functions with MO expansion up to l = 60.
Energy characteristics of the electron configurations: 1σ ≡ 1σ12σ23σ21π4; 2σ ≡ 1σ22σ13σ21π4;
3σ ≡ 1σ22σ23σ11π4 are given as the results.

Table 3. One-electron energy MO and the total energy of the ionized states of the HF molecule and (in
atomic units).

Ionized Shell 1σ 2σ 3σ 1π Total Energy

1σ −30.1430 −2.3366 −1.5016 −1.4186 −74.6050
2σ −26.9639 −2.3036 −1.3277 −1.2266 −98.5775
3σ −26.9128 −2.1432 −1.4587 −1.2196 −99.3889

Obtaining the ionized states in the «Z + 1» approximation of MC approach requires a special
charge increase of the chosen core of the molecular system, which corresponds to the creation of
a vacancy. Such an artificial technique is used in connection with the absence of the possibility of
directional ionization of the electron shell. Unified approach to the calculation of any states is in the
proposed iterative scheme. It ensures the possibility of ionization of any electronic shell.
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5. Conclusions

The iterative scheme proposed in the paper is intended for calculating the wave functions of
excited and ionized states of molecular systems. The procedures is based on a numerical solution
of a system of coupled integro-differential equations for the radial parts of MO partial harmonics
that determine the formation of the chemical bond of the many-electron compound and take into
account the higher harmonics of the SC series. The harmonics describe the electron density strongly
connected with the molecular system cores. The realized calculation scheme lacks the drawbacks of the
existing SC calculation methods associated with the slow convergence of the expansion. The problem
of calculating the excited states was overcome. It was connected with the use of “artificial methods”
of creating vacancies in electron shells (approximation «Z + 1»). The proposed computation scheme
enables performing calculations for the excited states with any number of unfilled electron shells.
The calculations carried out for the HF molecule showed good agreement with the results of existing
MC approbated software systems.
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