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Abstract: A graph is a very important structure to describe many applications in the real world.
In many applications, such as dependency graphs and debt graphs, it is an important problem to
find and remove cycles to make these graphs be cycle-free. The common algorithm often leads to an
out-of-memory exception in commodity personal computer, and it cannot leverage the advantage
of multicore computers. This paper introduces a new problem, cycle detection and removal with
vertex priority. It proposes a multithreading iterative algorithm to solve this problem for large-scale
graphs on personal computers. The algorithm includes three main steps: simplification to decrease
the scale of graph, calculation of strongly connected components, and cycle detection and removal
according to a pre-defined priority in parallel. This algorithm avoids the out-of-memory exception by
simplification and iteration, and it leverages the advantage of multicore computers by multithreading
parallelism. Five different versions of the proposed algorithm are compared by experiments, and
the results show that the parallel iterative algorithm outperforms the others, and simplification can
effectively improve the algorithm’s performance.
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1. Introduction

Graphs can describe many applications in the real world, such as social networks, communication
networks, dependency among software packages, and debt networks, and detecting cycles in a graph
is a fundamental algorithmic problem. However, the existing solutions cannot handle large-scale
digraphs using single commodity personal computers (PC), because they often lead to out-of-memory
exceptions. This paper presents a multi-threading parallel and iterative algorithm of detecting and
removing cycles, and this algorithm can take full advantage of multicore PCs. The main contributions
of this paper include:

• It defines a new problem of detecting and removing cycles in a vertex- and arc-weighted digraph
according to vertices’ priority.

• It presents a multi-threading parallel and iterative algorithm to solve the problem. The algorithm
avoids the out-of-memory exception by simplification and iteration, and it leverages the advantage
of multicore computers by multithreading parallelism.

• It performs thorough experiments to show the performance of the proposed algorithm.
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The organization of the rest of paper is as follows. Section 2 presents the related work. Section 3
introduces the problem. Section 4 presents the detail of proposed algorithm and time complexity
analysis. Section 5 illustrates the performance comparison among five different versions of the
proposed algorithms, using randomly generated graphs and real world digraphs. The final section
contains conclusions and discussions.

2. Related Work

Many literatures have focused on the cycle detection of a directed/undirected graph. Hamiltonian
cycle is a special cycle that covers each vertex exactly once. The decision problem of whether a
graph contains Hamiltonian cycle is NP-complete, so [1] presents some conjectures. A non-recursive
algorithm to detect Hamiltonian cycle is presented in [2], and this algorithm is applied to flow-shop
scheduling problem.

Another two important cycles are the shortest and longest cycles of a graph, because they decide
the girth and diameter/circumference of a graph, respectively. An approximate algorithm is given
in [3] to find the shortest cycle in an undirected unweighted graph, whose expected time complexity is
between O(nlogn) and o(n2), where n is the number of vertices of a graph. The algorithm presented
in [4] aims to find the shortest cycle for each vertex in a graph. In a non-Hamiltonian graph, the longest
cycles through some special vertices are discussed in [5–7], where [5] focuses on the longest cycles
through large degree vertices, while [6,7] pay attention to the longest cycles passing all vertices of
degree at least a given threshold.

Besides characterizing or detecting special cycles of a graph, enumerating and counting cycles
is also an important problem. Some explicit formulae for the number of 7-cycles in a simple graph
are obtained in [8]. Recently, distributed algorithms to count or enumerate cycles are presented in [9],
in order to solve this problem more efficiently.

Sometimes a graph is dynamic, it grows by arc insertions. For this kind of graphs, the cycle
detection problem is referred to as incremental cycle detection. Two online algorithms are presented
in [10] to solve this problem, which handle m arc additions for n vertices in O(m

2
3 ) and O(n

5
2 ) time,

respectively. The algorithms presented in [11] are designed for sparse and dense graphs, which take
O(min{m 1

2 , n
2
3 }) and O(n2logn) time, respectively.

Most of the above algorithms are based on DFS (Depth-First Search), which is inherently
sequential [12], and they often cause out-of-memory exception when they are run on commodity
PCs to solve large-scale graphs.

Recently, many parallel and distributed graph-processing algorithms have been proposed.
A message-passing algorithm is presented in [13] to count short cycles in a graph. The distributed cycle
detection algorithm proposed in [14] is based on the bulk synchronous message passing abstraction,
which is suitable for implementation in distribute graph processing systems. The cloud computing
systems breed parallel graph processing platforms, such as Pregel [15], GraphX [16], and GPS [17].
These platforms are based on the BSP (Bulk Synchronous Parallel) model, which depends on costly
distributed computing systems. Therefore, PCs cannot play to these algorithms’ strengths.

The purpose of this paper is to propose an algorithm of detecting and removing cycles of
large-scale digraphs using a single commodity PC.

3. Problem Statements

A digraph or directed graph G consists of a finite set of vertices V = {v1, v2, · · ·}, and a set of
directed arcs E = {〈vi, vj〉

∣∣vi ∈ V, vj ∈ V, i 6= j} that each connects an ordered pair of vertices. Each
arc 〈vi, vj〉 ∈ E is associated with a numerical weight wij. Each vertex vi is also associated with an
integer priority pi, and for any i 6= j, pi 6= pj. We denote the set of arc weights and vertex priorities by
W and P, respectively. Given 〈vi, vj〉 ∈ E, vi is called the tail, and vj is called the head of the arc. For a
vertex vi , the number of head ends adjacent to vi is called its in-degree, and the number of tail ends
adjacent to vi is its out-degree.
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In a digraph, a directed path is a sequence of vertices in which there is an arc pointing from each
vertex in the sequence to its successor in the sequence. A simple directed cycle is a directed path where
the first and last vertices are the same, and there are no repeated arcs or vertices (except the requisite
repetition of the first and last vertices). Let C = {v1, v2, · · · , vk, v1} be a simple directed cycle, we
define its cycle weight wC as

wC = min{wij
∣∣〈vi, vj〉 ∈ C}. (1)

The problem of detecting cycles in such a vertex- and arc-weighted digraph is defined as follows.
Given a digraph G = (V, E, W, P), the vertex

vbeg = argmin
vi∈V

{ pi|pi ∈ P}, (2)

is chosen as the beginning vertex to detect cycle. “argmin” gets the vertex with the minimal weight.
Suppose vcur is the current visiting vertex, the next vertex to visit should be

vnext = argmin
vcur , vi∈E

{ pi|pi ∈ P}. (3)

Once vbeg is visited again, a cycle Cbeg is detected whose first and last vertices are both vbeg. Next,
this cycle’s weight wCbeg is calculated by Equation (1). Finally, Cbeg is removed by subtracting wCbeg

from all arcs of this cycle, so that the arcs of weight wCbeg are deleted from G. Repeat this procedure
until there are no cycles in G. The characteristics of this problem are:

• The cycles are detected according to the vertex priority. The first and last vertices of the cycle
should be the vertexes of minimal priority, and the next vertex to visit from current one should be
the one with minimal priority in all of the direct successors.

• The cycles are removed according to the arc weight. The arcs with cycle weight are deleted to
destroy the cycle.

This problem stems from removing the dependency chain in weighted dependency graph [18] and
debt chain in financial field. Taking debt chain as an example, the debt relationship among enterprises
can be formulated as a weighted digraph, as defined above. In a graph G, (1) each vertex v ∈ V
stands for an enterprise; (2) each arc 〈vi, vj〉 ∈ E stands for a debt relationship between corresponding
enterprises and means vi owes vj; (3) wij associated with 〈vi, vj〉 is the amount of debt of corresponding
enterprises; and, (4) pi of vertex vi represents the importance of the corresponding enterprises, and the
smaller pi has the higher priority. This kind of digraph is called a debt graph for convenience. Figure 1
illustrates an example including 12 enterprises. Debt cycle is a simple directed cycle in a given debt
graph. It is very useful to solve the debt problem, because the enterprises belonging to a debt cycle can
solve their debts without transferring capital.
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4. Cycle Detection and Removal with Vertex Priority

Algorithm 1 shows the sketch of the proposed algorithm, and its details are given next.

Algorithm 1. Detect and Remove Cycles of a Weighted Digraph

Step1: Simplify G.
Step2: Divide G into strongly connected components.
Step3: Detect, output and remove cycles of each strongly connected component.

4.1. Graph Simplification

In Algorithm 1, line 1 simplifies the given graph G by deleting the vertices and arcs that do not
belong to any cycle. This step aims to decrease the scale of the graph, especially when G is sparse.
In fact, many graphs derived from real world are sparse [19]. Table 1 shows seven digraphs taken from
SNAP (Stanford Network Analysis Platform) [20]. We can see that more than 50% of vertices having
zero in- or out-degree. The debt graph is sparser than these graphs, as shown in Section 5.3.

Table 1. The sparse characteristic of Stanford network analysis platform (SNAP) graphs.

Graph
Name p2p-Gnutella04 p2p-Gnutella25 p2p-Gnutella30 p2p-Gnutella31 Email-EuAll Web-NotreDame Wiki-Talk

|V| 10,876 22,687 36,682 62,586 265,214 325,729 2,394,385
|E| 39,994 54,705 88,328 147,892 420,045 1,497,134 5,021,410

ratio 1 54.80% 74.06% 74.12% 74.29% 95.79% 57.65% 94.88%
1 “ratio” is the ratio of vertices of out- or in-degree 0 to |V|.

Proposition 1. Given a digraph G = {V, E, W, P} , a vertex v ∈ V does not belong to any cycle if its out-degree
or in-degree is 0.

According the above proposition, Algorithm 2 shows the simplification process. It first gets the in-
and out-degrees of vertices (lines 2–5). The while loop (lines 7–18) repeats deleting vertices of din

i = 0
or dout

i = 0, and their corresponding arcs. Lines 8~14 find the first vertex vk satisfying Proposition 1.
If such a vertex exists (line 15), it calls Algorithm 3 to delete this vertex. Algorithm 3 uses two for loops
to delete the arcs associated with u (lines 2–5 and 6–9) and u itself (line 10).

Algorithm 2. Simplify a Weighted Digraph

1. Function SIMPLIFY(G)
2. for all vi ∈ V do
3. din

i ← in degree of vi
4. dout

i ← out degree of vi
5. end for
6. k← 1
7. while k > 0 do
8. k← 0
9. for i← 1 to |V| do
10. if vi ∈ V ∧ (din

i = 0 ∨ dout
i = 0) then

11. k← i
12. break
13. end if
14. end for
15. if k > 0then
16. DELETE(G, vk)
17. end if
18. end while
19. return G
20. end function
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Algorithm 3. Delete a Vertex from a Weighted Digraph

1. Function DELETE(G, u)
2. for all vi, u ∈ E do
3. E← E− {vi, u}
4. dout

i ← dout
i − 1

5. end for
6. for all 〈u, vj〉 ∈ E do
7. E← E− {〈u, vj〉}
8. din

j ← din
j − 1

9. end for
10. V← V− {u}
11. end function

4.2. Cycle Detection

Proposition 2. Given a digraph G = {V, E, W, P}, if {v1, v2, · · · , vk, v1} is a directed cycle, then these
vertices belong to the same strongly connected components of G.

This is the basis of step 2 of Algorithm 1. There are several efficient algorithms to calculate strongly
connected components (SCCs) of a digraph, so we do not discuss the detail of step 2 of Algorithm 1.
After SCCs are obtained, the cycles can be detected in each SCC. The cycle calculation is the core of
Algorithm 1.

Because the problem needs visit the vertices according their priorities, cycle should be detected
using DFS. For large-scale graphs, the recursive DFS will cause out-of-memory exception, so we need
an iterative version. The following data structures are adopted.

Stack S is used to store the visited sequence of vertices. Its interfaces include:

• PUSH(S, v) to push v into S.
• POP(S) to pop an element of S.
• PEEK(S) to return the top element of S without popping out it.
• SEARCH(S, v) to return the index of v in S, and it returns −1 if v is not in S.
• CLEAR(S) to clear the S to empty.
• SUBLIST(S, m, n) to return the sub-sequence of S from index m to n (m ≤ n).
• ISEMPTY(S) to return false if S is not empty, and return true if S is empty.

Key-value pair table T is applied to record each neighbor vertex of a visited vertex is visited or
not. As shown in Figure 2, each key (vi, i = 1, 2, · · · , n) is a vertex that is unique in the whole table.
Each vi has a list of values, and each value is either 0 or 1 representing the corresponding neighboring
vertex of vi is unvisited or not. It has the following interfaces:

• CLEAR(T, v) to reset all values of key v to 0.
• SUM(T, v) to return the sum of values of key v. The sum represents the number of neighboring

vertices have been visited until now.
• GETFIRST(T, v) to return the first unvisited neighboring vertex of v.
• SET(T, v, u) to set the value of neighboring vertex u of v to 1.

Minimum heap H is applied to store vertices based on their priorities, due to the high-efficiency
of sorting and deleting members in heap. It only has one function, GETFIRST(H), to get the vertex of
the highest priority.

Algorithm 4 gives the cycle detection algorithm. It is a multi-threading parallel algorithm. Line 2
forks threads, and all of the threads run in parallel (line 4). Each thread gets an SCC (line 5), and calls
FUN to detect and remove cycles (line 6).
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The set of vertices VSCC is stored in a minimum heap H. The outer while loop (lines 12~40) detects
cycles starting from each vertex of VSCC. Lines 13~17 initialize variables. For a given vertex, u, the
inner while loop (lines 18~36) detects all of the cycles including u. Let v be the top element of S. If all
its neighbor vertices are visited (line 20), pop it out and clear the status of all its neighbor vertices.
Otherwise, get the first unvisited neighbor vertex r of v and visit it. In further, if r is not in S (line 27),
r is pushed into S. If r is in S and r = u (line 29), than the sub-list of S from r to the top element is a
cycle. If u cannot find any cycle, delete it from graph (line 38).

Algorithm 4. Detect Cycles of a Weighted Directed Graph

1. Function DETECTCYCLE(G)
2. Fork K threads
3. SC← Φ
4. for each thread do in parallel
5. GSCC ← the next SCC to detect and remove cycle
6. SC← SC ∪ FUN(GSCC)
7. end for
8. return SC
9. end function
10. Function FUN(GSCC) //GSCC = {VSCC, ESCC, WSCC, PSCC} is a SCC of G, VSCC is in heap H
11. SSC← Φ
12. while VSCC 6= Φ do
13. u← GETFIRST(H)
14. CLEAR(S)
15. CLEAR(T, u)
16. PUSH(S, u)
17. flag← false
18. while (flag=false and ISEMPTY(S)=false)
19. v←PEEK(S)
20. if |SUM(T, v)|= dout

v then
21. POP(S)
22. CLEAR(T, v)
23. else
24. r ←GETFIRST(T, v)
25. SET(T, v, r)
26. k=SEARCH(S, r)
27. if k = −1 then
28. PUSH(S, r)
29. else if r = u then
30. C← SUBLIST(S, k, |S|)// C is a cycle
31. SSC← SSC∪ {C}
32. REMOVECYCLE(GSCC, C)
33. flag← true
34. end if
35. end if
36. end while
37. if flag=false then
38. DELETE(GSCC, u)
39. end if
40. end while
41. return SSC
42. end function
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When a cycle is detected, it should be removed at once using REMOVECYCLE (line 32) shown
in Algorithm 5. The first for loop (lines 3–7) finds the cycle weight. The second for loop (lines 8–20)
decreases all of the arc weights of C by wC. If the weight of an arc becomes 0, delete this arc (line 11).
In further, if the in-degree or out-degree of a vertex becomes 0, delete this vertex (lines 13 and 16).

Algorithm 5. Remove a Cycle

1. Function REMOVECYCLE(GSCC, C)//GSCC = {VSCC, ESCC, WSCC, PSCC}, C = {v1, v2, · · · , vk}
2. wC ← wk,1
3. for i← 1 to k− 1 do
4. if wi,i+1 < wC then
5. wC ← wi,i+1
6. end if
7. end for
8. for i← 1 to k do
9. j← 1 + (i mod k)
10. wi,j ← wi,j − wC
11. if wi,j = 0 then
12. ESCC ← ESCC − {vi, vj}
13. if dout

i = 0 then
14. DELETE(GSCC, vi)
15. end if
16. if din

j = 0 then
17. DELETE(GSCC, vj)
18. end if
19. end if
20. end for
21. end function

Proposition 3. Given a strongly connected component GSCC = {VSCC, ESCC, WSCC, PSCC}, Algorithm 4 can
terminate with VSCC = Φ.

Proof. Let u be the vertex with the highest priority in SCC GSCC, i.e., pu is the minimal. From u, DFS is
used to visit this SCC. Let v be the current visiting vertex.

Case 1. v has no outgoing arc or all its neighbor vertices are visited in previous steps. In this case,
|Sum(T, v)| = dout

v , and v should be popped out from S.
Case 1-1. If v = u, S becomes empty, so the inner while (line 18) exits and flag=false. This result

means no cycle can be detected from u, so u is deleted (line 38).
Case 1-2. If v 6= u, the inner while (line 18) goes on checking the top element of S.
Case 2. v has at least one unvisited outgoing arc. In this case, we select one unvisited neighbor

vertex r to continue searching.
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Case 2-1. If r = u, a cycle C is detected (line 29). This cycle is removed by Algorithm 5. Because
wC equals to at least one arc's weight, Algorithm 5 deletes at least one arc. Finally, flag=true, and the
inner while loop exits.

Case 2-2. If r is not visited, r is pushed into S and while loop continues.
Case 2-3. If r is in stack but r 6= u, it continues finding the next vertex to visit.
Note that Case 1-2, Case 2-2 and Case 2-3 will fall into Case 1-1 or Case 2-1 finally, so each iteration

of outer while loop deletes an arc or vertex at least. Therefore, VSCC = Φ when Algorithm 4 finishes.

Remark 1. Algorithm 4 cannot detect all cycles of a given SCC, because a cycle may be broken when another
one is removed.

4.3. Time Complexity Analysis

Let di, do be, respectively, the average in-degree and out-degree of vertices.
In Algorithm 2, the for consumes O(|V|+ |E|) to compute the in- and out-degree of all vertices.

When no vertex can be deleted, the while only needs O(|V|) to scan all vertices. When only one vertex
can be deleted in each iteration, it consumes O(|V|(di + do)).

Algorithm 3 is very simple, whose time complexity is O(di + do).
Let l be the length of cycle as the input of Algorithm 5. The first for consumes O(l). If only one arc

can be deleted, the second for consumes O(l). In the worst case, l − 1 arcs of this cycle are all deleted,
then the second for consumes O(l(di + do)).

For function FUN(GSCC) of Algorithm 4, in the worst case, each iteration of the inner while detects
a cycle, and each cycle only deletes one arc using Algorithm 5, so this function calls (

∣∣ESCC
∣∣− 1) times

Algorithm 5. Obviously, the longest cycle is of length
∣∣ESCC

∣∣, and the shortest one is of length 2, so the
average length of cycles is

1
|ESCC| − 1

|ESCC|

∑
i=2

i =

∣∣ESCC
∣∣+ 2

2
. (4)

If G has N SCCs, each thread deals with N
K SCCs on average. Therefore, the worst time complexity

is O(N
K ×
|ESCC|+2

2 × (di + do)).
The time complexity of Algorithm 1 is the sum of Algorithms 2–4. In the worst case, the digraph

has only one SCC, so its time complexity is O(|E|(di + do)).

4.4. An Example

Taking Figure 1 as an example, vertex 9 is deleted in first for its out-degree is 0, and its adjacent
arcs are deleted too. Vertices 12, 11, and 8 are deleted in succession.

After simplification, the remaining vertices are all in one SCC. Vertex 2 becomes the first one
to find cycle due its highest priority. Starting from vertex 2, vertices 3, 4, 5 are visited successively.
Between two adjacent vertices of 5, 6 is chosen as the next vertex due to its higher priority. After
visiting 7, 10 and 5, a cycle (5, 6, 7, 10) is detected. Since it does not contain 2, so the algorithm
backtracks and visits 1, and then visits 2 to detect a cycle {1, 2, 3, 4, 5}. This cycle’s weight wC = 9988.
After calling Algorithm 3, the arc 〈3, 4〉 is deleted. Repeat the above process, cycles (5, 6, 7, 10) and
(1, 4, 5) are detected and removed, and then the graph is cycle-free. In one word, Algorithm 4 can find
3 cycles in Figure 1.

5. Experiments and Analysis

The experiments are performed on a PC with Inter Core i7-5500U @ 2.40GHz CPU (dual-core),
6GB memory, Windows 7 operating system. The programs are coded with Java in Eclipse, and we set
the upper-bound stack size to 4GB. The following versions of algorithm are compared:
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• Recursion without simplification (RWOS). It detects cycle recursively without simplification. It is
the popular algorithm used by many literatures.

• Recursion with simplification (RWS). It detects cycle recursively after simplification.
• Iteration without simplification (IWOS). It detects cycle iteratively without simplification.
• Iteration with simplification (IWS). It detects cycle iteratively after simplification.
• Multi-thread parallel IWS (MPIWS). It detects cycle in parallel with IWS using multi-threads.

In order to compare their performance, we define R = TA
TB

as the ratio of execution time between
algorithm A (TA) and B (TB). Obviously, R < 1 means that algorithm A is better than B. Considering
the algorithms to be compared, we define

R1 =
TIWOS
TRWOS

; R2 =
TIWS
TRWS

; R3 =
TRWS

TRWOS
; R4 =

TIWS
TIWOS

; R5 =
TMPIWS

TIWS
. (5)

5.1. Experiments with Randomly Generated Digraphs

First, we generate 100 digraphs randomly to analyze the performance of the above
algorithms. Each kind of digraph has different number of vertices and arcs. These digraphs have
1000× k (k = 1, 2, · · · , 10) vertices, and the average out degree of vertices is 1 to 10 in step of 1.
For each kind of digraph, we generate 10 different digraphs, and each algorithm runs 10 times for each
digraph. The results are average over these 10 runs.

As shown in Figure 3, the iterative algorithm is significantly better than recursive algorithm
because R1 < 1 and R2 < 1, and R1 and R2 decrease while the number of vertices increases. R1 and
R2 are almost the same when |V| is the same. When |V| = 1000, R1 = 0.657, and R2 = 0.656.
When |V| = 10, 000, R1 = R2 = 0.29. Figure 3 also shows that simplification cannot reduce execution
time effectively. For a different number of vertices, R3 ∈ [0.975, 0.997], and R4 ∈ [0.986, 0.996].
MPIWS outperforms IWS in further due to R5 ∈ [0.378, 0.558].
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Figure 3. Impacts of number of vertices on execution time of each algorithm.

Figure 4 shows that the iterative algorithm outperforms the recursive version when the average
degree of vertices is the same, and R1 and R2 decrease while the average out-degree of vertices
increases. When out-degree is 1, R1 = 0.881, R2 = 0.981. When out-degree is 10, R1 = 0.307,
R2 = 0.285. MPIWS also outperforms IWS in this figure, and R5 ∈ [0.323, 0.505].
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Figure 4 shows that simplification has much effect on the performance of these algorithms.
Figure 5 shows the numeric results of R3 and R4, R3 and R4 increase rapidly when out-degree increases
from 1 to 3, but they change a little when out-degree is larger than 3. Specially, R3 and R4 equal to or
are greater than 1 when the average degree is 10, which means that the simplification has no effect on
the algorithm’s efficiency.
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Figure 5. R3 and R4 under different out-degree.

In fact, when the average degree is relatively small, a large portion of vertices and arcs will be
deleted by Algorithm 2, as shown in Figure 6. When the average degree is 1, the residual vertices and
arcs are only about 0.7% of original graph. When the degree is 2, this ratio increases to 63% rapidly.
Only less than 10% of vertices and arcs can be deleted when the average degree is larger than 3.
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5.2. Experiments with SNAP Datasets

RWS, IWS, and MPIWS are used to detect and remove cycles of seven digraphs from SNAP
datasets, and Table 2 shows the results. RWS cannot complete correctly for the last five graphs. The
stack of RWS reaches 4GB before RWS can solve the problem, so it leads to out-of-memory exception in
Java. IWS and MPIWS can solve the problem correctly, but MPIWS outperforms IWS because R5 < 1.

Table 2. Performance Analysis of Algorithms (time unit: ms. ‘-‘ means it has no value).

Graph Name p2p-Gnutella04 p2p-Gnutella25 p2p-Gnutella30 p2p-Gnutella31 email-EuAll Web-NotreDame Wiki-Talk
TRWS 355.5179 615.3466 - - - - -
TIWS 315.4235 592.1235 1804.2942 2181.8719 4788.6087 6075.5061 7560.0935

TMPIWS 147.0574 342.7287 891.0342 1238.7748 2798.9455 3680.5876 4907.7557
R5 0.4662 0.5788 0.4938 0.5678 0.5845 0.6058 0.6492

5.3. Experiments with Real Dept Graphs

In order to analyze the performance in real application, we utilize them for a real debt graph.
The debt data comes from Qingdao YouRong Development Co., Ltd., in Shandong Province, China.
This graph has 7692 vertices and 8737 arcs, so the average out-degree of each vertex is about 1.14. After
simplification, the graph only has 184 vertices and 345 arcs, namely only 2.39% vertices and 3.95% arcs
are saved after simplification. The simplified graph is shown in Figure 7. This figure is drawn by Pajek.
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Figure 8 presents the execution times of RWOS, RWS, IWOS, IWS, and MPIWS to solve the
real debt graph. We can see that R1 = 0.467, R2 = 0.456, R3 = 0.663, R4 = 0.647, R5 = 0.452,
which shows simplification, iteration, and parallelism improves the performance when compared with
traditional recursive algorithms without simplification.
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5.4. Performance Comparisons on Different Computers

We compare the speedups of IWS and MPIWS on the follow CPUs: Intel Core i7-7700 (quad-cores),
Intel Core i7-5820K (six-cores), and the results are shown in Figure 9. The main memory is still 6GB.
Since RWS still cannot solve all graphs, we only compare IWS and MPIWS. In Figure 9, IWS-2,
IWS-4, and IWS-6 are the execution time of IWS on i7-5500U, i7-7700, and i7-5820K, respectively.
MPIWS-2, MPIWS-4, and MPIWS-6 are the execution time of MPIWS on i7-5500U, i7-7700, and
i7-5820K, respectively. The “debt-graph” is the graph used in Section 5.3.
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Figure 9 shows that the increasement of cores has little influence on IWS. However, MPIWS
changes a lot using different CPU. TMPIWS using i7-7700 is about 59.1~66.3% of TMPIWS using i7-5500U,
and TMPIWS using i7-5820K is about 41.1~67.4% of TMPIWS using i7-7700. This figure also shows that
R5 decreases with an increase of cores. Using i7-5500U, i7-7700, and i7-5820K, the values of R5 are,
respectively, R5 ∈ [0.4516, 0.6492], R5 ∈ [0.2705, 0.3885], and R5 ∈ [0.1208, 0.2685].
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6. Conclusion and Discussion

Many real-world scenarios and applications can be modeled as a graph, and many problems
need to detect cycles. Derived from cycle detection and removal problem in debt graph, this paper
defines a new problem that detects cycle according to the vertex priority, and removes cycles according
to arc weight. A multi-threading parallel and iterative algorithm is proposed to solve this problem.
Iteration is applied to replace recursion and to avoid out-of-memory exception, and multi-thread is
applied to improve the efficiency. The experiments exhibit that the iterative algorithm can be run on a
single commodity PC to solve the large-scale graph, and parallel algorithm outperforms sequential
algorithm obviously. In further, the proposed algorithm uses simplification to reduce the scale of graph.
The experiments show that the execution efficiency is improved significantly by simplification when
there are many vertices having 0 in- or out-degree.

Generally, iteration outperforms recursion while solving a same problem, but simplification is
only applicable to sparse graph. If the graph is not sparse, line 2 of Algorithm 1 can be deleted.
Moreover, commodity PCs cannot solve the problem, even use of MPIWS in case of the graph is too
large, so parallel algorithms depending on computer cluster must be applied, such as the algorithms
proposed in [14,21,22].
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