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Abstract: Many approaches that model specific intelligent behaviors perform excellently in solving
complex optimization problems. Game theory is widely recognized as an important tool in many
fields. This paper introduces a game theory-inspired evolutionary algorithm for global optimization
(GameEA). A formulation to estimate payoff expectations is provided, which is a mechanism
to make a player become a rational decision-maker. GameEA has one population (i.e., set of
players) and generates new offspring only through an imitation operator and a belief-learning
operator. An imitation operator adopts learning strategies and actions from other players to improve
its competitiveness and applies these strategies to future games where one player updates its
chromosome by strategically copying segments of gene sequences from a competitor. Belief learning
refers to models in which a player adjusts his/her strategies, behavior or chromosomes by analyzing
the current history information to improve solution quality. Experimental results on various classes
of problems show that GameEA outperforms the other four algorithms on stability, robustness,
and accuracy.

Keywords: game theory; game evolutionary algorithms (GameEA); genetic algorithm; imitation;
adaptive learning; optimization problems

1. Introduction

Several approaches have been proposed to model the specific intelligent behavior, such as the
ant colony algorithm [1] based on the behavior of ants searching for food; the firefly algorithm,
inspired by the flashing behavior of fireflies [2]; the fish swarm algorithm, inspired by the collective
movement of the fish and their various social behaviors [3,4]; artificial bee colony [5], and its variants [6];
cuckoo search [7]; and artificial immune system [8], etc. Some other kinds of algorithms, like neural
computation [9] or brainstorming algorithms [10], are enlightened from the advanced activities
of human brain, which focus on the intelligence of cell behaviors. Obviously, those studies are
concentrated on the simulated biologic behavior rule or biological mechanism.

Game theory, which is a theory for the science of logical decision-making in humans and
computers, is applied to an extensive range of behavioral relations [11]. A game typically involves
several players, strategies or actions, orders, and payoffs, which are similar to the individuals,
genetic operators (selection, crossover and mutation), and fitness involved in evolutionary algorithms.
Players usually select a strategy based on the expected payoffs. Otherwise, they apply learning
methods, such as reinforcement learning [12], belief learning [13], imitation [14], directional
learning [15,16], and rule learning [17], to guarantee gains. A player makes a decision based on
his/her perception of the actions of other players. Evolution through natural selection is typically
attributed to improvement and progress, and game-theoretic arguments are more appropriate than
optimization algorithms in studying frequency-dependent selection [18]. Replicator and adaptive
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dynamics describe short- and long-term evolution in the phenotype space and have been applied
in a variety of fields ranging from animal behavior and ecology to speciation, macroevolution,
and human language. Evolutionary game theory is an essential component of a mathematical and
computational approach to biology. In addition to focus on agent-based automated negotiation
research, there are studies [19,20] on searching the strategies through co-evolutionary learning using
EAs and game-theoretic analysis. Additionally, recent research [21] suggests that predictive adaptive
responses can lead to differential development among initially-similar individuals and increase
evolutionary fitness, which is an adaptive change in long-term behavior or development because
it is triggered by environmental exposure. The use of a learning strategy can help an entity win
against the top entries from the Othello League without explicitly applying human knowledge [22].
Aimed at obtaining an optimization approach embodied the mechanism of behavior game fully, a game
evolutionary model used to calculate the payoffs expectation was established [23]. Game mechanisms
can be used to devolve a new intelligent algorithm. Thus, this work investigates a game theory-inspired
evolutionary algorithm for global optimization (GameEA), which is an optimization approach based
on behavioral expectation.

The contributions of this study are summarized as follows.

• A novel game evolutionary algorithm (GameEA) is introduced which is a framework to simulate
human game behavior. GameEA includes imitation and belief learning strategies and a payoff
expectation mechanism. Learning strategies are used to improve competitiveness of the players,
while the payoff expectation formulation is employed to estimate and master the information of
the players.

• We compared GameEA with the standard genetic algorithm (StGA) [24], island-model genetic
algorithms (IMGA) [25], finding multimodal solutions using restricted tournament selection
(RTS) [26], dual-population genetic algorithm (DPGA) [27], and GameEA outperforms the
compared four algorithms in terms of stability and accuracy.

The remainder of this paper is organized as follows: Section 2 presents some related works.
Section 3 is devoted to the description of the fundamentals of our proposed algorithm and details the
proposed algorithm’s procedures. Section 4 presents the comprehensive experiments and analysis.
Finally, Section 5 concludes this paper and threads some future research issues.

2. Related Works

Evolutionary game theory [28] refers to the strategic interactions among large populations of
agents who base their decisions on simple and myopic rules to determine broad classes of decision
procedures. These procedures provide plausible descriptions for selfish behavior and include appealing
forms of aggregate behavior.

Game-theoretic differential evolution (GTDE) [29] was developed from differential evolution (DE)
by adopting cooperative and defective strategies. The poor strategy was used to reduce the influence
of a child vector on the principle parent at each generation and to modify relations to increase the
mutation degree for the child vector. Cooperative strategies are adopted to increase or decrease the
mutation factor of a child vector. GTDE was conducted in the framework of DE with the strategies and
two computational times of DE.

A particle swarm optimizer based on evolutionary game (EGPSO) [30] uses replicator dynamics
to model the behavior of particles to players who aim to achieve maximum utility. The author
claims that EGPSO can overcome premature convergence and has an excellent convergence
property unlike traditional particle swarm optimization with limited experiments. An evolutionary
algorithm based on Nash dominance for equilibrium problems with equilibrium constraints [31]
was developed. However, its largest labels are Nash dominance and the creation of a child vector
via DE. The game-theoretic approach for designing evolutionary programming is a strategy that
uses a combination of Gaussian and Cauchy mutations [32]. Although the framework of the
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algorithm is similar to popular evolutionary programming, its mutation operation is similar to game
strategy. With the ever-increasing complexity of design engineering problems, game strategies have
been proposed to save CPU usage and increase model quality [33,34], in which game strategies
are hybridized and coupled with multi-objective evolutionary algorithms to improve the quality
of solutions.

Evolutionary algorithms based on game theory and cellular automata with coalitions (EACO) [35]
was implemented in an adaptive technique based on cellular automata, in which the game theory
and coalitions are employed to manage dynamic neighborhoods. Although EACO outperforms
the compared cellular genetic algorithm in most of the cases, it is worse for some benchmarks of
combinatorial optimization problems.

Recently, David et al. [36] reviewed game theory-based EA techniques and the use of its application
to solving game theory issues and the problems of computational engineering. Here, its extended
application also introduced. Otherwise, they compared panmictic EAs and Nash EAs, and their
experiments showed the preponderance of the Nash EAs approach.

Game theory has also been adopted to solve complex problems. A game-theoretic framework was
proposed to investigate network dynamics under different system parameter settings and perturbations
regarding spectrum trading with multiple licensed users selling spectrum opportunities to multiple
unlicensed users [37]. This framework was designed to model interactions among multiple primary
and secondary users. Evolutionary game theory is used to model the evolution and dynamic behavior
of secondary users, and a non-cooperative game has been formulated to model competition among
primary users. An evolutionary mechanism is designed by introducing a Nash equilibrium [38] based
on a practically approximated solution for the quality of a service-constrained resource allocation
problem. Nash equilibrium always exists if the resource allocation game has feasible solutions.
The steps to develop an evolutionary mechanism are as follows: Concentrate on the optimum wireless
network, i.e., the evolutionary game framework, to enable an arbitrary number of mobiles involved in
a local interaction to be extended towards the evolution of dynamics and equilibrium [39,40]. Trying to
explain the evolution of structured meaning-signal mappings why the evolutionary dynamics are
trapped in a local maxima that do not reflect the structure of the meaning and signal spaces, a simple
game theoretical model is used, which can show analytically that when individuals adopting the
same communication code meet more frequently than individuals using different codes (a result of
the spatial organization of the population) then advantageous linguistic innovations can spread and
take over the population [41]. The game theoretic trust model [42] for online distributed evolution
of cooperation adapts effectively to environmental changes, but relies on a bacteria-like algorithm
to allow nodes to quickly learn appropriate cooperation behavior. A game-theoretic approach to
partial clique enumeration [43] announced its effectiveness, which can avoid extracting the same clique
multiple times by casting the problem into a game-theoretic framework. Recently, a constant model
hawk-dove game [44] is designed to ensure prioritizing the local data processing units in wireless body
area networks during medical emergency situations. Furthermore, game theory has raised attention in
many other fields like data mining [45] and knowledge discovery [46].

3. Proposed Algorithm: GameEA

3.1. Fundamentals of GameEA

Game theory states that players make a decision based on obtained information and expert
opinion to achieve optimal payoffs. Under non-cooperative gaming, John Nash verified that one
player could gain worse payoffs unless the best strategy was adopted and if the other participants
did not change their decisions. A rational player will obtain consistent predictions by analyzing
information. A repeated game is a massive game composed of a number of repetitions of several stage
games. This idea implies that one person will consider the influence of his/her current action on the
later actions of other players. Every strategy with a payoff greater than the minimum payoff can be
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a Nash equilibrium, which is a large set of strategies. Payoff is the evaluative criterion when players
choose a certain strategy and the payoff of the repeated game is distinguished from the unique game.
Each stage of the repeated game obtains a payoff. When a repeated game is assigned to each game
turn, it is considered a single game. Thus, the payoffs of a repeated game are related to the strategies
used and current total payoffs.

For base game G (a static or dynamic game), T is the number of repeating games. The game
results can be observed before starting a new G. This event called a T-repeated game of G, which is
marked as G(T). A presupposition typically assumes that players act rationally and make decisions
intelligently. However, human behavior frequently deviates from absolute rationality and intelligence,
and the concept of learning is integrated into game theory.

Rational and intelligent players can gain insight into the optimal strategies by obtaining and
analyzing information to earn the highest payoffs. Furthermore, the final payoffs of all players
are related to stage gains in a repeated game. Players can scrutinize historical stage information,
and participants can choose an appropriate strategy, which can be different equilibrium strategies for
long-term interests. Learning is an important task to achieve a competitive edge when a player is not
rational and intelligent. Thus, a new computational intelligent algorithm, which is based on game
theory, is proposed.

In extensive form, repeated games can be presented as a game with complete but imperfect
information using the Harsanyi Transformation [47]. This transformation introduces the notion of
nature’s choice to the game. Hence, when a challenger competes with opponents, all candidates are
considered part of nature and the challenger is chosen by nature. The challenger does not know what
part of nature is moved. The probability distribution under various options and winner payoffs are
known to every player. The action or strategy of a player is traditionally the most important factor,
but some differences may be observed:

• Stable payoffs are achieved by a player after winning against an opponent and another challenger.
• If a player accepts a game, then he/she can learn something from the opponent whether he/she

losses or wins, which indirectly influences future competition.
• If a player gives up in a competition, then he/she can improve by self-training.

Let w1 and w2 indicate the payoffs from fighting with nature’s choice and the gains from
self-training, respectively. Nature has a probability of p to choose a weaker rival and provides a stronger
opponent with a probability of 1 − p. Nature’s choice with a probability of p, which is characterized
as weaker, exhibits different performances for various challengers even for homogenous challengers
in different stages. Thus, payoffs w1 and w2 are undetermined. The participant chosen by nature
can achieve gains, which is distinct from the traditional Harsanyi Transformation. Nature’s choice is
a virtual player who does not benefit from the game in the traditional Harsanyi Transformation.

When the challenger is not sure about competitiveness of a competitor, mathematical expectation
is used to estimate the payoff for a risk preference player. If a challenger decides to fight with
nature’s choice, then its expectation payoffs can be presented as (1 − p) × w1 + p × (w1 + 1).
Otherwise, if the challenger gives up in the competition, then its expectation payoffs can be calculated
using (1 − p) × w2 + p × w2. Thus, total expectation payoff E is calculated using Equation (1).
Let w = w2 − w1 be substituted into Equation (1). Hence, we can obtain Equation (2):

E = (1− p)w1 + p(w1 + 1)− (1− p)w2 − pw2 = p(1 + w1 − w2)− (1− p)(w2 − w1) (1)

E = p(1− w)− (1− p)w (2)

We adopt Equation (2) as the criterion for one challenger. Thus, if E ≤ 0, then the challenger gives
up in the competition. Otherwise, if E > 0, then the challenger has to compete with a randomly-selected
sample (nature’s choice).
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Additionally, in traditional game theory, discussions on achieving equilibrium are avoided.
Equilibrium reasoning assumes that participants are rational or can approximate equilibrium by
learning [48]. Considering that a perfectly rational player exists only in an ideal state, learning is vital
for a player in the wrestling model. In our research, we design learning strategies for the wrestling
model. This model includes imitation and belief learning. Imitation involves learning strategies and
actions from other players to improve competitiveness and applying these strategies to the next game.
One player updates its chromosome by copying segments of gene sequences from opponents, which are
characterized with positive feedback. In the context of learning in games, belief learning refers to
models in which players are engaged in a repeated game, and each player adjusts his/her strategies,
behavior or chromosomes by analyzing current history information to consider improvements in
payoffs and competitiveness against opponent behavior for the next period.

3.2. Framework of Proposed Algorithm

Some symbols are defined in Table 1. Algorithm 1 presents the general framework of GameEA.
The initialization procedure initially generates N initial players and initializes the active payoff of
the game and the passive payoff of the match for each player. Within the main loop, in case the
termination condition is not met, each player Ii selects an opponent Ij as his/her challenger, and
the challenger makes a decision by carefully checking the selected player. At the beginning of the
game evolution, considering that the players are very weak, namely Ii

v = 0, we let the player perform
the imitation operation with P1 to produce a new individual (shown in step 7). Evolving ahead,
the challenger Ii makes a decision by carefully checking the selected player Ij, then the imitation or the
belief learning procedure is employed for offspring generation. If player Ij is more competitiveness
then player Ii, player Ii decides to imitate some genes from player Ij by applying the imitation operator.
Otherwise, player Ii insists that it will become more competitiveness by applying the belief learning
operator. GameEA has only one population (set of players) and generates new offspring through
the imitation operator between the challenger and the opponent and the belief learning operator via
self-training strategies. In GameEA, the objective values are not used to calculate the dominance
among the players, and the total expectation payoffs based on the history information are employed to
facilitate the player becoming a rational decision-maker. The implementation details of each component
in GameEA are described in the succeeding paragraphs.

Algorithm 1. GameEA.

Begin
1. t: = 1; // iteration number
2. Initialize players set I, Ii

a:= 0, and Ii
p:= 0 (|It| = N, 0 < I < N); // Initialize players population for iteration

3. Evaluate f (I); // for each Ii of I, evaluate Ii
obj;

4. while t > Tmax do
5. Select 2 different competitors Ii and Ij from I;
6. Refresh the payoff of Ii and Ij: Ii

v:= Ii
a + Ii

p, Ij
v:= Ij

a + Ij
p; // the following steps are responsible to

reproduce a new player Ii
7. if Ii

v == 0 && random() < P1 then Perform imitation operator : Ii = imitation(Ii, Ij);
8. else
9. Calculate the expectation payoffs E(Ii) of Ii using Equation (3);
10. if E(Ii) > 0 then Perform imitation operator: Ii = imitation(Ii, Ij);
11. else if random() < P2 then Perform belief learning operator: Ii = beliefLearning(Ii);
12. t: = t + 1;
14. end while
end
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Table 1. Definition of symbols.

Symbol Description Symbol Description

Tmax Maximum of game iteration number N Size of players/population
W1 Payoffs weight W2 Losses weight
P1 Imitation probability P2 Learning probability
P3 speculative probability n Dimension of problem
T tth game generation Ha Total number of speculation

Hs Total number of successful speculation Ii ith player/individual
Ii

a Active payoff of game of Ii Ii
p Passive payoff of game of Ii

Ii
obj objectives of Ii Ii

v Total payoffs of Ii

3.3. Initialization Players Population

The initialization procedure of GameEA includes three aspects: (1) the decision space and the
objective function; (2) the initialization of set of players I; and (3) the assignment of the passive and
active payoffs of each player to zero. For the optimization problems, the set of players I should
be randomly sampled from the decision space Rn via a uniform distribution using a real-value
representation. The objective value of each player is calculated using the objective function.

3.4. Imitation Operator

According to Harsanyi Transformation, nature should make a choice before applying the imitation
procedure, which relates to line 5 of Algorithm 1. Equation (3) is described to calculate the expectation
payoffs of Ii:

E(Ii) = µW1(
Ia
i + Ip

i

Ia
i + Ip

i + Ia
j + Ip

j
)−(1− µ)W2(

Ia
j + Ip

j

Ia
i + Ip

i + Ia
j + Ip

j
) (3)

where µ ∈ (0, 1) is a random decimal that is generated by the random function. During the initial
evolution, players with zero total payoffs are not intelligent. Thus, a player imitates the selected player
under probability P1, which is a very high number, such as 0.9. The weak challenger Ii must compete
with the selected Ij and imitate useful information from others by using operator imitation (Ii, Ij).
However, the challenger may do nothing at the current game to survive some schema. This approach
is a special strategy with varying conditions and unchanging genes when the player does not have
substantial information about others.

The calculation of payoffs expectation (line 9 of Algorithm 1) is highly significant. This process is
a mechanism of an attempt to master the information of others because the total payoff indicates the
historical strategies of an individual. This mechanism allows a player to become more rational and
helps him/her make rational decisions. A player frequently sets goals based on his/her experiences
with different actions and opponents. Payoff rewards are either reinforced or deterred depending
on whom these rewards are compared with; decision-makers adjust their aspirations as they gain
experience [49]. Algorithm 2 presents the general procedure for imitation. The objective value
comparison between a pair of players (line 1, Algorithm 2) is the basis of historical performance.
However, the comparison result affects active or passive payoffs. A temporary variable is adopted to
breed new individuals based on imitation strategies according to a past action. An offspring replaces
its parent only when the offspring is better than its parent, thereby facilitating global convergence.

In the real word, if one person feels that others have competitive skills, then he/she may attempt
to learn these skills. Otherwise, the final decision is influenced by the attraction of the skills and
initiative of an individual. A random value, which is denoted as random(), is adopted to present the
degree of individual initiative, ratio of succeeding imitation number (Ha + 1) and the total number of
imitations (2Hs + 1). If random() × (Ha + 1)/(2Hs + 1) < P3, then all the conditions indicate that the
player should improve by speculatively learning from others. For example, using one method that
exhibits perfect performance in solving a problem in a specific field to address a problem in another



Algorithms 2017, 10, 111 7 of 15

field frequently yields good and unexpected result. This outcome is related to speculative learning
because it is based on guesses or ideas about what may happen or be true rather than what are factual.
Strategically copying a segment of genes entails obtaining chromosomes from others, which may
result in certain improvement. Companies achieve substantial success by investing in new technology.
Other companies allocate resources to follow their investment strategies. Followers are likely to benefit.
Thus, strategic copying or learning is proposed.

Different imitation strategies can be implemented according to the properties of a problem.
For function optimization problems:

If r1 = rand(0, n − 1), r2 = rand(0, n − 1), and β = random(), then if β < 0.5 then τ = (2β)1/16.
Otherwise τ = (2− 2β)1/16.
Hence, we use the following strategy to implement Ii, which speculatively learns from Ij (line 5,

Algorithm 2):

(1) Ip.gen[r2] = 0.5(1 − τ) Ii.gen[r2] + (1 + τ) Ij.gen[r1].

(2) If the value of Ip.gen[r2] is out of range, then a random value must be assigned to Ip.gen[r2].
(3) Ii strategically copies a segment of genes from Ij via Ip.gen[r1] = 0.5(1− τ) Ii.gen[r1] + (1 + τ) Ij.gen[r1].

(4) If the value of Ip.gen[r1] is out of the decision space, then a random value must be assigned to
Ip.gen[r1].

Algorithm 2. Imitation (Ii, Ij).

Begin
1. if Ii

obj < Ij
obj then Ii

a:= Ii
a + 1;

2. else Ij
p = Ij

p + 1;
3. Initialize temporary variable Ip = Ii and B:= 0;
4. if (random() × (Ha + 1)/(2Hs + 1)) < P3 then
5. Modify genes of Ip by speculatively learning from Ij;
6. B = 1 and Ha = Ha + 1;
7. else change genes of Ii by strategically copying a segment of genes from Ij;
8. update the objectives value Ip

obj;
9. if Ip

obj < Ii
obj then Ii = Ip ;

10. if B == 1 then Hs = Hs + 1;
11. return Ii;
end

3.5. Belief Learning Operator

Belief learning refers to models in which each player adjusts his/her strategies to increase payoffs
and competitiveness against opponent behavior for the next period. The player posits that one
strategy will facilitate positive feedback and insists on using the strategy to train himself/herself with
the expectation of improving future competitiveness. This type of self-training is associated with
training methods and duration. A decision-maker is not usually completely committed to one set
of ideas or one way of behavior. Several systems of ideas or several possible ways of behaving may
be simultaneously perceived; which of these ideas predominate and which are given less attention
depend on the experiences of an individual [49].

Thus, the operator performs under given probability P2. If belief learning is expected to run for
a significant amount of time, then P2 is assigned a high value. Otherwise, P2 is given a low value.
If a characteristic of a solution must be emphasized, then special knowledge can be used to specify
a belief learning algorithm. Algorithm 3 presents a belief learning procedure for real-value presentation
problems. An offspring replaces its parent only when the offspring is better than its parent and, thus,
the eliting conservation strategy is implemented. The belief learning operator differs from the belief
space of a cultural algorithm [50], which is divided into distinct categories that represent different
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fields of knowledge that the population has regarding the search space. The belief space is updated
after each iteration by the best individuals of the population.

Algorithm 3. Belieflearning(Ii). // for real-valued presentation.

Begin
1. r1:= rand(0, n − 1), β:= random()
2. ∆:= difference of maximum and minimum value of r1th dimension
3. if β < 0.5 then τ = (2β)1/21 − 1
4. else τ =1 − (2 − 2β)1/21

5. Ii.gen[r1] = Ii.gen[r1] + τ × ∆
6. if the value of Ip.gen[r1] out of the given ranges
7. then assign a required random value to Ip.gen[r1]
end

3.6. Players Set Updating Strategy

The algorithm GameEA, which is inspired by the game of human behavior, was proposed in this
work. Human society, as well as the game or competition among individuals, is simulated. In biology,
individuals of all ages live in the same environment and compete with one another. Parents are
exploited by their offspring even within the surviving space. In environments, individual learning
behavior possibly differs from biological evolution (for example, individuals adjust rapidly); at the
population level, however, a process that is analogous to biological evolution occurs. Decision-makers
observe and imitate each other in different roles (challenger or opponent); they lean onto and change
one another. These processes may imply that the distribution of ideas and strategies in a population
of agents changes over time in a manner that is analogous to biological evolution [49]. The existence
of a parent is justified and competitive. An offspring has the capability to survive if it is stronger or
better than its parents. Thus, GameEA uses a simple strategy to update the set of players. An offspring
replaces its parent and inherit their fortune, such as payoffs and behavior, only when the offspring is
better than its parent, thereby implementing the eliting conservation strategy and facilitating global
convergence. For each repeat loop (line 5–12 of Algorithm 1), a new player does not shy away
from other players, and the game is available for all players regardless of whether an individual is
experienced or not.

4. Performance Comparison and Experimental Results

4.1. Test Problems and Compared Algorithms

The C++ language was used to implement GameEA. Our program uses the .NET platform,
and the PC was an AMD Phenom™ II X4 810 CPU (2.59 GHz) with 2 GB RAM. To evaluate the
improvement of the performance of our method, the proposed algorithm was compared with four kinds
of algorithms: standard genetic algorithm (StGA) [24], island-model genetic algorithms (IMGA) [25],
finding multimodal solutions using restricted tournament selection (RTS) [26], and dual-population
genetic algorithm (DPGA) for adaptive diversity control [27], which are famous for their unique
performance with different characteristics.

IMGA is a typical example of multi-population genetic algorithms. This type of algorithm evolves
two or more subpopulations and uses periodic migration for the exchange of information among
subpopulations. IMGA has multiple subpopulations that evolve separately.

Regarding RTS, a crowding method that is slightly different from standard crowding is used.
This approach randomly selects parents and allows the latest offspring to replace the most similar one
using a specific strategy.
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DPGA uses two populations. Among which, the main population evolves to identify a good
solution for a given problem, whereas the reserve population evolves to provide controlled diversity
to the main population.

To focus on the searching accuracy and stability, thirteen benchmark functions f 1–f 13 shown
in Table 2 have been considered in our experiments on real-valued representations, which are
widely adopted for comparing the capabilities of evolutionary algorithms. The functions f 1–f 7 are
unimodal distribution functions with one peak within the entire given domain, the functions f 8–f 13

are multimodal functions with a large number of local optima in the searching space. Column n in
Table 2 indicates the dimensions used.

Table 2. Test functions used for the experiments.

No. Name n Function Range

f 1 Sphere 30 f (x) = ∑n
i=1 x2

i xi ∈ [−100, 100]
f 2 Schwefel 2.22 30 f (x) = ∑n

i=1|xi|+ ∏n
i=1|xi| xi ∈ [−10, 10]

f 3 Schwefel 2.21 30 f (x) = max{|xi|, 1 ≤ i ≤ n} xi ∈ [−100, 100]
f 4 Rosenbrock 30 f (x) = ∑n−1

i=1 [100(xi+1 − x2
i )

2
+ (1− xi)

2] xi ∈ [−30, 30]
f 5 Step 30 f (x) = ∑n

i=1 (bxi + 0.5c2) xi ∈ [−100, 100]
f 6 Noisy Quartic 30 f (x) = ∑n

i=1 ix4
i + random[0, 1) xi ∈ [−1.28, 1.28]

f 7 Goldstein-price 2 f (x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))g(x)
g(x) = 30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2
) xi ∈ [−2, 2]

f 8 Branin 2 f (x) =

(
x2 −

5.1x2
1

4π2 +
5x1
π
− 6

)2

+ 10
(

1− 1
8π

)
cos x1 + 10

x1 ∈ [−5, 10]
x2 ∈ [0, 15]

f 9
Six-hump
camelback 2 f (x) = 4x2

1 − 2.1x4
1 + x6

1 + x1x2 − 4x2
2 + 4x4

2 xi ∈ [−5, 5]n

f 10 Rastrigin 30 f (x) = 10n + ∑n
i=1 (x2

i − 10 cos(2πxi)) xi ∈ [−5.12, 5.12]

f 11 Griewank 30 f (x) = 1 +
∑n

i=1 (x2
i )

4000
−∏n

i=1 cos
(

xi√
i

)
xi ∈ [−600, 600]

f 12 Schwefel 2.26 30 f (x) = −∑n
i=1 (xi sin

√
|xi|) xi ∈ [−500, 500]

f 13 Ackley 30 f (x) = 20 + e− 20 exp

(
−1

5

√
1
n ∑n

i=1 (x2
i )

)
− exp

(
1
n ∑n

i=1 cos(2πxi)

)
xi ∈ [−32, 32]

4.2. Experimental Setup

Specifically, we continue to use the parameters and strategies that StGA, IMGA, RTS, and DPGA
have used. IMGA has multiple subpopulations each of which evolves separately. RTS uses a crowding
method which is somewhat different from the standard crowding, which selects parents randomly
and lets the latest offspring replace the most similar one by using a specific strategy. DPGA also uses
an additional population as a reservoir of diversity. Additional details of these algorithms can be
found in [24–27].

The players size N was set to 50 for GameEA, the payoff weight W1, losses weight W2, learning
probability P1, mutation probability P2 and the speculative probability P3 were set to 0.9, 0.01, 0.9, 0.1,
and 0.1, respectively. For each function, the maximum iteration of GameEA was set to a homogeneous
iteration with the compared algorithm. Table 3 summarizes iterations used for each function, which are
indicated in the iteration column of the table. The following sections present the statistical experimental
results obtained for the functions mentioned above.

4.3. Results and Comparision Analysis

For each test problem, 50 independent experiments have been executed and the averaged results
are shown in Table 3.

For functions f 1, f 2, and f 4, the GameEA obtains the best results with an average result of
4.33 × 10−96, 1.52 × 10−66, and 0.0374, respectively. The DPGA shows the second-best results with an
average result of 1.47 × 10−52 for function f 1, and the RTS is third on the list. The StGA convergence
accuracy is slightly worse than that of the IMGA for functions f 1 and f 2, but the IMGA is worse than
the StGA for function f 4.
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For function f 4, the RTS with an average of 1.391 is the silver medalist, but the GameEA’s average
is less than 3% of the RTS.

For function f 6, the GameEA is significantly better than the StGA and the DPGA. The GameEA is
similar to the IMGA and the RTS, but it has a smaller standard deviation. For function f 5 and f 7, all the
mentioned algorithms above converge to the global minimum.

To make a careful observation of the results on the highly-multimodal functions f 8–f 13, which
have a large number of local optima, all the algorithms converge to the global minimum on the
functions f 8 and f 9. The RTS, the DPGA and the GameEA show no significant difference with the
convergence of the global optimum in each independent trial on function f 10, which means that all the
algorithms can solve such problems.

The GameEA won a landslide victory with the best stability convergence in 50 independent
trials for the functions f 11–f 13, which demonstrates the search ability, stability, and robustness. It is
a remarkable fact that the StGA and the DPGA do not converge to the global optimal solution with the
same standard deviation of zero in all the trials for function f 13, which indicates that those algorithms
stalled at the local optimum points, whereas the GameEA escapes and continually evolves to the global
minimum. We also observed the final solutions of the GameEA with respect to the f 13, although its
average optimums are not perfect, thirty-nine parts in fifty obtain the global optimum.

Table 3. Fifty independent experimental statistics results based on StGA, IMGA, RTS, DPGA,
and GameEA using real-valued representations of functions f1 − f13.

Iteration Optimum
Solution

StGA IMGA RTS DPGA GameEA

Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

f 1 1.5 × 105 0 6.12 × 10−34 1.27 × 10−38 2.04 × 10−34 5.23 × 10−34 7.90 × 10−43 1.74 × 10−42 1.47 × 10−52 4.17 × 10−52 4.33 × 10−96 2.79 × 10−95

f 2 2.0 × 105 0 3.32 × 10−29 1.78 × 10−28 6.40 × 10−32 1.36 × 10−31 7.18 × 10−37 6.19 × 10−37 5.19 × 10−45 7.90 × 10−45 1.52 × 10−66 4.61 × 10−66

f 3 5.0 × 105 0 7.00 × 10−15 1.37 × 10−14 4.28 × 10–6 3.64 × 10−6 1.54 × 10−5 1.91 × 10−5 3.12 × 10−9 1.18 × 10−8 7.85 × 10−4 2.26 × 10−3

f 4 2.0 × 106 0 5.454 3.662 5.554 4.522 1.391 1.211 3.047 3.558 0.0374 0.264
f 5 1.5 × 105 0 0 0 0 0 0 0 0 0 0 0
f 6 3.0 × 105 0 1.37 × 10−2 3.24 × 10−3 7.52 × 10−3 2.24 × 10−3 1.82 × 10−3 4.56 × 10−4 1.46 × 10−2 3.93 × 10−3 7.66 × 10−3 1.82 × 10−3

f 7 1.0 × 104 3 3 0 3 0 3 0 3 0 3 0
f 8 1.0 × 104 0.398 0.398 0 0.398 0 0.398 0 0.398 0 0.398 0
f 9 1.0 × 104 −1.032 −1.032 0 −1.032 0 −1.032 0 −1.032 0 −1.032 0
f 10 5.0 × 105 0 11.809 2.369 0.358 0.746 0 0 0 0 0 0
f 11 2.0 × 105 0 1.63 × 10−3 3.91 × 10−3 3.54 × 10−3 7.73 × 10−3 2.07 × 10−3 5.31 × 10−3 1.28 × 10−3 3.31 × 10−3 0 0
f 12 9.0 × 105 −12,569.4866 −11,195.1 284.5 −12,008.1 284.9 −12,443.9 142.4 −12,550.5 43.9 −12,569.4866 0
f 13 1.5 × 105 0 3.55 × 10−15 0 4.69 × 10−15 1.67 × 10−15 5.26 × 10−15 1.79 × 10−15 3.55 × 10−15 0 6.84 × 10−16 1.30 × 10−15

With respect to function f 3, the GameEA is obviously worse than other four algorithms. When we
scrutinize the 50 experimental outputs, we find that the best solutions are set to 4.43 × 10−12 and the
worst optimum is set to 0.0122, which means that the final results have a wide range and, thus, a poor
average and standard deviation.

Furthermore, based on those results, the Friedman test [51–53], which is a non-parametric
alternative to ANOVA, is conducted with SPSS 22 to check whether the StGA, the IMGA, the RTS,
the DPGA, and GameEA have similar performances. The null hypothesis is set to: “the distributions of
StGA, IMGA, RTS, DPGA, and GameEA are the same”. This null hypothesis states that the observed
algorithms output the same distribution and, therefore, have the same mean ranking. Table 4 shows
the results of the pairwise comparisons in the hypothesis test summary. Especially, all the observed
algorithms reported the optimal solution for functions f 5, f 7, f 8, and f 9, so we do not check the
Friedman test on those functions.
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Table 4. Hypothesis test summary and results of the pairwise comparisons.

Function
Null

Hypothesis Test Decision
Results of Pairwise Comparisons (GameEA Versus)

StGA IMGA RTS DPGA

f 1

The
distributions

of StGA,
IMGA, RTS,
DPGA and

GameEA are
the same.

Related-Samples
Friedman’s
Two-Way

Analysis of
Variance by Ranks

Reject the null
hypothesis Reject Reject Reject Reject

f 2
Reject the null

hypothesis Reject Retain Retain Retain

f 3
Reject the null

hypothesis Reject Retain Retain Retain

f 4
Reject the null

hypothesis Reject Reject Reject Reject

f 6
Retain the null

hypothesis Retain Retain Retain Retain

f 10
Reject the null

hypothesis Reject Reject Retain Retain

f 11
Reject the null

hypothesis Reject Reject Reject Reject

f 12
Reject the null

hypothesis Reject Reject Reject Reject

f 13
Retain the null

hypothesis Retain Retain Retain Retain

As seen from Table 4, all the algorithms could offer different performance for all the used functions,
except f 6 and f 13, on the whole. It is clear that the GameEA has given the best performance amongst all
four algorithms according to Table 3. For function f 2, the decision rejected the null hypothesis according
to Table 4, and the GameEA has the best performance according to Table 3, but the results of the pairwise
comparison was only rejected in the case of the StGA. In addition, for function f 3, it indicates that the
GameEA has given the worst performance according to Table 3, but the Friedman test results shows
that the distribution of IMGA, RTS, DPGA, and GameEA are the same according to Table 4. The null
hypothesis of pairwise comparison was only rejected in the case of StGA. Additionally, for functions
f 6 and f 13, although all the algorithms show different distributions according to the statistic results
shown in Table 3, their null hypothesizes were not rejected, which means that all the algorithms could
offer similar performances.

In addition, for function f 1, we checked its detailed Friedman test results, and Figure 1 and Table 5
show the detailed statistics of the Friedman test.
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Figure 1. Related samples test view.

According to Figure 1, it can be found that the GameEA states the smallest average ranking of
1.00 and the StGA reports the largest mean ranking of 4.82. According to the definition of the Friedman
test, the mean ranking can be employed as an indicator as to how successful the considered algorithm
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is. The first place belongs to GameEA, followed by DPGA, RTS, IMGA, and StGA. The GameEA
has the lower mean ranking, which means that the GameEA outperforms the compared algorithms.
Additionally, the pairwise comparisons in Table 5 also state that similar conclusion.

Table 5. Pairwise comparisons. Each row tests the null hypothesis that the Sample 1 and Sample 2
distributions are the same. Asymptotic significances (2-sided tests) are displayed. The significance
level is 0.05.

Sample 1-Sample 2 Test Statistic Standard Error Standard Test Statistic Significance Adjust Significance

GameEA-DPGA 1.400 0.316 4.427 0.000 0.000
GameEA-RTS 2.300 0.316 7.273 0.000 0.000

GameEA-IMGA 2.480 0.316 7.842 0.000 0.000
GameEA-StGA 3.820 0.316 12.080 0.000 0.000

DPGA-RTS 0.900 0.316 2.846 0.004 0.044
DPGA-IMGA 1.080 0.316 3.415 0.001 0.006
DPGA-StGA 2.420 0.316 7.653 0.000 0.000
RTS-IMGA 0.180 0.316 0.569 0.569 1.000
RTS-StGA 1.520 0.316 4.807 0.000 0.000

IMGA-StGA 1.340 0.316 4.237 0.000 0.000

From these results, we conclude that the GameEA is more powerful than the compared algorithms,
and GameEA has better performance, such as the stability, robustness, and accuracy of solutions, than
the compared algorithms on function optimization problems.

5. Conclusions

This paper proposed a new framework to simulate human game behavior, and its software code
in C++ of GameEA can be found at [54]. GameEA is a population-based algorithm, in which the
player makes decisions according to the payoff expectation, and then learning strategies are used
to evaluate the chromosome genes of the players. GameEA employs a simple strategy to update
the player set, which is that the offspring replaces its parents and inherits the parents’ information
only when the offspring is better than its parent to implement the eliting conservation strategy to
facilitate convergence. Experimental results show that GameEA outperforms the compared algorithms.
In our future work, we will study what the parameters are that affect the GameEA and how to select
better parameters. We will also conduct intensive experiments using well-established benchmarks
with rotated and shifted functions, including multi-objective optimization problems involving more
complicated applications. Additionally, we will conduct more intensive compressions with some
other metaheuristics. Additionally, this work is also part of our ongoing research that explores social
robots in the smart home. We will investigate how to use GameEA to improve the accuracy of activity
recognition and privacy detection [55].
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