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Abstract: Embedding social network data into a low-dimensional vector space has shown promising
performance for many real-world applications, such as node classification, node clustering, link
prediction and network visualization. However, the information contained in these vector
embeddings remains abstract and hard to interpret. Methods for inspecting embeddings usually rely
on visualization methods, which do not work on a larger scale and do not give concrete interpretations
of vector embeddings in terms of preserved network properties (e.g., centrality or betweenness
measures). In this paper, we study and investigate network properties preserved by recent random
walk-based embedding procedures like node2vec, DeepWalk or LINE. We propose a method that
applies learning to rank in order to relate embeddings to network centralities. We evaluate our
approach with extensive experiments on real-world and artificial social networks. Experiments show
that each embedding method learns different network properties. In addition, we show that our
graph embeddings in combination with neural networks provide a computationally efficient way to
approximate the Closeness Centrality measure in social networks.

Keywords: graph embedding; network property; social network analysis

1. Introduction

Social network analysis has been attracting great attention in the recent years. This is in part
because social networks form an important class of networks that span a wide variety of media, ranging
from social websites, such as Facebook, Twitter and citation networks of academic papers. Mining
and analyzing data from these social network sites generated interesting insights, like, for example,
insights on network formation processes (e.g., [1,2]), content distribution processes (e.g., [3,4]) and
human (online) behavior (e.g., [5,6]). Furthermore, interesting applications have become possible, like,
for example, different types of recommender systems [7,8] or media analysis applications [9].

Data Analysis and Machine Learning techniques play an essential role in mining social network
data. However, whenever we use such statistical machine learning techniques on graph analysis tasks,
we have to find a suitable vectorial representation for a network at hand. The most straightforward
representation consists of an adjacency matrix, where edges between nodes are indicated as an entry
in a squared matrix. Due to its quadratic size and its sparsity the adjacency matrix is not very well
suited for traditional machine learning algorithms. As a remedy, low-dimensional vector embeddings
have become a promising and powerful tool for analyzing large social networks.

Graph embeddings represent every node in a graph as a low-dimensional, real-valued vector
preserving different network properties, like, for example, first- or second-order proximities [10] or
topological-structures [11]. Typically, graph embeddings have been obtained by computationally
intensive eigenvalue decomposition methods. Motivated by the success of deep learning techniques
in the natural language processing (NLP) area, several novel graph embedding methods have
been proposed. They learn dense vector representations utilizing random walks over the network.
For example, DeepWalk [12] samples node sequences and feeds them to a Skip-Gram based of
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Word2Vec [13] model to train node representations. LINE [14] optimizes the objective function to
preserve both the local and the global network structures. In extension to these methods, Node2vec [10]
introduces mechanisms to balance the random walk between Breadth-First Search (BFS) sampling
and Depth-First Search (DFS) sampling, thereby allowing to preserve more local or global structures.
In [15], authors exploit an extension of the Word2Vec algorithm, the Paragraph Vector [16], to learn
embeddings for local regions of the network. These local regions are defined as neighborhoods around
a focal node, as it is usually seen in ego-networks [17].

Overall, graph embeddings have shown promising performance for various graph analytic
tasks such as node classification [17], clustering [18], link prediction [19], knowledge extraction from
semantic networks [20] and network visualization [21]. However, due to the stochastic nature of
the random walk, it remains unclear what graph properties are retained exactly in a given set of
embeddings. Understanding the rather abstract vectorial representation of a node embedding can be
compared to the effort in understanding the structure of neural networks in image processing. One
possible solution in the field of image processing, therefore, is to reconstruct exemplary images from
particularly activated parts of the neural network [22]. Since neural networks are usually organized
into different layers detecting features of different granularity, we can find the (usually abstract) input
image that maximizes a neuron of a layer. Hence, the role of a particular element in the neural network
can be described in terms of input that maximizes its activation.

A similar idea would be quite helpful for graph embeddings when one wants to know the
parts of the social network, i.e., the input space for our network-embedding problem, which are
preserved. Hence, the abstract vectorial representation of a node can be mapped back in input space to
understand the properties observed by the representation. However, to the best of our knowledge,
there is no method and corresponding study which investigates how to analyze graph properties
preserved by random-walk based graph embeddings. Moreover, when certain graph properties are
retained in the vector embeddings, we can try to reconstruct those properties given the embeddings
alone. Since random-walk based graph embeddings can be computed in linear time [10], finding
a way to reconstruct graph measures from those embeddings with a high computational complexity,
like, for example, closeness or betweenness centrality [24], could allow us to find computationally
efficient approximations.

Given this motivation, we make the following contributions in our work:
Contribution 1: We propose a new methodology to identify graph properties preserved by

random-walk based graph embedding methods (Section 4). In particular, we are interested in graph
properties explaining the similarity of the local neighborhood of a node. In addition, two nodes are
accounted to be similar if they show similar graph characteristics in their local neighborhood, like, for
example, similar topological structures (e.g., same degree) or comparable centrality and betweenness
distributions. Therefore, we propose to relate the neighborhood-similarity between two nodes to the
similarity of the embeddings by solving a learning to rank problem. Hence, the network measure with
the highest contribution to the similarity of two nodes can be considered as the highest explanatory
factor regarding their relatedness in embedding space. The results show that random-walk based
embedding techniques can be grouped into two categories, depending on the properties of the random
walk. LINE and DeepWalk walk globally over the graph and thus learn betweenness and eigenvector
centrality. Node2vec and our Paragraph Vector method retain local properties such as degree centrality.

Contribution 2: We examine whether embeddings can be used to predict centrality values directly
(Section 4). We apply neural networks to a regression task which attempts to approximate centrality
values using embeddings as input. In particular, we utilize a multi-layer feed-forward neural network
to approximate the centrality of a node given its embedding. We show that, specifically, closeness
centrality can be approximated best compared to other centralities by our method. In particular,
generating embeddings and training the neural network can be computed in approximately linear
time [12,25] (but with a high overhead). Therefore, our results suggest that closeness centrality can
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be approximated efficiently in linear time. However, we do not give a formal proof of the runtime
complexity computation as it goes beyond the current study.

The remainder of the paper is organized as follows. In Section 2, we provide the definitions
required to understand the problem and models. In Section 3, we provide a short overview on recent
embedding techniques and inspecting approaches. In Section 4, we define the problem that we
want to study and the proposed method. In Section 5, we then describe our experimental setup and
evaluate the proposed approach. Finally, in Section 6, we draw our conclusions and discuss future
research directions.

2. Definitions and Preliminaries

A graph G = (V, E) consists of a set V = {v1, . . . , vn} of n nodes and a set E ⊆ V ×V of edges
between nodes. The adjacency matrix of G is the n× n-matrix A with entries

Aij =

{
1, if (vi, vj) ∈ E,

0, otherwise.
(1)

We restrict ourselves to undirected graphs, where, for all nodes vi, vj ∈ V, we have (vi, vj) ∈ E if
and only if (vj, vi) ∈ E—or, equivalently, where the adjacency matrix is symmetric. For a node u ∈ V,
the ego-network of u is the restriction of G to u and all its neighbors. We denote the set of egos in
a social graph by U ⊆ V.

Definition 1 (Graph embedding). Let G be a graph. An embedding of G is a map f : V → Rd, where
d� |V|. Therefore, Y ∈ R|V|×d denotes the embeddings of the graph G and Yi the ith row of Y.

Definition 2 (First-order Proximity). The first-order proximity in a graph is the local pairwise proximity
between two nodes. For each pair of nodes linked by an edge (vi, vj), the weight on that edge, wij, indicates the
first-order proximity between vi and vj. If no edge is observed between vi and vj, their first-order proximity is 0.

Definition 3 (Second-order Proximity). The second-order proximity between a pair of vertexes describes the
proximity of the pair’s neighborhood structure. Let Ni = {wi,1, . . . , wi,|V|} denote the first-order proximity
between vi and other vertexes. Then, second-order proximity is determined by the similarity of Ni and Nj.
Second-order proximity compares the neighborhood of two nodes and treats them as similar if they have
a similar neighborhood.

3. Related Work

3.1. Graph Embedding Techniques

Recently, methods that use distributed representation learning techniques in an NLP domain, like
the Skip-Gram algorithm, have gained attention from the research community. These NLP methods
have been adapted to calculate graph embeddings that preserve first and second order proximities. For
obtaining the embeddings, these methods create symbolic sequences comparable to natural language
text by conducting random-walks over the graph. The methods yield lower time complexity compared
to eigenvalue decomposition methods [26]. Moreover, they are able to map the nonlinear structure
of the network into the embedding space. They are especially useful when one can either only
partially observe the graph, or the graph is too large. In this section, we quickly review the different
random-walk based embedding techniques:

• DeepWalk [12]: This approach learns d-dimensional feature representations by simulating
uniform random walks over the graph. It preserves higher-order proximities by maximizing the
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probability of observing the last c nodes and the next c nodes in the random walk centered at vi.
More formally, DeepWalk maximizes:

log Pr(vi−c, · · · , vi−1, vi+1, · · · , vi+c|Yi),

where Yi is the embedding vector of the node vi and c is the context size. We denote the
mapping function for this method DeepWalk : V → Rd, where d is the embedding size. Therefore,
the DeepWalk embedding of the node v is denoted by DeepWalk(v).

• node2vec [10]: Inspired by DeepWalk, node2vec preserves higher-order proximities by
maximizing the probability of occurrence of subsequent nodes in fixed length random walks.
The crucial difference from DeepWalk is that node2vec employs biased-random walks that provide
a trade-off between BFS and DFS graph searches, and hence produces higher-quality and more
informative embeddings than DeepWalk. More specifically, there are two key hyper-parameters
p ∈ R+ and q ∈ R+ that control the random walk. Parameter p controls the likelihood
of immediately revisiting a node in the walk. Parameter q controls the traverse behavior to
approximate BFS or DFS. For p = q = 1, node2vec is identical to DeepWalk. We denote
the node2vec embedding by node2vec : V → Rd, where d is the embedding size. Therefore,
the node2vec embedding of the node v is shown by node2vec(v).

• loc [15]: This approach limits random walks to the neighborhood around egos to make artificial
paragraphs. ParagraphVector [16] is properly applied to learn local embeddings for egos by
optimizing the likelihood objective using stochastic gradient descent with negative sampling [27].
Formally, given an artificial paragraph v1, v2, v3, . . . , vt, . . . , vl for ego ui, the goal is to update
representations in order to maximize the average log probability:

l

∑
t=1

log Pr(ui, vt+c, . . . , vt−c|Yi),

where Yi is the embedding vector of the ego ui, l is the length of the artificial paragraph, and c is
the context size. Therefore, there is a mapping function loc : U → Rd, where d is the embedding
size. We denote the loc embedding of the ego u by loc(u).

• LINE [14]: It learns two embedding vectors for each node by preserving the first-order and
second-order proximity of the network in two phases. In the first phase, it learns d/2 dimensions
by BFS-style simulations over immediate neighbors of nodes. In the second phase, it learns
the next d/2 dimensions by sampling nodes strictly at a 2-hop distance from the source nodes.
Then, the embedding vectors are concatenated as the final representation for a node. Indeed,
LINE defines two joint probability distributions for each pair of nodes, one using adjacency matrix
and the other using the embedding. It minimizes the Kullback–Leibler (KL) divergence [28] of
these two distributions. The first phase distributions and the objective function are as follows:

p(vi, vj) =
1

1 + exp(−YT
i Yj)

, (2)

p̂(vi, vj) =
Aij

∑(ij)∈E Aij
, (3)

O = KL(p, p̂), (4)

O = − ∑
(ij)∈E

Aij log p(vi, vj). (5)

Probability distributions and objective function are similarly defined for the second phase.
This technique adopts the asynchronous stochastic gradient algorithm (ASGD) [29] for
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optimization. In each step, the ASGD algorithm samples a mini-batch of nodes and then updates
the model parameters. We denote this embedding as a function LINE: V → Rd that maps nodes
to the vector space, where d is the embedding size. Therefore, the LINE embedding of the node v
is denoted by LINE(v).

3.2. Techniques for Inspecting Embeddings

Graph embeddings usually create vectors of several 100 dimensions per node in the graph.
While eigenvalue based decomposition methods give some formal guarantees on the retained
network properties, random-walk based methods are stochastic in nature and depend heavily on
hyper-parameter settings. Therefore, analyzing the retained graph properties requires either applying
the embeddings to particular graph analysis tasks, like node classification, clustering, community
detection or link prediction, or to visualize structural relationships. For example, if two nodes u and
v are directly connected in the graph, they should appear close to each other when in a visualized
embedding space. In this section, we review different methods to inspect graph embeddings in order
to motivate the development of our own approach.

• Visualization: To gain insight into binary relationships between objects, the relations are often
coded into a graph, which is then visualized. The visualization is usually split in the layout and
the drawing phase. The layout is a mapping of graph elements to points in Rd. The drawing
assigns graphical shapes to the graph elements and draws them using the positions computed in
the layout [30]. The effectiveness of DeepWalk is illustrated by visualizing the Zachary’s Karate
Club network [12]. The authors of LINE visualized the DataBase systems and Logic Programming
(DBLP) co-authorship network, and showed that LINE is able to cluster together authors in the
same field. Structural Deep Network Embedding (SDNE) [31] was applied on a 20-Newsgroup
document similarity network to obtain clusters of documents based on topics.

• Network Compression: The idea in network compression is to reconstruct the graph with a
smaller number of edges [23]. Graph embedding can also be interpreted as a compression of
the graph. Wang et al. [31] and Ou et al. [32] tested this hypothesis explicitly by reconstructing
the original graph from the embedding and evaluating the reconstruction error. They show
that a low-dimensional representation for each node suffices to reconstruct the graph with high
precision.

• Classification: Often in social networks, a fraction of nodes are labeled which indicate interests,
beliefs, or demographics, but the rest are missing labels. Missing labels can be inferred using
the labeled nodes through links in the network. The task of predicting these missing labels
is also known as node classification. Recent work [10,12,14,31] has evaluated the predictive
power of embedding on various information networks including language, social, biology and
collaboration graphs. The authors in [15] predict the social circles for a new node added into
the network.

• Clustering: Graph clustering in social networks aim to detect social communities. In [33], the
authors evaluated the effectiveness of embedding representations of DeepWalk and LINE on
network clustering. Both approaches showed nearly the same performance.

• Link Prediction: Social networks are constructed from the observed interactions between entities,
which may be incomplete or inaccurate. The challenge often lies in predicting missing interactions.
Link prediction refers to the task of predicting either missing interactions or links that may
appear in the future in an evolving network. Link prediction is used to predict probable
friendships, which can be used for recommendation and lead to a more satisfactory user
experience. Liao et al. [34] used link prediction to evaluate node2vec and LINE. Node2vec
outperforms LINE in terms of area under the Receiver Operating Characteristic (ROC) curve.
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4. Approach

4.1. Problem Statement

Problem 1—Explaining Embedding Relatedness: Let G be a social network graph where every
node u ∈ G has an embedding Yu obtained from random-walk based embedding methods such as
DeepWalk(u), loc(u) , node2vec(u), and LINE(u). The inner-product Yu · Yv of two nodes u and v
determines a similarity relation between the two nodes. Due to the random-walk based creation of
the embeddings, we assume that this similarity can be approximated by similar network properties
of the neighborhoods N(u) and N(v) of node u and v, respectively. Therefore, we aim to explain
the inner-product Yu ·Yv by a weighted linear combination of centrality measures obtained from the
neighborhoods N(u) and N(v). Degree centrality DC(u), closeness centrality CC(u), betweenness
centrality BC(u) and eigenvector centrality EC(u) have been chosen as centrality measures due to
their importance in social network analysis and due to their well understood properties [35].

Degree centrality of node u is simply the degree of u [36]:

DC(u) = deg(u).

Closeness centrality of a node is the average sum of the inverse of the distance to other nodes.
Formally, closeness is defined as:

CC(u) =
1

∑v∈V d(u, v),

where d(u, v) is the length of the shortest path between (u, v) [36].
Betweenness centrality counts the fraction of shortest paths going through a node. Betweenness

centrality of a node u is then formally defined as follows:

BC(u) = ∑
s 6=u 6=t

σs,t(u)
σs,t

,

where σs,t(u) is the number of shortest paths between node s ∈ V and t ∈ V that pass through node u.
σs,t is the number of shortest paths between node s ∈ V and t ∈ V [36].

Eigenvector centrality generalizes degree centrality by incorporating the importance of the
neighbors. The eigenvector centrality of ui is a function of its neighbors’ centralities. It is proportional
to the summation of their centralities:

EC(ui) =
1
λ

n

∑
j=1

AijEC(vj),

where λ is some fixed constant [36].
Closeness centrality is widely used to study information flow in social networks [37]. Betweenness

and eigenvector centrality are commonly used to detect and investigate community structure in
social networks [38].

Problem 2—Predicting network properties: In order to consider single nodes without
a neighborhood, we consider the problem of predicting the centrality values DC(v), CC(v), BC(v)
and EC(v) for a particular node v based on its embeddings only. We aim to find a nonlinear mapping
between the embedding vector and a single centrality property of its node. By obtaining such
an approximately correct mapping, we can conclude that the vector space of the embeddings retains
the structural information of the network property.

Overall, both case studies allow us to gain insights on the embedding properties in terms of
centrality measures retained and the relatedness of their neighborhoods. In addition, predicting
network properties successfully allows us to approximate computationally complex centrality
measures more efficiently.
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4.2. Explaining Embedding Relatedness

We formulate our approach such that the similarity of two embeddings Yu and Yv can be
approximated by a weighted sum of network properties:

f (Yu, Yv) ∼
k

∑
i=1

wi pi(u, v),

where pi is a function that computes similarity of the pair (u, v) based on network property i, k is the
number of network properties considered, and wi is the weight of the network property i. To estimate
the weights wi for every property, we cast the problem into a learning to rank problem.

Learning to rank is an important problem in web page ranking, information retrieval and many
other applications [39]. Given a ranking of items according to some query items, learning to rank
obtains a function based on the similarity between the query and its ranked items. Several types of
machine learning algorithms have been considered for this problem: pointwise methods, pairwise
methods, and listwise methods. Most recent works have applied pairwise methods for learning to rank
on graphs [40,41]. In pairwise ranking, one is given examples of order relationships among objects,
and the goal is to learn from these examples, a real-valued ranking function that induces a ranking
or ordering over the object space. We consider the problem of learning such a ranking function
when the data is represented as a graph, in which nodes correspond to objects and embeddings
encode similarities between objects. Among existing approaches for learning to rank, rankSVM [42]
is a commonly used method extended from the popular support vector machine (SVM) [43] for
data classification. In training an SVM classifier, a weight vector is computed on the training data.
This weight vector can be used as an important measure of the centrality to the classifier. These weights
can explain what combination of centralities can explain embeddings.

In learning to rank, we first sort nodes according to their similarities. More formally, for each node
ui, we sort all other nodes uj ∈ U \ {ui} according to the inner product similarity Yi · Yj. Therefore,
each pair of nodes has a rank label that we use as ground truth. We denote the ground-truth vector by
t ∈ R|z|×1, z = |m| × |m− 1|.

Furthermore, we need to compute the similarity in terms of DC, CC, BC and EC between every
pair of nodes (ui, uj). Given a node ui ∈ U, we calculate the centrality measures for every node
v ∈ N(ui), where N(ui) defines the neighborhood of node ui. Indeed, in our approach, we consider
network properties within a subgraph around a focal node. To compare how properties of two
subgraphs are similar, we first calculate the probability distribution of each centrality by histogramming
the centrality measures for every node v ∈ N(ui). We then measure the similarity between two
distributions over the same centrality by KL divergence as follows:

sim(ui, uj) = 1− (DKL(Pui‖Quj)) = 1− (∑
x

Pui (x) log
Pui (x)
Quj(x)

),

where Pui and Quj are probability distributions over the same centrality measure. If DKL is low, it
means the distributions are very similar and vice versa. In order to guarantee a certain stability of our
approach, we assume that the KL divergence can be estimated in a reasonably large neighborhood and
that the graph is connected.

Therefore, for each pair of nodes, we have a feature vector xi ∈ R4, i = 1, . . . , z. We denote the
feature matrix by X ∈ R|z|×4. The rankSVM [42] model is built by minimizing the objective function

1
2
‖w‖2 + C ∑

i,j
`(wTxi − wTxj).

w = (wDC, wCC, wBC, wEC) is the centrality vector, where wDC denotes the weight for degree, wCC is the
weight for closeness, wBC denotes the weight for betweenness, and wEC is the weight for eigenvector
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centrality. C > 0 is the regularization parameter. The C parameter provides a trade-off between the
misclassification of training examples and the simplicity of the decision surface. A low parameter
value makes the decision surface smooth, whereas a high parameter-value aims at classifying all
training examples correctly by giving the model freedom to select more samples as support vectors.
` is a suitable loss function such as `(t) = max(0, 1− t)2. ‖w‖2 is the regularization term to avoid
overfitting by penalizing large coefficients in the solution vector [42]. The overall goal is to find w that
optimizes the approximation of X · w to t.

4.3. Predicting Graph Properties

In our second approach, we aim to analyze embedding properties in terms of single node
properties. We formulate the problem as a regression task that attempts to predict centrality values
using embeddings as input. In detail, we use a feed-forward neural network model for learning
nonlinear relationships between the embedding as a input variables and the different centrality
measures as single output variable [44]. The architecture of the model that approximates centrality
values of v ∈ V is described as follows:

• Input layer: The input is given by one of the different embeddings for a single node, namely
DeepWalk(v), loc(v) , node2vec(v) or LINE(v).

• Hidden layer: The hidden layer consists of a single dense layer with ReLU activation units [45] .
• Output layer: The output layer has a sigmoid unit [46]. We choose the sigmoid unit since

normalized centrality values are in the range of [0, 1].
• Optimizer: Stochastic gradient descent (SGD) [47], which is a popular technique for large-scale

optimization problems in machine learning.

Since centralities are continuous variables, we need an error criterion that measures,
in a probabilistic sense, the error between the desired quantity and our estimate of it. Therefore,
we use the mean squared error (MSE), which is a common measure of estimator quality of the fitted
values of a dependent variable.

5. Experiments

In this section, we report on the conducted experiments to evaluate the effectiveness and efficiency
of our proposed method. We apply the method to several real-world as well as artificial social networks.
We consider normalized values of centralities in our experiments.

5.1. Dataset

Since our learning-to-rank method is based on estimating node similarities using distributional
properties of their neighborhoods, we focus our experiments on data sets providing such structures.
Ego-networks serve as possible datasets. In Ego-networks, every graph contains sub-graphs around
a focal node called ego. The idea is to break up the large graph into smaller, easier to manage
components and study the properties of the subgraphs. The ego-network model allows the small
patterns, anomalies, and features to be discovered that would be missed when an entire graph is
analyzed [15]. Therefore, we use ego-networks from three major social networking sites: Facebook,
Google+, and Twitter, available from the University of Stanford [17]. Table 1 describes the details of
the datasets we used in our experiments.

Table 1. Statistics of social network datasets.

Facebook Twitter Google+

nodes |V| 4,039 81,306 107,614
edges |E| 88,234 1,768,149 13,673,453
egos |U| 10 973 132
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Moreover, we generate an artificial scale-free graph utilizing the Barabási–Albert model [48].
The Barabási–Albert model is an algorithm generating random graphs using a preferential attachment
process. The process starts with an initial graph of m nodes. One new node is added to the network at
each time step t ∈ N. In more detail, the preferential attachment process works as follows:

• With a probability p ∈ [0, 1], this new node connects to m existing nodes uniformly at random.
• With a probability 1 − p, this new node connects to m existing nodes with a probability

proportional to the degree of node which it will be connected to.

We simulate the Facebook graph using the Barabási–Albert model, which generates 87,516
edges for 4000 nodes. Similar to the Facebook dataset, we divide the Barabási–Albert graph into
10 ego-networks. The community library in Python [49] properly clusters the graph into several
communities. We consider the node with highest betweenness as ego for each subgraph [17].
For further investigations, we compare degree, closeness, betweenness and eigenvector centrality
distribution between one ego-network of the Facebook and one from the artificial graph. Figure 1
demonstrates centrality distribution of two random egos; ego ’686’ of the Facebook and ego ’25’ of the
artificial dataset. We then require a metric to measure whether two distributions are identical. The
Kolmogorov–Smirnov test [50] is the most popular test to find identical distributions. Therefore, we
consider pairs of egos with similar size (number of edges) and use the Kolmogorov–Smirnov test. The
Kolmogorov–Smirnov test generates two key values: KS statistic and p-value. If the KS statistic is small
or the p-value is high, then the distributions of two samples are the same. Table 2 describes details
for pairs of ego-networks that have nearly the same number of nodes. For all pairs, distributions are
similar since KS statistic is low (around 0.1) and the p-value is higher than 0.1 [50].
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Figure 1. Centrality distribution for ego ’686’ in the Facebook graph and ego ’25’ in the artificial graph.
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Table 2. Comparing centrality distributions using the Kolmogorov–Smirnov (KS) test for pairs of egos.

Facebook’s Ego Nodes Barabási–Albert’s Ego nodes Centrality KS Statistic p-Value

686 1826 25 1871

degree 0.12865 0.12432
closeness 0.10099 0.35831
betweenness 0.10684 0.29330
eigenvector 0.07805 0.68533

686 1826 28 1682

degree 0.12865 0.10042
closeness 0.14099 0.15841
betweenness 0.05684 0.59340
eigenvector 0.10805 0.39473

414 1848 25 1871

degree 0.11865 0.13402
closeness 0.08899 0.35851
betweenness 0.10684 0.23456
eigenvector 0.08805 0.69573

414 1848 28 1682

degree 0.13865 0.22532
closeness 0.11543 0.35551
betweenness 0.10334 0.25510
eigenvector 0.06805 0.55573

5.2. Parameter Settings

• DeepWalk: Here, we apply the Skip-Gram model [13] on the node sequences generated by biased
random walk. We set parameters as follows: the context size c = 10, the embedding size d = 128,
the length of each node sequence t = 40, and the number of node sequences for each node
γ = 80 [12].

• loc: Here, we apply Paragraph Vector [16] to learn embeddings for limited sequence of nodes,
the same as paragraphs in text. In the Paragraph Vector Distributed Memory (PV-DM) model,
optimal context size is 8 and the learned vector representations have 400 dimensions for both
words and paragraphs [16].

• node2vec: This algorithm operates the same as DeepWalk, but the hyper-parameter p and q
control the walking procedure. With q > 1, the random walk is biased towards nodes close to
the start node. Such walks obtain a local view of the underlying graph with respect to the start
node in the walk and approximate BFS behavior in the sense that samples are comprised of nodes
within a small locality. The parameter p controls the likelihood of immediately revisiting a node
in the walk. If p is low (< min(q, 1)), it would lead the walk to backtrack a step and this would
keep the walk "local" close to the starting node. The optimal values of p and q depend a lot on the
dataset [10]. In our experiment, we consider two settings: node2vec(1) keeps the walk local with
p = 2−8, q = 28, while node2vec(2) walks more exploratively with p = 28, q = 2−8.

• LINE: LINE with first-order proximity, in which linked nodes will have closer representations,
and LINE with second-order proximity, in which nodes with similar neighbors will have similar
representations. In both settings, we consider the embedding size d = 128, batch-size= 1000,
learning-rate ρ = 0.025.

5.3. Quantitative Results

In this section, we conduct two experiments: first, we inspect embeddings to see what network
property is learned by each embedding technique. Second, we try to predict the centrality value itself.
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5.3.1. Inspecting Embedding Properties

Embeddings as a low-dimensional representation of the graph are expected to preserve certain
properties of the graph. Table 3 displays properties that are learned by rankSVM [42] using different
embedding techniques. The following findings can be inferred from the table:

• Overall, we can explain the ranking either by combining betweenness or eigenvector or degree
centralities of the node’s neighborhood. Closeness is not important in order to retain the ranking.
The accuracy of SVM in all experiments is around 60%, which shows that there are some explaining
network properties missing.

• LINE and DeepWalk, which are able to explore the entire graph, can learn betweenness and
eigenvector centrality of nodes. Betweenness is a global centrality metric that is based on
shortest-path enumeration. Therefore, it is needed to walk over the whole graph to estimate
betweenness centrality of nodes. Eigenvector centrality measures the influence of a node by
exploiting the idea that connections to high-scoring nodes are more influential. This means that a
node is important if it is connected to important neighbors. Therefore, computing eigenvector
centrality also requires exploring globally the entire graph. This is done in practice by both LINE
and DeepWalk, hence they learn eigenvector and betweenness centrality of nodes around 60%.

• node2vec with p < 1 and q > 1 walks locally around the starting node. loc also walks over a
limited area of the network. Therefore, they are not able to capture the structure of the entire
network to learn betweenness or eigenvector centrality. The only property that is locally available
is degree of nodes, hence is it learnt by node2vec(1) and loc.

• node2vec with q < 1 and p > 1 is more inclined to visit nodes that are further away from
the starting node. Such behavior is reflective of DFS, which encourages outward exploration.
Since node2vec(2) walks through the graph deeply, it could learn the eigenvector centrality.

Table 3. Weights learnt by rankSVM for Degree Centrality (wDC), Closeness Centrality (wCC),
Betweenness Centrality (wBC) and Eigenvector Centrality (wEC).

Dataset Weight DeepWalk LINE Loc Node2vec(1) Node2vec(2)

Facebook

wDC 0.09± 0.02 −0.15± 0.05 0.92 ± 0.06 0.82 ± 0.01 −0.15± 0.07
wCC −0.01± 0.04 −0.07± 0.00 0.09± 0.01 0.04± 0.00 0.06± 0.11
wBC 0.64 ± 0.03 −0.55 ± 0.07 0.17± 0.03 −0.01± 0.04 0.13± 0.04
wEC −0.64 ± 0.02 −0.68 ± 0.08 0.08± 0.01 −0.07± 0.00 0.56 ± 0.01

Twitter

wDC 0.07± 0.09 −0.09± 0.05 0.87 ± 0.08 0.53 ± 0.01 −0.04± 0.01
wCC −0.15± 0.00 −0.00± 0.08 0.13± 0.05 0.04± 0.17 0.02± 0.04
wBC 0.51 ± 0.04 −0.69 ± 0.00 0.19± 0.07 −0.11± 0.10 0.16± 0.02
wEC −0.71 ± 0.05 −0.58 ± 0.01 0.12± 0.03 −0.03± 0.01 0.49 ± 0.01

Google+

wDC 0.02± 0.04 −0.00± 0.10 0.84 ± 0.01 0.65 ± 0.00 −0.08± 0.05
wCC −0.05± 0.11 −0.04± 0.09 0.07± 0.08 0.09± 0.07 0.00± 0.11
wBC 0.55 ± 0.05 −0.53 ± 0.07 0.17± 0.00 −0.14± 0.00 0.03± 0.00
wEC −0.63 ± 0.03 −0.68 ± 0.06 0.12± 0.02 −0.07± 0.03 0.69 ± 0.01

Artificial

wDC 0.00± 0.00 −0.15± 0.03 0.66 ± 0.01 0.64 ± 0.01 −0.00± 0.00
wCC −0.14± 0.09 −0.07± 0.00 0.00± 0.00 0.09± 0.15 0.16± 0.06
wBC 0.61 ± 0.14 −0.63 ± 0.08 0.08± 0.04 −0.18± 0.03 0.07± 0.04
wEC −0.66 ± 0.08 −0.60 ± 0.16 0.22± 0.03 −0.17± 0.07 0.51 ± 0.01

5.3.2. Approximating Centrality Values

We aim to compute network centralities in an efficient time complexity. We report the results in
terms of Mean Squared Error, hence smaller error gives better approximation. To approximate each
centrality, we randomly selected 70% of nodes in the Facebook graph as training set and the rest as a
test. Table 4 demonstrates average value and standard deviation of centralities as well as errors where
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we feed the model with different embeddings. The Normalized Root Mean Squared Error (RMSE) is
a standard statistical metric to measure model performance.

We also report results in terms of Normalized Root Mean Squared Error (NRMSE) and Coefficient
of Variation of the RMSE:

NRMSE =
RMSE

ymax − ymin
,

CV(RMSE) =
RMSE

y
,

where y is the average of target values on test set. ymax and ymin are maximum and minimum of target
values on test set [44].

It can be seen that, for closeness centrality, the error range is quite low compared to the
average value, hence the regression model approximates closeness sufficiently well. Although
closeness centrality has not been a relevant factor for explaining the ranking of nodes in our previous
learning-to-rank experiment, a nonlinear mapping as provided by the neural network can estimate
closeness values. A possible interpretation is the existence of local manifolds in embedding space
containing nodes with similar closeness values. Since closeness represents the average distance of
a node to all other nodes in the graph, it also hints that graph distances are preserved in embeddings
space (in a nonlinear manner). However, for the other centrality measures, RMSE values are in the
range of the average value or even higher. Hence, it seems that embeddings alone are not strong
enough features to approximate these centralities.

Table 4. Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE) and
Coefficient of Variation of the RMSE for approximating centrality values in the Facebook graph.

Centrality Average Value Std Input of the Model RMSE NRMSE CV (RMSE)

degree 0.012581 0.01516

deepwalk 0.01848 0.09898 1.46908
loc 0.01681 0.09000 1.33579

node2vec(1) 0.02074 0.11108 1.64857
node2vec(2) 0.02226 0.11919 1.76898

LINE 0.03132 0.16772 2.48925

closeness 0.25302 0.02319

deepwalk 0.04755 0.22282 0.18795
loc 0.03647 0.17088 0.14413

node2vec(1) 0.05906 0.27674 0.23342
node2vec(2) 0.06260 0.29331 0.24740

LINE 0.04695 0.21998 0.18555

betweenness 0.00105 0.01180

deepwalk 0.01630 0.06905 15.44306
loc 0.02024 0.08573 19.17428

node2vec(1) 0.01568 0.06639 14.84949
node2vec(2) 0.01554 0.06583 14.72446

LINE 0.01761 0.07458 16.68014

eigenvector 0.01036 0.02355

deepwalk 0.02412 0.25284 2.32737
loc 0.02724 0.28549 2.62788

node2vec(1) 0.02664 0.27918 2.56986
node2vec(2) 0.02731 0.28625 2.63491

LINE 0.02534 0.26561 2.44495

6. Conclusions

This work has tackled graph embeddings to investigate network topological properties such as
degree, closeness, betweenness, and eigenvector centrality. Empirical evaluation on real-world social
networks indicated that each embedding technique can retain a different combination of network
properties. We studied and reported recent existing methods of inspecting embeddings. We also
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presented an approach to approximate centrality values using neural networks. Our results revealed
that closeness centrality is only centrality, and can be approximated in a more efficient time. For future
work, we will analyze and compute the runtime of closeness centrality approximation precisely. We
believe that there are some promising research directions exploiting embeddings to approximate some
complex measures such as length of shortest path between two nodes.
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