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Abstract: This work is focused on creating fuzzy granular classification models based on general
type-2 fuzzy logic systems when consequents are represented by interval type-2 TSK linear functions.
Due to the complexity of general type-2 TSK fuzzy logic systems, a hybrid learning approach is
proposed, where the principle of justifiable granularity is heuristically used to define an amount of
uncertainty in the system, which in turn is used to define the parameters in the interval type-2 TSK
linear functions via a dual LSE algorithm. Multiple classification benchmark datasets were tested in
order to assess the quality of the formed granular models; its performance is also compared against
other common classification algorithms. Shown results conclude that classification performance
in general is better than results obtained by other techniques, and in general, all achieved results,
when averaged, have a better performance rate than compared techniques, demonstrating the stability
of the proposed hybrid learning technique.

Keywords: general type-2 fuzzy logic system; TSK; hybrid learning; principle of justifiable granularity;
information granule; classification; granular computing

1. Introduction

Learning techniques in soft computing exist for the purpose of adjusting models so they
can accurately represent data in some domain. Although there are various approaches to these
learning techniques, we can categorize learning techniques into two groups: hybrid and non-hybrid
learning techniques.

A non-hybrid learning technique is composed of a single algorithmic process which achieves
the learning of a model, whereas a hybrid learning technique is composed of a sequence of two
or more algorithms where in each step a portion of the final model is achieved. Some examples
of non-hybrid techniques are a learning algorithm for multiplicative neuron model artificial neural
networks [1], an optimized second-order stochastic learning algorithm for neural network training
using bounded stochastic diagonal Levenberg—Marquardt [2], design of interval type-2 fuzzy logic
systems by utilizing the theory of an extreme learning machine [3], the well-known backpropagation
technique for artificial neural networks [4], etc. Yet by combining some of these direct approaches with
each other or with other techniques, their performance can greatly improve, such that some steps can
compensate performance loss or simply focus on optimizing a portion of the model. Examples of such
hybrid models are the scoring criterion for hybrid learning of two-component Bayesian multinets [5],
hybrid learning particle swarm optimization with genetic disturbance intended to combat the problem
of premature convergence observed in many particle swarm optimization variants [6], a hybrid Monte
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Carlo algorithm used to train Bayesian neural networks [7], a learning method for constructing compact
fuzzy models [8], etc.

When dealing with raw data where models must be created, transforming such data into more
manageable and meaningful information granules can greatly improve how the model performs as well
as reducing the computational load of the model. An information granule is a representation of some
similar information which can be used to model a portion of some domain knowledge. By forming
multiple information granules, these can represent the totality of the information from which data is
available; therefore, forming a granular model. Granular computing [9,10] is the paradigm to which
these concepts belong.

Information granules which intrinsically support uncertainty can be represented by general type-2
fuzzy sets (GT2 FSs), and in turn these GT2 FSs can be inferred by a general type-2 fuzzy logic system
(GT2 FLS) [11]. Although, when dealing with type-2 fuzzy logic systems, they are either in the form
of interval type-2 FSs [12] or general type-2 FSs, interval type-2 FSs being a simplification of general
type-2 FSs. In simple terms, uncertainty in a GT2 FS is represented by a 3D volume, while uncertainty
in an IT2 FS is represented by a 2D area. It is not until recent years that research interest has gained
momentum for GT2 FLSs; examples of such published research are fuzzy clustering based on a
simulated annealing meta-heuristic algorithm [13], similarity measures a-plane representation [14],
hierarchical collapsing method for direct defuzzification [15], a multi-central fuzzy clustering approach
for pattern recognitions [16], etc.

Apart from Mamdani FLSs which represent consequents with membership functions, there also
exists the representation by linear functions. These FLSs are named Takagi-Sugeno-Kang fuzzy logic
systems (TSK FLSs). Examples of TSK FLS usage are evolving crane systems [17], fuzzy dynamic
output feedback control [18], analysis of the dengue risk [19], predicting the complex changes of
offshore beach topographies under high waves [20], clustering [21], etc.

As published research with GT2 FLS is still very limited, most of it uses Mamdani FLSs, and so
far only two published journal papers using a GT2 TSK FLS exist, for controlling a mobile robot [22],
and data-driven modeling via a type-2 TSK neural network [23].

In this paper, a proposal of a hybrid learning technique for GT2 TSK FLSs is given, which (1) makes
use of the principle of justifiable granularity in order to define a degree of uncertainty in information
granules; and (2) a double least square error learning technique is used in order to calculate the
parameters for IT2 TSK linear functions. In addition, it is fair to say that at the time of writing of this
paper, published research of GT2 TSK FLSs is very limited, therefore this paper contributes to the
possibilities that can be achieved by representing consequents with TSK linear functions instead of the
more common Mamdani consequents for GT2 FLSs.

This paper is separated into four main sections. First, some background is given which introduces
the basic concepts used in the proposed hybrid learning technique; then, the proposed hybrid learning
technique is thoroughly described; afterwards, some experimental data is given which defines the
general performance of the technique; finally, some concluding remarks are given.

2. Background
2.1. General Type-2 Fuzzy Logic Systems with Interval Type-2 TSK Consequents

A general type2 fuzzy set (GT2 FS) defined by A is represented by A =
{ ((x, u), yz(x,u) Vx € XJ¥ € [0,1] }, where X is the Universe of Discourse and 0 < yz(x, u) <1
In Figure 1, a generic GT2 FS is shown from the primary membership function’s perspective.
In Figure 2, the same generic GT2 FS is shown but from an isometric view.
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Figure 1. Generic general type-2 fuzzy set (GT2 FS) as shown from the primary function’s perspective.

0

Figure 2. Generic GT2 FS as shown from an isometric view.

The rules of a GT2 FLS are in the form of Equation (1), where R7 is the g-th rule, Xp is the

~q ~
p-th input, F, is a membership function on the g-th rule and p-th input, f7 is an interval type-2
Takagi-Sugeno-Kang (IT2 TSK) linear function on the g-th rule.

=q =q ~
R7IF xyis Fj and ... and x, is F,, THEN f9, whereg=1,...,Q (1)

An IT2 TSK linear function [24] f7 = [ flq, f } takes the form of Equations (2) and (3), where flq

and f/! are the left and right switch points of the IT2 TSK linear function on the g-th rule, Cqk 1s the k-th
coefficient on the g-th rule, x; is the k-th input, Cq0 18 the constant on the g-th rule, S,k 18 the spread k-th
coefficient on the g-th rule, and s; ¢ is the spread on the constant on the g-th rule.

=Y 0 corxi+cgo— Y oy XklSok — Sq0 2)

A= Corxe+ a0+ g [Xelsq i +5q0 (3)

2.2. General Type-2 Membership Function Parameterization

The proposed hybrid learning technique depends on the parameterization of a GT2 FS in the form
of a Gaussian primary membership function with uncertain mean and Gaussian secondary membership
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functions. This GT2 membership function requires four parameters: {o,m,my, p}, where o is the
standard deviation of the primary membership function, 717 and m; are the left and right centers of the
Gaussian membership function with uncertain mean, and p is a fraction of uncertainty which affects
the support of the secondary membership function. Here, for the sake of simplification, the primary
membership function is best represented by the support footprint of uncertainty (FOU) of the primary
membership function in the form of an IT2 membership function, as shown in Figure 3. Based on the
parameterized structure of the support FOU, the hybrid learning technique performs two type-1 TSK
optimizations, as if optimizing two distinct type-1 TSK FLSs.

Figure 3. Support of the primary membership function of the used GT2 FS.

The parameterization of the GT2 membership function is as follows. First, the support of the GT2
membership function is created by Equations (4)—(7), using {x, u, o, my,my,p}, where x € X on the
Universe of Discourse X, and u € U such that u € J, C [0, 1]. Creating an IT2 MF with 7i(x) and p(x),
for the upper and lower membership function respectively, as shown in Figure 3. B

i _ 2
p(x) = exp —;(x C,ml) )
] o
) = exp| -3 (72 ©
pi(x) x < my
A(x) =9 1my <x<mp (6)
pa(x) x > my
) m(x) x < Mg
o= { ) 1S g

Afterwards, all parameters required to form the individual secondary membership functions must
be calculated, as shown in Equations (8)—(10), where py and oy, are the center and standard deviation
of the secondary Gaussian membership function, and ¢ is a very small number, e.g., 0.000001.

2
px:exp[—;(x Um) ];wherem:ml;rm2 8)

6 =(x) = p(x) ©)
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Ju:(l—p)z\%—i-s (10)

Finally, each secondary membership function can be calculated by Equation (11), such that (x, u)
is the secondary function on x. Therefore, forming a complete GT2 membership function would be
achieved by calculating for all x € X.

B 2
H(x,u) =exp [—; <Maupx> ] (11)

2.3. Principle of Justifiable Granularity

The purpose of this principle [25] is to specify the optimal size of an information granule where
sufficient coverage for experimental data exists while simultaneously limiting the coverage size in
order to not overgeneralize. These differences are shown in Figure 4.

—00—9090— 90 000 —00—00—0 000
a) b)

Figure 4. Visual representation of both contradicting objectives in data coverage, where (a) complete
experimental data coverage is obtained; and (b) a limited coverage of experimental data is obtained.

A dual optimization must exist which can consider both objectives, where (1) the information
granule must be as specific as possible; and (2) the information granule must have sufficient
numerical evidence.

As the length of an information granule is perceived by two delimiting sides of an interval,
the dual optimization is performed once per each side. As shown in Figure 5, the left side interval
from the Median of the data sample a and the right side interval from the Median of the data sample b
creates two intervals to be optimized, where Med(D) is the Median of available data D which initially
constructed said information granule.

Med(D)
i g

—0-0—0—00—0—0—0 -

Figure 5. Intervals a and b are optimized from available experimental data for the formation of
said information granule, where both lengths start at the median of the information granule’s
experimental data.

Shown in Equations (12) and (13) are the search equations V() for optimizing a and b respectively,
where V() is an integration of the probability density function from Med(D) to all prototypes of a, or b,
multiplied by the user criterion for specificity &, where « is a variable which affects the final length of a
or b, such that a has the highest experimental data, and &,y represents the most specific possible
length and has minimal experimental data.

Med(D)
V(a) = e(_"‘|M€d(D)_“D/ p(x)dx (12)

b
V(b) = e(—¥b—Med(D)]) d 13
)= o PO 03)
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3. Description of the Hybrid Learning Technique for GT2 TSK FLS

The proposed approach, being hybrid in nature, is composed of a sequence of multiple steps,
each using different algorithms in order to achieve the final model which is shown in this section.

The hybrid learning technique requires a set of meaningful centers x for the antecedents of the
rule base, these can be obtained via any method, such as clustering algorithms; for this paper, a fuzzy
c-means (FCM) clustering algorithm [26] was used. Via these cluster centers, subsets belonging to each
cluster center are selected through Euclidean distance, where the nearest data point to each cluster
center is a member of its subset.

After all subsets are found, cluster coverages can be calculated, i.e., the standard deviation o,
obtained through Equation (14), where oy is the standard deviation of the g-th rule and k-th input,
x; is each datum from the subsets previously obtained, x;’k is the cluster center for the g-th rule and
k-th input, and 7 is the cardinality of the subset.

2
n . ~C
Yiq (xz quk>

n—1 (14)

Uq,k =

Up to now, a Type-1 Gaussian membership function can be formed with {c, x}. However, the sought
end product is a GT2 Gaussian primary membership function with uncertain mean and Gaussian
secondary membership functions, which requires the parameters: {c,my,my,p}. So far, we have
calculated ¢ and partially m; and my, which are based on x. The following process obtains the
remaining required parameters {1y, my,p} to form GT2 FSs of the antecedents.

To obtain m7 and my, the principle of justifiable granularity is used as a means to heuristically
measure uncertainty via the difference of the intervals a and b. This is carried out by extending each
information granule to its highest coverage by using the user criterion value of & for each side of the
information granule’s interval, as described by Equations (12) and (13). When both intervals 2 and b
are obtained, their difference will define the amount of uncertainty which will be used to calculate
parameters {my,m,}, as shown in Equation (15), where 7 is a measure of uncertainty for the g-th rule
and k-th input.

(15)

Tgk = ‘“q,k — by

The obtained value of 7, is used by Equations (16) and (17) to offset the centers x;.k of the
Gaussian primary membership function by adding uncertainty in the mean, thus obtaining {m,m,}.

k
m'{ = x;,k — Tk (16)

For practical reasons, the final missing value of {p} is set to zero p = 0 for all membership
functions, as it was found that it has no effect on classification performance if other values are set;
some experimentation to demonstrate this is shown in Section 4. This ends the parameter acquisition
phase for all antecedents in the GT2 TSK FLS.

Al IT2 linear TSK consequents are calculated in a two-step process. First, a Least Square Estimator
(LSE) algorithm [27,28] is used twice; as the Gaussian primary membership function with uncertain
mean is parameterized by a left and right T1 Gaussian membership function on the support FOU,
the LSE is applied as if two T1 TSK FLSs existed, using the following sets of parameters: for the left

{Uq,k, m?’k} and right side {aq,k, mg’k } When all TSK coefficients ¢ are obtained, the average of both

sets of parameters is used, as shown in Equation (18), where ¢; and ¢, are the coefficient sets for the
left and right side respectively. This set C represents all ¢,  coefficients of all IT2 TSK linear equations.

2
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The second and final part of the process for calculating the final spreads s of each coefficient,
in set S, which is carried out by measuring the absolute difference between each coefficient set, ¢; and
@,, as shown in Equation (19).

5=lg1— ¢/l (19)

A schematic of the proposed hybrid algorithm is shown in Figure 6, where all steps described in
this section concentrate the sequence to obtain the antecedents and consequents of the GT2 TSK FLS
model, as well as associating certain key steps to their corresponding equations.

I Obtain cluster centers x |

l

Find subsets for each cluster
center

Calculate all o based on found

subsets Edi(6)

Calculate = with the principle of
justifiable granularity

Egs. (4), (6), (7)

I Offset cluster centers with ¢ I Eqs. (8), (9)

N7
I |

Calculate left-side T1 TSK Calculate right-side T1 TSK
parameters via LSE parameters via LSE

Calculate all TSK parameter
| coefficients C | Z ()
Calculate all TSK parameter
| spreads S | o)
Form T
N2
Form the GT2 TSK FLS model
Obtain model! from all calculated paramerrs

Figure 6. General schematic of the sequence taken by the proposed hybrid algorithm, such that
antecedents are calculated first, and consequents afterwards.
4. Experimentation and Results Discussion

A set of various experiments was conducted with classification benchmark datasets in order to
explore the effectiveness of the proposed hybrid algorithm. Table 1 shows a compact description of
used classification benchmarks [29].

Table 1. Description of used classification benchmarks.

Dataset Name # of Attributes  # of Classes # of Samples
Iris 4 3 150
Wine 13 3 178
Breast cancer 9 2 699
Glass identification 9 2 214
Crab gender 6 2 200
Haberman survival 3 2 306

Qualitative

bankruptcy 6 2 250
Fertility 9 2 100
Vertebral column 6 3 310
Indian liver patient 10 2 583
Seeds 7 3 210

Experimentation was done using Hold-Out data separation, with 60% randomly selected training
data and 40% test data, showing the mean value and standard deviation of 30 execution runs.
Concerning the number of rules used per each class, in principle, better model generalization is
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usually achieved by reducing the number of rules per class, instead of increasing the number of rules
and possibly falling into a case of overfitting [30-32]. For that reason and for simplification purposes,
one-rule-per-class was used for all experiments, i.e., results for the iris dataset, which has three classes,
were represented by three fuzzy rules, and so on.

Results are shown in Table 2, where values in bold achieved the best performance. Results were
compared to Fuzzy C-Means (FCM) [26], Subtractive algorithm [33], Decision Trees, Support Vector
Machine (SVM) [34], K-Nearest Neighbors (KNN) [35], and Naive Bayes [36]; and it must be noted that
since the common SVM is designed only for binary classification, it cannot work with datasets which
have three or more classes, marked with (-). Performance is measured through total classification
percentage, where very good and stable results, in general, are achieved by the proposed hybrid
learning technique. Values inside ( ), next to each classification percentage, are the standard deviations
for the 30 executions runs which achieved each result, where lower values are better and higher are
worse; it can be seen that the proposed hybrid algorithm has a general low variance in the obtained
results by means of the calculated standard deviation, yet in the wine dataset it had much more
variance when compared to the rest of the techniques.

Although the proposed hybrid technique does not always achieve the best results, it does achieve
a better overall performance, as shown in Table 3, where the average across the overall dataset results is
shown, such that a higher value means better performance in general, demonstrating that the proposed
technique is more stable in general.

Table 2. Results for classification benchmarks.

Classification % (std.)

Proposed
Dataset Hybrid FCM  Subtractive ~ D°CSiON gy KNN Naive
Learning Tree Bayes
Technique
Iris 95.7880 85.5004 96.1394 95.0559 B 94.8267 94.8515
(14738)  (4.4088) (1.7889) (3.1016) (1.8996)  (2.4019)
Wine 87.5556 67.2222 74.2222 88.2963 R 70.2593 96.5926
(8.0889)  (6.2849) (13.09) (5.5401) (4.4034)  (2.1084)
Breast 95.5861 93.2998 94.1186 91.6426 94.9867 93.4189 94.7079
cancer (1.1888)  (1.6142) (1.121) (2.4014)  (1.2044)  (1.5414)  (1.3952)
Glass 90.6983 89.5373 90.6164 90.7540 91.3606 93.0778 89.8460
chemical (1.9856) (2.9519) (2.9945) (2.3476) (3.165) (2.8169) (3.055)
Crab 95.5000 50.3000 90.7667 79.1333 94.1000 83.7000 63.4667
gender (1.6132)  (3.2641) (3.3211) (4.3366)  (2.1804)  (3.8411)  (10.7027)
Haberman  74.4116 72.4723 71.0549 66.4893 722641  66.7862  73.8685
survival (2.1708) (2.5779) (2.8901) (4.6845) (2.7463) (3.8423) (2.8525)
Qualitative 99.2404 82.3181 98.1105 98.4230 98.6156 99.1158 98.0451
bankruptcy  (0.6214)  (4.1822) (1.4148) (1.0181) (0.639)  (0.9828)  (1.04)
Fertilit 87.1333 86.9333 80.2667 82.4667 86.6000 80.2000 85.0000
y (2.6261)  (3.2582) (4.3676) (72603)  (3.8721)  (5.3653)  (3.4157)
Vertebral 80.8676 61.7257 80.8731 80.2976 B 80.0110 77.0305
column (2.9845) (3.8218) (2.8185) (3.3082) (3.1363) (3.6083)
Indian
liver 70.5602 70.4214 68.7966 66.2205 70.5329 64.6039 57.2955
patient (3.6878) (2.1655) (2.7519) (2.8477) (2.1469)  (2.4738)  (3.5323)
Seeds 94.3082 89.3711 93.1132 90.5975 B 89.7484 90.8805
(2.1189)  (3.1082) (2.9531) (4.0337) (2.5469)  (2.8962)
Table 3. Overall performance of tested techniques with datasets.
Proposed Hybrid . Decision Naive
P yo! FCM  Subtractive SVM KNN
Learning Technique Tree Bayes

88.3317 77.1910 85.2798 84.4887 86.9228 83.2498 83.7804
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In Table 4, an experiment to demonstrate that the value of p has no effect whatsoever in the
classification performance of the proposed hybrid learning technique is shown. Two datasets were
chosen at random with 60% training data and 40% testing data, with p = [0, 0.5, 1, 2]. To achieve a
truer experiment when comparing chosen p values, the exact same training data and testing data was
used, i.e., with each execution run, data was not randomly separated into a 60/40 partition; instead,
the partition was fixed with exact data in each experiment, and only the value of p was changed.

Table 4. Demonstration that varying p values have no effect on classification performance.

Dataset

0 0.5 1 2

Breast cancer 94.6939 94.6939 94.6939 94.6939
Qualitative bankruptcy ~ 98.7342 98.7342 98.7342 98.7342

As a visual example, the input partition for the iris dataset modeled by a GT2 TSK FLS which
obtained the given result in Table 2, is shown in Figures 7-10, where a top and orthogonal view can be
seen; in all accounts, the amount of uncertainty within each membership function is quite contrasting,
as there are membership functions with barely any uncertainty and also membership functions with
quite a lot of uncertainty.

(a) (b)

Figure 7. Input partition of the GT2 TSK fuzzy logic system (FLS) for the first input of the iris dataset,
where (a) shows a top view of the GT2 membership functions; and (b) shows an orthogonal view of
the same GT2 membership functions.

\/

Al

(a) (b)

Figure 8. Input partition of the GT2 TSK FLS for the second input of the iris dataset, where (a) shows
a top view of the GT2 membership functions; and (b) shows an orthogonal view of the same GT2
membership functions.
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@)

Figure 9. Input partition of the GT2 TSK FLS for the third input of the iris dataset, where (a) shows
a top view of the GT2 membership functions; and (b) shows an orthogonal view of the same GT2

(b)

membership functions.

@) (b)
Figure 10. Input partition of the GT2 TSK FLS for the fourth input of the iris dataset, where (a) shows

a top view of the GT2 membership functions; and (b) shows an orthogonal view of the same GT2
membership functions.

It must also be noted that there are a couple of variables where classification performance
could be improved. First, as the initial hybrid learning technique requires prototype centers to
begin constructing the GT2 FSs around them, if better prototypes are found, then the classification
performance is also bound to improve; for the included experimentation in this paper, a FCM clustering
algorithm was used to obtain the initial prototypes, yet other techniques could be used to improve the
final classification performance by providing better quality initial prototypes. As is known, different
techniques perform differently with each dataset, therefore by changing this part of the proposed
hybrid algorithm, better results could be expected. Second, in this paper, GI2 FSs in the form of
Gaussian primary membership functions with uncertain mean and Gaussian secondary membership
functions were used, meaning that other GT2 FSs could be used; this, in itself, is worth exploring in
future research, as different FSs could greatly improve the representation of information granules and
therefore improve the quality of the fuzzy model. Third, a dual LSE application technique was used to
calculate IT2 TSK linear function parameters for all consequents, where other more robust algorithms
could be used to further improve the general performance of the model, e.g., Recursive Least Squares
(RLS) algorithm.

One of the qualities of the proposed hybrid approach, as shown through experimentation, is the
stability inherent in FLSs in general, especially in GT2 FLSs, where the integrated handling of
uncertainty in its model permits less variance in achieved performance when compared to other
classifying techniques. By using information granules which support varying degrees of uncertainty,
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as acquired by the same data which formed it, changing patterns in data have less of an effect on the
performance of the fuzzy model created by the proposed hybrid technique.

5. Conclusions

The work proposed in this paper is an initial exploration into the effectiveness of GT2 TSK FLSs
for use in classification scenarios. Due to the complexity of GT2 FLSs in general, a hybrid learning
technique is introduced. As a result of using a hybrid learning algorithm, a sequence of various stages
takes place in order to obtain the final fuzzy granular model; in the first stage, initial prototypes must
be acquired from a sample of data; this can be obtained through various means, such as clustering
algorithms, providing the flexibility of using any technique which may acquire these initial prototypes
with improved quality; in the second stage, some level of uncertainty is defined through the principle
of justifiable granularity, where differences between both intervals, 2 and b, for each information
granule, depict how the spread of data measures uncertainty. The highest coverage is used in both
intervals to simplify the information granule’s coverage, yet it could be possible to achieve better
performance by identifying an optimal value between [&g, &0y ] rather than just using a equally for
all information granules. Finally, the calculation stage of the IT2 TSK linear function parameters is a
direct method reliant on the previous stage which obtains results via a dual application of the LSE
algorithm, after which these two sets of parameters are joined to the final required parameters to finish
forming the GT2 TSK FLS, where other more precise learning techniques should yield much better
parameters for improved model quality.

Experimentation gave a quick view of the general quality of these GT2 TSK FLS models, where a
degree of stability was achieved in contrast to other more common classification algorithms. Research
into GT2 TSK FLS is still scarce, and this paper showed some of the benefits of model quality,
performance, and stability, that this type of system can achieve.
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performed all experiments and performed the discussion of results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Bas, E.; Uslu, V.R,; Egrioglu, E. Robust learning algorithm for multiplicative neuron model artificial neural
networks. Expert Syst. Appl. 2016, 56, 80-88. [CrossRef]

2. Liew, S.S.; Khalil-Hani, M.; Bakhteri, R. An optimized second order stochastic learning algorithm for neural
network training. Neurocomputing 2016, 186, 74-89. [CrossRef]

3.  Hassan, S.; Khosravi, A.; Jaafar, J.; Khanesar, M.A. A systematic design of interval type-2 fuzzy logic system
using extreme learning machine for electricity load demand forecasting. Int. J. Electr. Power Energy Syst.
2016, 82, 1-10. [CrossRef]

4. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533-536. [CrossRef]

5. Carvalho, AM.; Adao, P; Mateus, P. Hybrid learning of Bayesian multinets for binary classification.
Pattern Recognit. 2014, 47, 3438-3450. [CrossRef]

6. Liu, Y.; Niu, B.; Luo, Y. Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing
2015, 151, 1237-1247. [CrossRef]

7.  Kocadagly, O. A novel hybrid learning algorithm for full Bayesian approach of artificial neural networks.
Appl. Soft Comput. 2015, 35, 52-65. [CrossRef]

8. Zhao, W.Q.; Niu, Q.; Li, K,; Irwin, G.W. A hybrid learning method for constructing compact rule-based fuzzy
models. IEEE Trans. Cybern. 2013, 43, 1807-1821. [CrossRef] [PubMed]

9.  Zadeh, L.A. Fuzzy sets and information granularity. In Advances in Fuzzy Set Theory and Applications;
North-Holland Publishing Company: Amsterdam, The Netherlands, 1996; pp. 3-18.


http://dx.doi.org/10.1016/j.eswa.2016.02.051
http://dx.doi.org/10.1016/j.neucom.2015.12.076
http://dx.doi.org/10.1016/j.ijepes.2016.03.001
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.patcog.2014.03.019
http://dx.doi.org/10.1016/j.neucom.2014.03.081
http://dx.doi.org/10.1016/j.asoc.2015.06.003
http://dx.doi.org/10.1109/TSMCB.2012.2231068
http://www.ncbi.nlm.nih.gov/pubmed/23757574

Algorithms 2017, 10, 99 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.
34.

Bargiela, A.; Pedrycz, W. Toward a theory of granular computing for human-centered information processing.
IEEE Trans. Fuzzy Syst. 2008, 16, 320-330. [CrossRef]

Mendel, J. General type-2 fuzzy logic systems made simple: A tutorial. IEEE Trans. Fuzzy Syst. 2013, 22,
1162-1182. [CrossRef]

Mendel, ].M.; John, R.I; Liu, F. Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst.
2006, 14, 808-821. [CrossRef]

Doostparast Torshizi, A.; Fazel Zarandi, M.H. Alpha-plane based automatic general type-2 fuzzy clustering
based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput. Biol. Med.
2015, 64, 347-359. [CrossRef] [PubMed]

Hao, M.; Mendel, ].M. Similarity measures for general type-2 fuzzy sets based on the -plane representation.
Inf. Sci. 2014, 277, 197-215. [CrossRef]

Doostparast Torshizi, A.; Fazel Zarandi, M.H. Hierarchical collapsing method for direct defuzzification of
general type-2 fuzzy sets. Inf. Sci. 2014, 277, 842-861. [CrossRef]

Golsefid, S.M.M.; Zarandi, M.H.E,; Turksen, 1.B. Multi-central general type-2 fuzzy clustering approach for
pattern recognitions. Inf. Sci. 2016, 328, 172-188. [CrossRef]

Precup, R.-E,; Filip, H.-I; Radac, M.-B.; Petriu, E.M.; Preitl, S.; Dragos, C.-A. Online identification of evolving
Takagi-Sugeno—Kang fuzzy models for crane systems. Appl. Soft Comput. 2014, 24, 1155-1163. [CrossRef]
Klug, M; Castelan, E.B.; Leite, V].S.; Silva, L.EP. Fuzzy dynamic output feedback control through nonlinear
Takagi-Sugeno models. Fuzzy Sets Syst. 2015, 263, 92-111. [CrossRef]

Silveira, G.P.; de Barros, L.C. Analysis of the dengue risk by means of a Takagi-Sugeno-style model.
Fuzzy Sets Syst. 2015, 277, 122-137. [CrossRef]

Kim, Y.; Kim, K.H.; Shin, B.-S. Fuzzy model forecasting of offshore bar-shape profiles under high waves.
Expert Syst. Appl. 2014, 41, 5771-5779. [CrossRef]

Sanchez, M.A.; Castillo, O.; Castro, ].R.; Melin, P. Fuzzy granular gravitational clustering algorithm for
multivariate data. Inf. Sci. 2014, 279, 498-511. [CrossRef]

Sanchez, M.A; Castillo, O.; Castro, J.R. Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a
performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Syst. Appl. 2015, 42, 5904-5914.
[CrossRef]

Yeh, C.Y; Jeng, WH.R.; Lee, S.J. Data-based system modeling using a type-2 fuzzy neural network with a
hybrid learning algorithm. IEEE Trans. Neural Netw. 2011, 22, 2296-2309. [CrossRef] [PubMed]

Mendel, J. Unnormalized interval type-2 TSK FLSs. In Uncertain Rule-Based Fuzzy Logic System: Introduction
and New Directions; Prentice-Hall: Upper Saddle River, NJ, USA, 2001; p. 555.

Pedrycz, W. The principle of justifiable granularity and an optimization of information granularity allocation
as fundamentals of granular computing. J. Inf. Process. Syst. 2011, 7, 397-412. [CrossRef]

Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: Boston, MA, USA, 1981.
Jang, ].S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993,
23, 665-685. [CrossRef]

Jang, ].-S.R. Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In Proceedings
of the Ninth National Conference on Artificial Intelligence, Anaheim, CA, USA, 14-19 July 1991; AAAI Press:
Palo Alto, CA, USA, 1991; pp. 762-767.

Frank, A.; Asuncion, A. UCI Machine Learning Repository; University of California: Irvine, CA, USA, 2010.
Wang, X.Z.; Dong, C.R. Improving generalization of fuzzy IF-THEN Rules by maximizing fuzzy entropy:.
IEEE Trans. Fuzzy Syst. 2009, 17, 556-567. [CrossRef]

Jin, Y,; Von Seelen, W.; Sendhoff, B. On generating FC3 fuzzy rule systems from data using evolution
strategies. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 829-845. [CrossRef]

Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance
evaluation. J. Mach. Learn. Res. 2010, 11, 2079-2107.

Chiu, S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2, 267-278.
Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273-297. [CrossRef]


http://dx.doi.org/10.1109/TFUZZ.2007.905912
http://dx.doi.org/10.1109/TFUZZ.2013.2286414
http://dx.doi.org/10.1109/TFUZZ.2006.879986
http://dx.doi.org/10.1016/j.compbiomed.2014.06.017
http://www.ncbi.nlm.nih.gov/pubmed/25035233
http://dx.doi.org/10.1016/j.ins.2014.01.050
http://dx.doi.org/10.1016/j.ins.2014.03.018
http://dx.doi.org/10.1016/j.ins.2015.08.027
http://dx.doi.org/10.1016/j.asoc.2014.01.013
http://dx.doi.org/10.1016/j.fss.2014.05.019
http://dx.doi.org/10.1016/j.fss.2015.03.003
http://dx.doi.org/10.1016/j.eswa.2014.03.031
http://dx.doi.org/10.1016/j.ins.2014.04.005
http://dx.doi.org/10.1016/j.eswa.2015.03.024
http://dx.doi.org/10.1109/TNN.2011.2170095
http://www.ncbi.nlm.nih.gov/pubmed/22010148
http://dx.doi.org/10.3745/JIPS.2011.7.3.397
http://dx.doi.org/10.1109/21.256541
http://dx.doi.org/10.1109/TFUZZ.2008.924342
http://dx.doi.org/10.1109/3477.809036
http://dx.doi.org/10.1007/BF00994018

Algorithms 2017, 10, 99 13 of 13

35. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46,
175-185. [CrossRef]

36. John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of
the 11th Conference on Uncertainty in Artificial Intelligence, Montréal, QC, Canada, 18-20 August 1995;
Morgan Kaufmann: Burlington, MA, USA, 1995; pp. 338-345.

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1080/00031305.1992.10475879
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	General Type-2 Fuzzy Logic Systems with Interval Type-2 TSK Consequents 
	General Type-2 Membership Function Parameterization 
	Principle of Justifiable Granularity 

	Description of the Hybrid Learning Technique for GT2 TSK FLS 
	Experimentation and Results Discussion 
	Conclusions 

