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Abstract: In support of reasoning with sparse rule bases, fuzzy rule interpolation (FRI) offers a
helpful inference mechanism for deriving an approximate conclusion when a given observation has
no overlap with any rule in the existing rule base. One of the recent and popular FRI approaches is the
scale and move transformation-based rule interpolation, known as T-FRI in the literature. It supports
both interpolation and extrapolation with multiple multi-antecedent rules. However, the difficult
problem of defining the precise-valued membership functions required in the representation of fuzzy
rules, or of the observations, restricts its applications. Fortunately, this problem can be alleviated
through the use of type-2 fuzzy sets, owing to the fact that the membership functions of such fuzzy
sets are themselves fuzzy, providing a more flexible means of modelling. This paper therefore,
extends the existing T-FRI approach using interval type-2 fuzzy sets, which covers the original
T-FRI as its specific instance. The effectiveness of this extension is demonstrated by experimental
investigations and, also, by a practical application in comparison to the state-of-the-art alternative
approach developed using rough-fuzzy sets.
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1. Introduction

The compositional rule of inference [1] offers an effective mechanism to deal with fuzzy inference
for dense rule bases. Briefly, a dense rule base is a rule base where the input universe of discourse is
covered completely. Given such a rule base and an observation that is at least partially covered by the
rule base, the conclusion can be inferred from certain rules that intersect with the observation. However,
for cases where a fuzzy rule base contains “gaps” (i.e., the so-called sparse rule base as termed in [2]),
if a given observation has no overlap with the antecedent values of any rule, conventional fuzzy
inference methods will fail.

Fortunately, using fuzzy rule interpolation (FRI) [3,4], certain conclusions may still be obtained.
Moreover, with the help of FRI techniques, the complexity of a rule base can be reduced by omitting
fuzzy rules, which may be approximated from their neighbouring ones. Nevertheless, despite
these advantages, the application of traditional FRI methods may lead to abnormal and invalid
fuzzy conclusions. One particular issue is that the convexity of the derived fuzzy values is not
guaranteed [5], but convexity is often a crucial requirement for fuzzy inference in order to attain
improved interpretability of the results.

In order to overcome such drawbacks, a number of significant extensions to the original FRI
methods has been proposed in the literature, including [6–9]. In particular, the scale and move
transformation-based approach (T-FRI) [10,11] and its generalisation [12] can handle interpolation
and extrapolation involving multiple fuzzy rules, with each rule consisting of multiple antecedents.
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Such work also guarantees the uniqueness, as well as the normality and convexity of the interpolated
conclusion. This approach has recently been further enhanced with a backward interpolation
technique to enable chained rule interpolation [13]; a dynamic learning method to support efficient
use of previously interpolated results for subsequent inference [14]; an adaptive mechanism to
facilitate automatic error corrections in interpolative inference [15,16]; an extended adaptive fuzzy
rule interpolation approach for polygonal fuzzy sets [17,18]; and a system that works through
similarity-based reasoning with interpolative conditions [19].

There is little work in the area of FRI that can handle uncertainty in fuzziness itself however.
This is because all of the aforementioned approaches are implemented based on conventional fuzzy
set representations, i.e., type-1 fuzzy sets [20]. Whilst membership functions play an important role in
defining fuzzy sets, it is sometimes extremely difficult, if not impossible, to give precise definitions
for such membership functions. More generally, there may be different types of uncertainty in fuzzy
rule-based systems that need to be captured or modelled [21]: (1) the variables that are used in the
antecedents and the consequences of rules may be indiscernible; (2) the meanings of the words may
be vague because the same word can mean different things to different people; (3) an object can
belong to a given set or conceptual class to a partial degree, but that degree may itself be uncertain;
(4) the obtained rules may be inconsistent when individual views are obtained from a group of experts;
(5) observations attainable by inexact knowledge may be noisy and therefore randomly distributed.

Most of these types of uncertainty can be difficult to deal with in order to determine the crisp
membership functions for the fuzzy sets used. For instance, certain weather conditions are considered
as cold by all people, but others may be considered as cold by only certain individuals. That is,
different people may indicate different temperatures as their understanding of the concept cold.
The membership functions for different people may therefore be very different, depending on their
perception, preference, experience, etc. As another example, suppose that the concept of interest is
eye contact [22], denoted by x with x belonging to the intensity range of [0, 10], where zero indicates
no eye contact and 10 represents maximum eye contact. One of the terms that may characterise
the amount of perceived eye contact is “some eye contact”. Suppose that 10 people are surveyed,
and they are asked to locate the distribution for some eye contact on the scale 0–10. Surely, it would
not be expected that the same, precisely-described results are obtained from 10 individuals. Instead,
different membership functions to depict such a fuzzy concept will be provided. Figure 1 shows such
an example. The question is how such diverse information about the underlying concept may be
captured and expressed.

Figure 1. Different membership functions for some eye contact perceived by different people [23].

One approach might be to construct a type-1 fuzzy set with a triangle-shaped membership
function whose support or base endpoints (on the x-axis) are the two average endpoint values (over the
10 surveyed results) and whose apex is midway between these two endpoints. However, this approach
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completely ignores the uncertainty associated with the different results. A second approach is to
make use of the average endpoint values and the standard deviation of each endpoint to establish
an uncertainty interval about each average endpoint value. In so doing, for each x, the membership of
some eye contact is no longer a single value; instead, it is itself a function of the membership values.
Such a concept has, therefore, to be represented as a type-2 fuzzy set [24], which is illustrated in
Figure 2, where two endpoints l and r have two uncertainty intervals associated with them. The apex
point n is assumed to have a full certainty value. However, in general, n can also have an uncertainty
interval associated with it, just as with l and r.

Figure 2. A type-2 fuzzy set corresponding to the situation depicted by Figure 1.

The concept of type-2 fuzzy sets was proposed as an extension of the concept of type-1 fuzzy sets.
A type-1 fuzzy set has a grade of membership that is crisp, whereas a type-2 fuzzy set has grades of
membership that are themselves fuzzy [25,26]. That is, in set representation, membership functions
of type-1 fuzzy sets are two-dimensional, whereas membership functions of type-2 fuzzy sets are
three-dimensional. It is the new third dimension that provides additional degrees of freedom for
handling uncertainty [22]. Such sets are useful in circumstances where it is difficult to determine
the exact and precise membership functions [27]. Note that apart from the use of type-2 fuzzy
sets, other extensions have also been developed to represent various types of uncertainty that are
associated with defining type-1 fuzzy sets, including interval-valued fuzzy sets [28,29], R-fuzzy sets
[30], fuzzy complex numbers [31] and rough-fuzzy sets [23].

Type-2 fuzzy sets also include a specific group of fuzzy sets that are referred to as interval type-2
fuzzy sets [32,33], where all of the values of the secondary membership grades are the same. In this
case, the third dimension is no longer needed because it conveys no new information. Although
general type-2 fuzzy sets have one extra degree of freedom than interval type-2 fuzzy sets, it is not
yet known how to best choose their secondary membership functions [34,35]. The third dimension is
therefore often ignored in order to reduce the computational complexity, although this may result in
the loss of an intuitively desirable degree of freedom in concept representation.

Of particular interest are the very recent developments, e.g., [36–38] that have been proposed to
deal with FRI using interval type-2 fuzzy sets. However, none of these extend T-FRI. Motivated by
this observation and based on the initial investigation of [39], this paper extends the existing T-FRI
approach with the use of interval type-2 fuzzy sets. The proposed approach not only facilitates the
definition of representative values of interval type-2 fuzzy sets, but also modifies the underlying FRI
technique to ensure intuitive interpolated conclusions.

The remainder of this paper is organised as follows. Section 2 reviews the general concepts of
T-FRI and type-2 fuzzy sets. Section 3 presents the proposed extension to T-FRI, based on interval type-2
fuzzy sets. Case studies are provided to illustrate the interpolation results in Section 4. Conceptual
comparisons between interval type-2 fuzzy sets and rough-fuzzy sets and, subsequently, a practical
application comparison between the extensions respectively developed using these two types of
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higher-order fuzzy sets are presented in Section 5, noting that the extension to T-FRI using rough-fuzzy
sets represents the start-of-the-art development in the relevant area. The paper is concluded in Section 6,
including suggestions for possible further work.

2. Background

This section provides an overview of the basic concepts regarding T-FRI and type-2 fuzzy sets,
to set the foundations for the subsequent development.

2.1. Scale and Move Transformation-Based Interpolation

An outline of the existing T-FRI is provided in this subsection; further details can be found
in [10,11]. For simplicity, only rules involving triangle-shaped membership functions are considered in
this paper.

Given a triangular fuzzy set A, denoted by (a0, a1, a2), where a0 and a2 are the left and right base
points whose membership values equal zero, and a1 is the normal point whose membership value
equals one, its representative value (Rep) is defined as the average of the x coordinates of these three
key points, such that:

Rep(A) =
a0 + a1 + a2

3
(1)

2.1.1. N Closest Rules Selection

Without losing generality, suppose that a rule Ri and an observation O are respectively
represented by:

Ri : if x1 is Ai1, · · · , xj is Aij, · · · , xM is AiM

then y is Bi

O : x1 is A∗1 , · · · , xj is A∗j , · · · , xM is A∗M

where Aij denotes the j-th antecedent fuzzy set of rule Ri, A∗j denotes the observed fuzzy set of variable
xj and Bi denotes the consequent fuzzy set of rule Ri with j ∈ {1, . . . , M}, M being the number of
antecedent variables.

The distance dij between the fuzzy set pair of Aij and A∗j for a given j can be calculated as follows:

dij = d(Aij, A∗j ) = d(Rep(Aij), Rep(A∗j )) (2)

The distance di between the rule Ri and the observation O is deemed to be the average of all
antecedent variables’ distances:

di =

√√√√ M

∑
j=1

d′ij
2, d′ij =

dij

maxj −minj
(3)

where maxj and minj are the maximum and minimum values of variable j, j ∈ {1, . . . , M}, and each
distance measure dij is normalised into the range [0, 1], denoted by d′ij, to make the absolute distances
compatible with each other over different variable domains.

2.1.2. Intermediate Rule Construction

Suppose N (N ≥ 2) closest rules have been chosen from the observation. Such rules are
represented as Ri, i ∈ {1, . . . , N}, and each has M antecedents Aij, j ∈ {1, . . . , M}. Let wAij denote the
weight to which the j-th antecedent of the i-th rule contributes to the intermediate rule. The normalised
weight w′Aij

can be defined as:
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w′Aij
=

wAij

∑N
i=1 wAij

, wAij =
1

dij
(4)

Note that if dij = 0, then Rep(Aij) = Rep(A∗j ). In this case, variable j of the observation is
considered to be “identical” to the corresponding antecedent of the rule Ri, in terms of the currently
applied definition of Rep. Thus, in such exceptional cases, wAij = 1 for the “identical” variable(s),
while wAij = 0 for the remainder.

The antecedent of the so-called intermediate fuzzy term AIFT
j is constructed from the antecedents

of these closest rules. Another process shift is then introduced to modify AIFT
j to the antecedent of the

intermediate rule A′j, so that it will have the same Rep as A∗j :

A′j = AIFT
j + δAj(maxj −minj), AIFT

j =
N

∑
i=1

w′Aij
Aij (5)

where δAj is a constant defined by:

δAj =
Rep(A∗j )− Rep(AIFT

j )

maxj −minj
(6)

Regarding the consequence of the intermediate rule B′, it can be calculated by analogy to the
computation of the rule antecedent, such that:

B′ = BIFT + δB(max−min), BIFT =
N

∑
i=1

w′Bi
Bi (7)

where BIFT is the consequence of the intermediate fuzzy term, max and min are the maximum
and minimum values of the consequent variable and w′Bi

and δB are the means of w′Aij
and δAj ,

i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, respectively, which are defined as:

w′Bi
=

1
M

M

∑
j=1

w′Aij
, δB =

1
M

M

∑
j=1

δAj (8)

2.1.3. Scale Transformation

The similarity degree between Ã′ and Ã∗ is first measured by scale rate s, which is defined by:

s =
ã∗2 − ã∗0
ã′2 − ã′0

(9)

Let Ã′′ denote the modified intermediate term owing to the scale transformation. Using s,
the current support (ã′0, ã′2) is transformed into a new support (ã′′0 , ã′′2 ), while keeping the Rep and
the ratio between the left-support (ã′′0 , ã′′1 ) and the right-support (ã′′1 , ã′′2 ) of Ã′′ the same as those of its
original. Ã′′ can then be calculated by:

ã′′0 =
ã′0(1 + 2s) + ã′1(1− s) + ã′2(1− s)

3

ã′′1 =
ã′0(1− s) + ã′1(1 + 2s) + ã′2(1− s)

3

ã′′2 =
ã′0(1− s) + ã′1(1− s) + ã′2(1 + 2s)

3

(10)
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2.1.4. Move Transformation

The similarity degree is further measured by move rate m. Using m, the current support (ã′′0 , ã′′2 ) of
Ã′′ is moved to (ã∗0 , ã∗2) while ensuring its Rep to be the same as that of the observation Ã∗. The move
rate m is defined by:

m =


ã∗0 − ã′′0

ã′′1−ã′′0
3

if ã∗0 ≥ ã′′0

ã∗0 − ã′′0
ã′′2−ã′′1

3

otherwise
(11)

Given m, Ã∗ can then be calculated as:


ã∗0 = ã′′0 + m ã′′1−ã′′0

3

ã∗1 = ã′′1 − 2m ã′′1−ã′′0
3

ã∗2 = ã′′2 + m ã′′1−ã′′0
3

if m ≥ 0 (12a)


ã∗0 = ã′′0 + m ã′′2−ã′′1

3

ã∗1 = ã′′1 − 2m ã′′2−ã′′1
3

ã∗2 = ã′′2 + m ã′′2−ã′′1
3

otherwise (12b)

Note that the above scale and move transformations are utilised for one antecedent only.
The calculation for M antecedents is a mere repetition, resulting in sj and mj, j ∈ {1, . . . , M}.

The final interpolated conclusion B∗ is estimated by applying the scale and move transformations
to B′, using sB and mB, such that:

sB =
1
M

M

∑
j=1

sj, mB =
1
M

M

∑
j=1

mj (13)

where M is the number of antecedent variables.

2.2. Type-2 Fuzzy Sets

A type-2 fuzzy set is characterised by a fuzzy membership function whose membership grade for
each element is a fuzzy number in [0, 1]. The formal definition is provided below.

Definition 1. [40] A type-2 fuzzy set, denoted Ã, is characterised by a type-2 membership function µÃ(x, u),
where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (14)

in which 0 ≤ µÃ(x, u) ≤ 1. Ã can also be expressed as:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] (15)

where
∫ ∫

denotes union over all admissible x and u.

Definition 2. [32] When all µÃ(x, u) = 1 then Ã is an interval type-2 fuzzy set, which is expressed as:

Ã =
∫

x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] (16)
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Definition 3. [32] Uncertainty in the primary memberships of an interval type-2 fuzzy set, Ã, consists of a
bounded region that is called the footprint of uncertainty (FOU). It is the union of all primary memberships, i.e.,

FOU(Ã) =
⋃

x∈X
Jx (17)

Definition 4. [32] The upper membership function (UMF), denoted ÃU , and the lower membership function
(LMF), denoted ÃL, of a type-2 fuzzy set Ã are two type-1 membership functions that bound the FOU. The UMF
is associated with the upper bound of FOU(Ã) and is denoted µÃU (x), ∀x ∈ X, and the LMF is associated with
the lower bound of FOU(Ã) and is denoted µÃL(x), ∀x ∈ X, i.e.,

µÃU (x) = FOU(Ã) ∀x ∈ X

µÃL(x) = FOU(Ã) ∀x ∈ X
(18)

As indicated above, an interval type-2 fuzzy set Ã can be represented by the LMF ÃL and the
UMF ÃU , i.e., Ã =< ÃL, ÃU >. In particular, when triangular membership functions are used, such
an interval type-2 fuzzy set can be illustrated as shown in Figure 3, where ÃL = (ãL

0 , ãL
1 , ãL

2 ; HÃL),
ÃU = (ãU

0 , ãU
1 , ãU

2 ; HÃU ), (ãL
0 , ãL

1 , ãL
2 ) and (ãU

0 , ãU
1 , ãU

2 ) denote the three key points of the LMF and those
of the UMF, respectively, and HÃL and HÃU denote the maximum membership values of ÃL and ÃU ,
with ãU

0 ≤ ãL
0 , ãL

2 ≤ ãU
2 , 0 < HÃL ≤ HÃU = 1. Clearly, the closer the shapes of ÃL and ÃU are, the less

uncertain the information contained within Ã is. When ÃL coincides with ÃU , the interval type-2
fuzzy set degenerates to a type-1 fuzzy set.

Figure 3. Lower membership function ÃL and upper membership function ÃU of a triangular interval
type-2 fuzzy set Ã.

3. Proposed Interval Type-2 Transformation-Based Interpolation

Suppose that an interval type-2 fuzzy set Ã as defined in Figure 3 has the following six distinct
coordinates: (ãL

0 , 0), (ãL
1 , HL

Ã), (ãL
2 , 0), (ãU

0 , 0), (ãU
1 , HU

Ã
) and (ãU

2 , 0). The lower and upper Reps Rep(ÃL)

and Rep(ÃU) of Ã can then be computed according to Equation (1), such that:
Rep(ÃK)x =

1
3
(ãK

0 + ãK
1 + ãK

2 )

Rep(ÃK)y =
1
3

HK
Ã

(19)

where x and y denote a certain variable and the corresponding membership function, respectively,
K ∈ {L, U}.

Note that in the existing T-FRI, Rep(Ã)y is a constant, so only the x coordinate value is therefore
considered there. However, this is no longer the case in this work due to the introduction of additional



Algorithms 2017, 10, 91 8 of 20

uncertainty, and both values of the x and y coordinates need to be considered. The calculation for
Rep(Ã)y follows the same mechanism as the one used to compute Rep(Ã)x, to maintain consistency.

In order to distinguish different shapes of interval type-2 fuzzy sets, the shape diversity factor
f needs to be introduced. In this work, its specification follows the conventional definition of the
statistical standard deviation (although this may be defined differently).

Definition 5. The lower and upper shape diversity factors f L
Ã and f U

Ã
are defined by:

f K
Ã =

√√√√√ 2
∑

i=0
(ãK

i − Rep(ÃK)x)2

3
, K = L, U (20)

A small shape diversity factor implies that the four key points of ÃL (ÃU) tend to be close to those
of the lower (upper) Rep. That is, the smaller the shape diversity factor, the smaller the area of the
LMF (UMF).

Mimicking the development of T-FRI where a Rep is used to succinctly depict a given type-1
fuzzy set, while extending T-FRI to dealing with interval type-2 fuzzy sets, a single overall Rep of
a given interval type-2 fuzzy set is also introduced. For this, the weight factor w of the LMF (UMF) is
first defined as follows.

Definition 6. The lower and upper weight factors wL
Ã and wU

Ã
are defined as the weights of the shape diversity

factors, in terms of the areas of the LMF and UMF, such that:

wK
Ã =

f K
Ã

f L
Ã
+ f U

Ã

, K = L, U (21)

where f L
Ã + f U

Ã
6= 0. If however, f L

Ã + f U
Ã

= 0, i.e., f L
Ã = 0 and f U

Ã
= 0, the interval type-2 fuzzy set

degenerates to a singleton value, wL
Ã = wU

Ã
= 1/2.

Definition 7. The overall representative value Rep(Ã) of a given interval type-2 fuzzy set Ã is defined by:

Rep(Ã) = ∑
K∈{L,U}

(wK
Ã ∑

e∈{x,y}
Rep(ÃK)e) (22)

where the lower (upper) shape diversity factor is regarded as the weight of the lower (upper) Rep of the LMF
(UMF). This is necessary, as otherwise, the same value for Rep would be derived from different shapes of interval
type-2 fuzzy sets.

Given the above definitions, again, by mimicking the approach of the original T-FRI, the extended
algorithm for deriving the interpolated conclusion with multiple multi-antecedent rules can be
established and is summarised below.

1. Calculate representative values:

The lower and upper representative values Rep(ÃK)x and Rep(ÃK)y of a given interval type-2
fuzzy set Ã are calculated first using Equation (19). The shape diversity factors f K

Ã and weight
factors wK

Ã are computed according to Equations (20) and (21), respectively. The overall Rep
Rep(Ã) is then obtained by Equation (22), K = L, U. The calculations for all of the antecedent
variables of all rules and their counterparts in the observation follow the same procedure.
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2. Choose closest N rules:

The distances between the observation and all rules in the rule base are calculated using
Equations (2) and (3). The N (N ≥ 2) rules that have minimal distances are then chosen as
the N closest rules to perform interpolation.

3. Construct intermediate rule

The normalised weight w′Ãij
of the j-th antecedent of the i-th chosen rule, which is calculated

by Equation (4), together with the parameter δÃj
, which is calculated by Equation (6), are used

in Equation (5) to obtain the value of each antecedent variable xj within the intermediate rule
Ã′j, i ∈ {1, . . . , N}, j ∈ {1, . . . , M}. From this, two parameters w′B̃i

and δB̃ are computed using

Equation (8) and are then used to construct B̃′ from Equation (7), resulting in the intermediate
rule Ã′1 ∧ · · · Ã′j ∧ · · · Ã′M ⇒ B̃′.

4. Perform scale, move and height transformations:

In conjunction with the given Ã∗j for each antecedent variable xj, the rates sK
j , mK

j and hj,
K ∈ {L, U}, can then be calculated using Equations (9), (11) and (23). Due to the extra
uncertainty encountered in the membership functions, a further transformation on the height of
the LMF is needed (because the LMFs of different interval type-2 fuzzy sets may have different
heights), while the height of the UMF remains the same owing to its normality. This additional
transformation is introduced to transform the heights of Ã

′L
j to those of Ã∗L

j , with the height rate
h being calculated by:

hj =
H∗L

Ãj

H′L
Ãj

(23)

where 0 < H∗L
Ãj
≤ H∗U

Ãj
= 1 and 0 < H

′L
Ãj
≤ H

′U
Ãj

= 1, as defined previously. This constraint

applies to the interpolated conclusion, as well. That is, if the height of B̃∗L is greater than the
height of B̃∗U after the height transformation, then H∗L

B̃ = H∗UB̃ .

5. Derive interpolated conclusion:

The second intermediate term B̃′′ and the interpolated result B̃∗ can then be estimated by the
combined sK

B̃ , mK
B̃ and hB̃, K ∈ {L, U}. Here, sK

B̃ and mK
B̃ are computed following Equations (9)–(13),

respectively, and hB̃ is computed according to Equation (23) such that:

hB̃ =
1
M

M

∑
j=1

hj (24)

6. Implement modified procedure:

To obtain intuitive interpolated conclusions for interval type-2 fuzzy sets, the relative location
between the LA and UA of an interval type-2 fuzzy set should be considered [39]. For this
purpose, B′′ is modified into B′′c to maintain the relative location both before and after the scale
transformation. Here, a relative location factor θ is defined by:

θ =
B
′L

B′U
=

B
′′L

B′′Un
=

B
′′L
n

B′′U
(25)

where B
′′L
n and B

′′U
n denote the “new” terms, which are modified from the given B

′′U and B
′′L,

respectively, using the same θ. The combined B
′′L
c and B

′′U
c of B′′c are then computed as the mean

of the corresponding two terms, such that:

B
′′K
c =

B
′′K + B

′′K
n

2
, K = L, U (26)



Algorithms 2017, 10, 91 10 of 20

Similarly, the final interpolated conclusion can also be modified from B∗ to B∗c using the same θ to
maintain the relative location both before and after the move transformation.

4. Experimentation and Discussion

In this section, four case studies are used to illustrate the interpolation results where the
observations fall into the rule base “gaps”. However, in general, if the observations partially overlap
with the rule antecedents and such matches are above a certain confidence level, no interpolation
will be required (as conventional compositional rule of inference can then be applied). Otherwise,
the interpolation method is applied.

4.1. Case 1

This example considers an extreme case of the proposed approach where each interval type-2
fuzzy set under consideration has identical normal points. The observation and the two rules associated
with the single antecedent variable are described in Table 1.

Table 1. Involved interval type-2 fuzzy sets for Case 1.

Rule 1
Ã1 =< (1, 3.5, 4; 1), (0, 3.5, 5; 1) >

B̃1 =< (1.5, 2, 3; 1), (0, 2, 5; 1) >

Rule 2
Ã2 =< (12, 13, 13.5; 1), (11, 13, 14; 1) >

B̃2 =< (11, 11.5, 12; 1), (10, 11.5, 13; 1) >

Observation Ã∗ =< (6.5, 8, 9.5; 1), (6, 8, 10; 1) >

The interpolated conclusion B̃∗c =< (6.41, 6.70, 8.05; 1), (5.45, 6.70, 9.61; 1) > is shown in Figure 4.
It can be seen that the normal points of the interpolated result are identical also. This shows that the
modified procedure [39] is an effective improvement for achieving intuitive (or, equivalently, avoiding
counter-intuitive) interpolated conclusions.

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 x

µ
A
~

1
A
~

2
A
~*

1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 y

µ
B
~

1 B
~

2
B
~

c

*

Figure 4. Two single-antecedent rules interpolation with identical normal points.

4.2. Case 2

This example case concerns an interpolation involving singleton-valued conditions using
rules with multiple antecedent variables. In particular, two rules each involving two antecedents
Ã11 ∧ Ã12 ⇒ B̃1, Ã21 ∧ Ã22 ⇒ B̃2 and the observation {Ã∗1 , Ã∗2} are given in order to illustrate the
interpolative process in which the result B̃∗c is determined. All of the conditions are listed in Table 2.
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Table 2. Involved interval type-2 fuzzy sets for Case 2.

Rule 1

Ã11 =< (3, 3, 3; 1), (3, 3, 3; 1) >

Ã12 =< (2.5, 2.5, 2.5; 1), (2.5, 2.5, 2.5; 1) >

B̃1 =< (4, 4, 4; 1), (4, 4, 4; 1) >

Rule 2

Ã21 =< (12, 13, 13.5; 0.6), (11, 13, 14.5; 1) >

Ã22 =< (11.5, 12.5, 13.5; 0.5), (10, 12, 14.5; 1) >

B̃2 =< (10.5, 11.5, 12; 0.5), (9, 11.5, 13; 1) >

Observation
Ã∗1 =< (6, 7, 8; 0.6), (5, 7.5, 9; 1) >

Ã∗2 =< (5.5, 6, 7; 0.5), (4, 6, 8; 1) >

The interpolated conclusion B̃∗c =< (4.35, 5.68, 6.71; 0.54), (3.87, 5.68, 7.15; 1) > is shown in
Figure 5. It follows that if certain components involved in the given rules are singleton-valued,
the interpolated conclusion remains an interval type-2 fuzzy sets.
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Figure 5. Two multi-antecedent rules interpolation with singleton-valued conditions.

4.3. Case 3

This example considers a general case involving multiple multi-antecedent rules. In particular,
four rules with each involving three antecedent variables are selected as the closest neighbouring rules.
Importantly, the values of two variables within the given observation are located between these rules,
whereas one is located beyond the area flanked by them. This relates to a hybrid case, reflecting the
needs for both interpolation and extrapolation [11]. All of the involved fuzzy sets are listed in Table 3.

The interpolated conclusion B̃∗c =< (7.52, 8.72, 9.77; 0.6), (6.61, 8.86, 10.71; 1) > is shown in
Figure 6. It can be seen that the interpolation and extrapolation hybrid performs well.
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Table 3. Hybridisation of interpolation and extrapolation for Case 3.

Rule 1

Ã11 =< (1, 2, 3; 0.7), (0, 1.5, 4; 1) >

Ã12 =< (2, 3, 4; 0.5), (1, 2.5, 5; 1) >

Ã13 =< (7, 8, 9; 0.6), (6, 7.5, 10; 1) >

B̃1 =< (1, 1.5, 2.5; 0.6), (0, 1.5, 3.5; 1) >

Rule 2

Ã21 =< (16, 17.5, 19; 0.7), (15, 17.5, 20; 1) >

Ã22 =< (11.5, 12.5, 13; 0.5), (10, 13, 15; 1) >

Ã23 =< (21, 22, 23; 0.6), (20, 22, 23.5; 1) >

B̃2 =< (21.5, 23, 23.5; 0.6), (20.5, 23, 24; 1) >

Rule 3

Ã31 =< (21.5, 22.5, 24; 0.7), (20, 22, 25; 1) >

Ã32 =< (6.5, 7, 8.5; 0.5), (5.5, 7.5, 9; 1) >

Ã33 =< (12, 12.5, 14; 0.6), (11, 13, 15; 1) >

B̃3 =< (16.5, 17, 18; 0.6), (15, 17, 20; 1) >

Rule 4

Ã41 =< (11.5, 12, 13; 0.7), (10.5, 12, 14; 1) >

Ã42 =< (22, 23, 23.5; 0.5), (21, 22.5, 24; 1) >

Ã43 =< (17, 18.5, 19; 0.6), (16, 18.5, 19.5; 1) >

B̃4 =< (12, 13, 14; 0.6), (11.5, 13.5, 14.5; 1) >

Observation

Ã∗1 =< (6, 6.5, 7.5, ; 0.7), (5, 6.5, 9; 1) >

Ã∗2 =< (16.5, 18, 19.5; 0.5), (15, 18, 20; 1) >

Ã∗3 =< (1.5, 2.5, 4; 0.6), (0.5, 3, 5; 1) >
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Figure 6. Interpolation and extrapolation involving multiple multi-antecedent rules for Case 3.
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4.4. Case 4

This example considers a specific case where all of the interval type-2 fuzzy sets degenerate to
type-1 fuzzy sets, i.e., ÃL

i = ÃU
i and B̃L

i = B̃U
i . All of the terms are listed in Table 4, where the type-1

fuzzy sets are still represented in the form of interval type-2 fuzzy sets.

Table 4. Involved interval type-2 fuzzy sets for Case 4.

Rule 1
Ã1 =< (0, 5, 6; 1), (0, 5, 6; 1) >

B̃1 =< (0, 2, 4; 1), (0, 2, 4; 1) >

Rule 2
Ã2 =< (11, 13, 14; 1), (11, 13, 14; 1) >

B̃2 =< (10, 11, 13; 1), (10, 11, 13; 1) >

Observation Ã∗ =< (7, 8, 9; 1), (7, 8, 9; 1) >

The interpolated conclusion B̃∗c =< (5.83, 6.26, 7.38; 1), (5.83, 6.26, 7.38; 1) > is shown in Figure 7.
The same result can be found in [10]. It follows that if all given sets are type-1 fuzzy sets, i.e.,
all uncertainty regarding the secondary membership function disappears, the interpolated result is
the same as that achieved using the original T-FRI. This experimentally confirms that the extended
version using interval type-2 fuzzy sets is a generalisation of the conventional T-FRI, covering T-FRI as
its particular instance.
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Figure 7. Interpolation for type-1 fuzzy sets case.

5. Type-2 Fuzzy Sets vs. Rough-Fuzzy Sets for T-FRI

As with type-2 fuzzy sets, rough-fuzzy sets [23] offer an alternative means for knowledge
representation involving uncertainty, which are characterised by the lower and upper approximation
membership functions. It is therefore not surprising that the present approach may be exploited to
facilitate a closely relevant development of rough-fuzzy set-based T-FRI. Whilst such a development
itself is beyond the scope of this paper, but reported elsewhere [23], it is interesting to examine the
conceptual similarity between the two alternative techniques, thereby showing the generality of the
underlying approach.

5.1. Conceptual Comparison

The uncertain information captured in the primary memberships of a general type-2 fuzzy set
consists of a region FOU that is bounded by the lower and upper membership functions. However,
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for an interval type-2 fuzzy set, because the secondary membership grades convey no further
information, the FOU is a complete description of all that is embedded in such a fuzzy set [32].
Thus, this single region is sufficiently used to describe uncertainty in interval type-2 fuzzy sets.

The concept of rough-fuzzy sets is derived from the definition of rough sets [41,42]. In particular,
a rough-fuzzy set is constructed by the lower and upper approximation membership functions, where
the lower approximation (LA) is defined by the intersection of all of the given fuzzy sets (certainty)
and the upper approximation (UA) by the union of the given sets. That is, the LA captures the minimal
level of certainty regarding the information embedded in the original fuzzy sets, and the UA reflects
the maximal level. The boundary region, bounded by the two approximations, indicates the region
that can possibly, but not always certainly, be partitioned with the information contained within the
original fuzzy sets.

Comparing these two approaches to capturing higher-order uncertainty in describing given
information content, it can be revealed that the UA in rough-fuzzy sets plays the same role as the
interval in interval-valued fuzzy sets. In fact, the FOU in interval type-2 fuzzy sets is the union of
all primary memberships (intervals) [32]; therefore, it is also represented as an interval, covering
all uncertain information involved. Both FOU and UA address all uncertain information. As the
third-dimension of type-2 fuzzy sets becomes fixed with a membership value of 1, the FOU in such an
interval type-2 fuzzy set captures all uncertain information with full certainty, whilst such information
can also be captured by means of the LA of a rough-fuzzy set. As a consequence, type-2 fuzzy sets and
rough-fuzzy sets are two different extensions of conventional fuzzy sets; the former is fuzzy-fuzzy
sets, while the latter is rough-fuzzy sets. Nevertheless, the mathematical foundations of them are
different, but they both can be utilised to represent knowledge involving uncertainty information,
leading to the development of similar extensions to the conventional transformation-based fuzzy
rule interpolation. From this point of view, the approach taken in this work is general, being minor
in comparison to the methodology as reported in [23], where rough-fuzzy sets are utilised as the
mathematical underpinning.

5.2. Practical Application and Comparison

Whilst conceptually it has been established that the present work using interval type-2 fuzzy sets
to extend T-FRI bears a similar and general approach to that developed by the use of rough-fuzzy sets,
this subsection investigates whether practically these techniques may function with similar results as
well. To have a fair comparison, the same application problem as adopted in [23] is employed here,
where the rough-fuzzy set-based extension to T-FRI is presented. The outline of the problem scenario
is described below. Of course, this practical application will also serve as a further demonstration of
the potential success of the proposed interval type-2 fuzzy set-based T-FRI approach.

5.2.1. Application Problem

Environmental change influences disease burden [43,44]. Intensive studies have been made in an
effort to identify logical relationships underlying such influences so that the consequences of a certain
environmental change may be predicted. One particular application problem in this area has recently
been investigated in [15,45], which is based on the study of [46]. The original problem of [15] is
simplified such that all of the examined factors are linearly connected. The resulting simpler causal
model is shown in Figure 8.

All factors considered in this application study are represented as system variables, and each
relation between two directly connected factors is represented as a rule associating the relevant
variables. In summary, there are five variables in the problem: contact outside of the village,
reintroduction of pathogenic strains, social connectedness, hygiene and sanitation infrastructure
and infections disease rate, denoted as x1, . . . , x5, respectively. Note that different variables are defined
on different domains. To simplify knowledge representation, variable domains are mapped onto the
real line and normalised.
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Figure 8. Causal diagram of the simplified application problem [23].

In order to evaluate the final disease rate, a group of experts is selected to express their views on
each factor. As with the work of [23], suppose that the opinions are obtained from six experts, denoted
as T1, . . . , T6, respectively, and that the subsets of rules (one subset per causal implication): A → B,
C → D and B ∧ D → E are established by these experts with each supported by two of them. Note
that here, A, B, C, D and E represent the certain qualitative values expressing the opinions given by
the experts with regard to the domain variables x1, x2, x3, x4 and x5, respectively.

5.2.2. Results

Given different expert rules and observations, one way to resolve the problem might be to use a
conventional FRI approach, say T-FRI, to implement required interpolation separately. Suppose that
two pairs of expert rules are contained in a sub-rule base: A1 → B1 and A2 → B2, where A11 → B11

and A21 → B21 are provided by the expert T1 and A12 → B12 and A22 → B22 by T2. Presented with
two observations A∗1 and A∗2 (with the underlying semantics of the corresponding qualitative values
depicted in Figure 9), the interpolated result by the use of T-FRI is a set that contains four elements.
The computation with respect to the remainder of the subsets of rules follows the same procedure,
resulting in a consequence set of 32 interpolated results, as shown in Figure 9. Obviously, the cardinality
of the set of interpolated consequent results increases rapidly along with the increase of the cardinality
of rule subsets and the number of observations. This results in high computational complexity.

Fortunately, the proposed interval type-2 approach can be applied without suffering from this
difficulty. All of the uncertain relations can be captured using interval type-2 fuzzy sets, and the
conclusion can be derived by the interval type-2 fuzzy rule interpolation when a given observation
is not matched with any of the rules available. The interpolated results following the present work
are illustrated in Figure 10. These results reflect the distribution of those results shown in Figure 9.
Compared to the rough-fuzzy-based interpolated results as given in Figure 11, which are directly
taken from [23], it can be seen that the two resultant sets have similar locations. This implies that both
approaches are effective in finding approximate solutions for this problem.
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Figure 9. Cont.
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Figure 9. Interpolated results from conventional FRI [23].
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Figure 10. Interpolated results from interval type-2 interpolation [23].
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Figure 11. Interpolated results from rough-fuzzy interpolation (taken from [23]).
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6. Conclusions

This paper has proposed an extension to the existing transformation-based fuzzy rule interpolation
approach through the use of interval type-2 fuzzy sets. This approach offers a more concise way to deal
with the uncertainty in fuzzy rule interpolation. Four demonstrative case studies have been presented
in order to illustrate the operation of this novel approach. The conceptual and practical comparisons
between type-2 fuzzy sets and rough-fuzzy sets have also been provided, with their implications to
the extensions to T-FRI pointed out. The investigations have indicated that the proposed approach is
of a natural appeal for FRI while dealing with the uncertainty that the conventional T-FRI technique
may otherwise be difficult to handle. The work is an effective generalisation of the original T-FRI since
the results of applying this extension degenerate to those obtainable by the existing type-1 FRI if the
higher-order uncertainty embedded in the type-2 fuzzy sets vanishes.

There are a number of aspects that could be improved with further research. In particular, only
triangle-shaped membership functions are considered for implementation in this work. It would be
beneficial to investigate how the approach may be extended (e.g., to enable the use of trapezoidal and
other piecewise linear membership functions and to compare the effects of employing such different
types of membership function). Furthermore, it would be interesting to evaluate the interpolated results
attainable with this technique in comparison with those achievable using alternative FRI methods
(e.g., [36–38]). Furthermore, currently, for simplicity (both mathematically and computationally),
the current work is based on interval type-2 fuzzy sets. It would be useful to examine how the
proposed work could be further generalised to support the involvement of general type-2 fuzzy sets
while performing FRI. Finally, scaled-up real-world applications would help to further evaluate the
full efficacy and potential of this research.
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