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1. Introduction

Let us consider the nonlinear, non-steady reaction-convection-diffusion equation

∂u
∂t

= ∇× (σ∇u)− ṽ×∇u− αu− g + s (x, y) ∈ Ω, t > t0 Diff. Eq.

u(x, y, t0) = u0(x, y) (x, y) ∈ Ω, t = t0 ≥ 0 IC (1)

u(x, y, t) = u1(x, y, t) (x, y) ∈ ∂Ω, t > t0 Dirichlet BCs,

where t0 is the initial time, u = u(x, y, t) is the density function, σ = σ(x, y, u) > 0 is the diffusion
coefficient, ṽ is the velocity vector (assumed constant), α = α(x, y) ≥ 0 is the absorption term,
−g = −g(x, y, u) is the rate of change of the reaction and s = s(x, y) is the source term. This equation

is important in various different fields and it can describe several processes and applications.
If we discretize Equation (1), at each time level the differential problem can be approximated by a

nonlinear, algebraic system. However, computing the solution of the discretized system is generally
complicated. For instance, if we use a Newton’s method, we incur in the problem of computing the
Jacobian matrix, which is usually difficult and computationally onerous. Therefore, it is suitable to
first linearize the discretized system by setting up an iterative procedure which “lags” the diffusivity.
In this way, we obtain the so-called Lagged Diffusivity Method (LDM). The analysis of this kind of
strategies can be traced back to [1]. More recently, the LDM applied to steady and non-steady diffusion
equations with reaction and/or convection terms has been studied in [2] and following works.

The nonlinear algebraic system is thus replaced by a series of systems of weakly nonlinear
algebraic equations, whose Jacobian matrix is much easier to compute. Therefore, these systems can
be easily solved by a Newton’s method. Lastly, at each Newton iteration we solve a system of linear
algebraic equations (which we again do iteratively, for enhanced efficiency).

This paper addresses some topics which have not been considered in earlier works.
In particular, we
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• compare different discretizations. In particular, we consider what happens when the space is
discretized by an upwind method or by central finite differences. We also describe different time
discretizations, considering the θ-method and the IMEX schemes;

• study numerically what happens in some particularly critical cases, where some smoothness
assumptions are not satisfied. This is the case of boundary layer and blow-up solutions.

Regarding the discretization, this is relevant since the discretization can modify the properties
of the discretized systems. This can be exploited to improve the solution procedure: for instance, we
notice that the upwind method can significantly reduce the computational times when ṽ is large (at
the cost of a worse order of approximation).

The analysis of blow-up solutions is instead interesting for two reasons. First, we evaluate the
behavior of the method in critical situations where the LDM is not analytically proven to converge.
Indeed, the convergence of the method requires some smoothness assumptions on σ, α, g and s which
are not satisfied in proximity of blow-ups and boundary layers. Second, we analyze numerically
the problem, while several papers regarding blow-up solutions deal with the analytical problem of
determining if and when the blow-up occurs (e.g., if T is finite or not) and they are often referred
to 1D differential problems with Neumann boundary conditions. Regarding analyses involving
multidimensional domains and/or Dirichlet boundary conditions, it is instead worth citing [3–5],
which are concerned with problems similar to the ones we analyze in the following. In particular,
criteria for determining whether the blow-up occurs in a finite time or not and for estimating the
blow-up time itself are given by using the Hopf’s maximum principle (e.g., see [6] (§2.3) or [7]).
Other interesting papers on blow-up include [8,9], while [10] is a comprehensive review on blow-up in
parabolic equations.

In Section 2 we analyze the discretization. In particular, we describe how the discretized system
changes when space is discretized by central finite differences or by an up-wind scheme and when
time is integrated by a θ−method or by IMEX strategies.

In Section 3 we then summarize the method and consider how it is affected by the discretization
itself. We also report some known results on the monotonicity of the finite-difference (FD) operators
and on the convergence of the method.

In Section 4 we provide some details on the implementation, an algorithm and a short summary
of the solution method.

Lastly, Section 5 is devoted to the numerical experiments. First, we show numerically the
differences which arise when the discretization is changed. Then, we study problems characterized by
blow-up and by boundary layer solutions in order to analyze the behavior of the LDM in critical cases,
when the smoothness assumptions are not satisfied.

2. Discretization

2.1. Space Discretization

For simplicity, let us assume Ω to be a 2D bounded rectangular domain. Let us superimpose a
grid Ωh = Ωh ∪ ∂Ωh to Ω. For simplicity, we use uniform mesh size h along x and y. Thus, Ωh is made
of the mesh points (xi, yj), i = 1, ..., N, j = 1, ..., M with:

xi+1 = xi + h, i = 0, ..., N yj+1 = yj + h j = 0, ..., M.

Using this grid, ui,j(t) : Ωh → R denotes the grid function which approximates the solution u(xi, yj, t)
at the mesh points (xi, yj) of Ωh, i = 0, ..., N + 1, j = 0, ..., M + 1. This grid function satisfies the initial
condition for (xi, yj) ∈ Ωh and t = t0 and the Dirichlet boundary conditions for (xi, yj) ∈ ∂Ωh, t > t0.

We can now approximate the derivatives of Equation (1) by finite difference methods. In this
regard, several choices are possible. In particular, it is interesting to analyze the space discretizations
obtained by central finite differences and by the upwind scheme. Indeed, this choice influences the
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properties of the matrix of the discretized system, as we will see in the following. Regarding the
upwind scheme, we consider, for instance, the case of positive ṽ. If ṽ < 0 the backward difference
quotients which approximate the first-order derivatives are simply replaced by forward difference
quotients.

Thus, denoting the forward finite differences (in x and in y respectively) by ∆x and ∆y, the
backward finite differences by ∇x, ∇y and the central finite differences by δx, δy, we have:

• Discretization by central finite differences (error O(h2))

dui,j(t)
dt

= ∆x[σ(xi, yj, ui,j(t))∇xui,j(t)] + ∆y[σ(xi, yj, ui,j(t))∇yui,j(t)]−

− ṽ1δxui,j(t)− ṽ2δyui,j(t)− αi,jui,j(t)− g(xi, yj, ui,j(t)) + s(xi, yj, t).
(2)

• Discretization by upwind scheme (error O(h)), case ṽ > 0

dui,j(t)
dt

= ∆x[σi,j(ui,j(t))∇xui,j(t)] + ∆y[σi,j(ui,j(t))∇yui,j(t)]−

− ṽ1∇xui,j(t)− ṽ2∇yui,j(t)− αi,jui,j(t)− gi,j(ui,j(t)) + si,j(t).
(3)

In both cases, we can write the discretization in a more convenient way by defining

Central FD Upwind

Li,j =
1
h2 σ(xi, yj, ui,j(t)) L̃i,j =

ṽ1

2h
L̃i,j =

ṽ1

h

Bi,j =
1
h2 σ(xi, yj, ui,j(t)) B̃i,j =

ṽ2

2h
B̃i,j =

ṽ2

h

Ri,j =
1
h2 σ(xi+1, yj, ui+1,j(t)) R̃i,j = −L̃i,j R̃i,j = 0

Ti,j =
1
h2 σ(xi, yj+1, ui,j+1(t)) T̃i,j = −B̃i,j T̃i,j = 0

Di,j = Li,j + Bi,j + Ri,j + Ti,j D̃i,j = α(xi, yj) D̃i,j = α(xi, yj) + L̃i,j + B̃i,j

(4)

Then, setting L̂i,j = Li,j + L̃i,j (analogously for B̂i,j, R̂i,j, T̂i,j and D̂i,j), the right hand-side of
Equations (2) and (3) can be written formally in the same way as

B̂i,jui,j−1(t) + L̂i,jui−1,j(t)− D̂i,jui,j(t) + R̂i,jui+1,j(t) + T̂i,jui,j+1(t)− g(xi, yj, ui,j(t)) + s(xi, yj, t). (5)

In the following, we denote σ(xi, yj, ui,j) by σ(ui,j) for compactness of notation.
Finally, we use matrix notation to write the entire system of ordinary differential equations arising

from the space discretization. In this regard, we use the row lexicographic ordering for mesh points
and define Pk = (xi, yj) with k = (j− 1)N + i, for i = 1, ..., N, j = 1, ..., M. We can then write the vector
u(t) containing all the ui,j(t) at internal mesh points. Thus, the space discretization leads to

du(t)
dt

= −A(u(t))u(t) + b(u(t))−G(u(t)) + s(t). (6)

Again, we notice that formally this expression is valid both when the discretization is performed
by central FD and when the upwind scheme is used. The following differences are however present:

• when we use the upwind scheme, the order of the approximation is O(h); when we use central
FD, the order of the approximation is O(h2);

• when we use the upwind scheme, A(u(t)) is irreducibly diagonally dominant [11] (p. 23)
irrespective of the choice of h. Having also positive diagonal elements and non positive
off-diagonal elements, it is always a non-singular M-matrix [11] (p. 91). With central FD, A(u(t))
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is irreducibly diagonally dominant (and a non-singular M-matrix) only if h satisfies a condition
on the step-size. In particular, by Equation (4) if is easy to find that this condition corresponds to

h < min
{

2σmin

|ṽ1|
,

2σmin

|ṽ2|

}
. (7)

The vector b(u(t)) in Equation (6) derives from the Dirichlet boundary conditions
u(xi, yj, t) = u1(xi, yj, t) at points (xi, yj) ∈ ∂Ωh. Considering the Dirichlet BCs in Equation (1)
and using, again, the row-lexicographic order, its components are

bk = L1,ju1(x0, yj) with k = (j− 1)N + 1, j = 1, ..., M

bk = Bi,1u1(xi, y0) with k = i, i = 1, ..., N

bk = RN,ju1(xN+1, yj) with k = jN, j = 1, ..., M

bk = Ti,Mu1(xi, yM+1) with k = (M− 1)N + i, i = 1, ..., N,

where the coefficients L, B, R, T depend on u at the inner point which is neighbor to the considered
point of ∂Ωh. At corners, where the same inner point is neighbor to two boundary points, we then
have two contributions: e.g., b1 = L1,1u1(x0, y1) + B1,1u1(x1, y0).

Defining µ = NM, G(u) ∈ Rµ is the nonlinear mapping of components Gk(u) = Gk(uk) =

g(xi, yj, uk), with i = 1, ..., N, j = 1, ..., M and k = (j− 1)N + i. It is, then, easy to notice that G(u) is a
diagonal mapping [12] (p. 11).

Finally, s(t) ∈ Rµ contains the terms arising from the source term: sk(t) = s(xi, yj, t) with
i = 1, ..., N, j = 1, ..., M and k = (j− 1)N + i.

2.2. Time Discretization

We now consider time discretization. Let us introduce a time spacing ∆t, which defines a series of
time levels: the n-th time level tn is defined by tn = n∆t + t0, n = 0, 1, ....

The time derivatives of Equation (6) can be approximated by several different schemes. We could
use, for example, the well-known θ−method (e.g., see [13]), which is completely implicit when θ 6= 0.
An alternative, as noted in the Introduction, is given by IMEX methods, which have been employed to
solve diffusion equations when convection or reaction terms can be treated explicitly.

For instance, let us apply the θ-method. Denoting by un the approximation of u(tn) (with u(tn)

solution of Equation (6) at t = tn) and by sn ≡ s(tn), we get:

un+1 − un

∆t
=θ
[
−A(un+1)un+1 + b(un+1)−G(un+1) + s(n+1)

]
+(1− θ) [−A(un)un + b(un)−G(un) + sn]

(8)

for n = 0, 1, ... and with 0 ≤ θ ≤ 1.
By simple algebraic manipulations, we find that at each time level n = 0, 1, ... the vector un+1 is

given by the solution of the nonlinear algebraic system

F(u) = [I + τA(u)] u− τ [b(u)−G(u)]−w = 0, (9)

where τ = ∆tθ, I is the µ× µ identity matrix and w = wn ∈ Rµ is a vector containing the known
terms, defined as

w = [I − ∆t(1− θ)A(un)] un + ∆t(1− θ) [b(un)−G(un)] + ∆t
[
θsn+1 + (1− θ)sn

]
.

If we use an IMEX method, we similarly get a nonlinear algebraic system to solve at each time
level. The difference is that some terms are treated explicitly. Thus, if, for instance, the reaction term is
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treated explicitly, at the time level n + 1 the mapping G(u) is evaluated at time n; G(u) then becomes
a known term which appears solely in the known vector w.

Analogously, if the velocity is not linear, it could be useful to treat explicitly the convection term.
In this case, the part of A(u) depending on ṽ would appear solely in the known vector w.

3. The Lagged Diffusivity Method

We now introduce the lagged diffusivity method to solve the discretized system, referring, for
instance, to Equation (9).

Solving Equation (9) by a Newton’s method would be onerous, since the Jacobian matrix of
F(u) is generally hard to compute. The lagged diffusivity method, on the other hand, linearizes the
discretized system by iteratively “lagging” the diffusivity term. At each iteration we must thus solve a
weakly nonlinear algebraic system, whose Jacobian matrix is significantly easier to compute.

Let us study more in detail the procedure applied to Equation (9). Lagging the diffusivity
means that the new iterate u(ν+1) of the (ν + 1)-th lagging iteration is the solution of the weakly
nonlinear system

Fν(u) =
[

I + τA(u(ν))
]

u− τ
[
b(u(ν))−G(u)

]
−w = 0. (10)

When A(u) is a nonsingular M-matrix, I + τA(u) is evidently nonsingular ∀u ∈ Rµ.
Thus, we now have to solve Equation (10) at each lagging iteration. We can do this by a Newton’s

method (or, in general, by an iterative method) which is stopped when the residual

Fν(u(ν+1)) =
[

I + τA(u(ν))
]

u(ν+1) − τ
[
b(u(ν))−G(u(ν+1))

]
−w (11)

satisfies a stopping criterion ∥∥∥Fν(u(ν+1))
∥∥∥ ≤ εν+1 (12)

where ‖ · ‖ denotes the Euclidean norm and εν is a given tolerance such that εν → 0 for ν→ ∞. When
the inner solver converges, we find u(ν+1), which is used, in turn, to lag the diffusivity at the (ν + 2)-th
lagged iteration. Proceeding in the same way, we thus find u(ν+2) and so on for the following iterations.

3.1. Effect of the Discretization

In the previous paragraphs, we applied the lagged diffusivity method to Equation (9), which was
obtained by discretizing time using a θ−method. The time discretization, however, affects some
properties of the lagging iteration. For instance, if we can use an IMEX method and treat G(u) explicitly,
the lagged diffusivity method completely linearizes the discretized system.

Analogously, an IMEX scheme can simplify the analysis of cases with non-constant velocity terms:
if we can treat non-constant terms ṽ(u) explicitly, all the convection terms are evaluated at the previous
time level and are, thus, known. Both monotonicity and convergence analyses can then be traced back
to the results obtained for constant ṽ.

Figure 1 summarizes all these cases, representing which functions are unknown at each time level
and at each lagging iteration.

Finally, although formally the system does not change, also the space discretization has an
effect on the solution procedure. Indeed, we noticed earlier that A(u) is always an M-matrix when
the upwind discretization is used, while we have a condition on the step-size h when central finite
differences are used. If A(u) is an M-matrix, also the coefficient matrices of the linear systems arising
from applying a Newton’s method to solve Equation (10) are M-matrices. This is important since some
linear solvers converge only when the coefficient matrix is an M-matrix. We can thus always use these
solvers when we use the upwind discretization, while we can do so only when condition Equation (7)
is satisfied when we use central FD. This is of great importance especially when ṽ is large: indeed, in
this case the coefficient matrix of the linear systems is highly non-symmetric and we would like to use
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splitting methods such as the Arithmetic Mean (AM) [14], which are particularly efficient in this case
but require that the coefficient matrix is an M-matrix. Thus, also considering that Equation (7) implies
that h must be really small when ṽ is large, we may want to use an upwind discretization in order to
use these linear solvers. This is further studied in the numerical experiments.

A(u), b(u), G(u)tn+1

tn

ν

ν + 1

A(u(ν)), b(u(ν))

G(u)

(a)

A(u), b(u)

G(u(tn))

tn+1

tn

ν

ν + 1

A(u(ν)), b(u(ν))

(b)

A1(u), b(u), G(u)

Ã(u(tn))

tn+1

tn

ν

ν + 1

A1(u(ν)), b(u(ν))

G(u)

(c)

Figure 1. Summary of the nonlinear terms present at each time level and at each lagging
iteration for different time discretizations. (a) θ−method; (b) IMEX scheme with explicit
treatment of G(u); (c) IMEX scheme with non-constant velocity term ṽ(u) treated explicitly.
Here A1(u) represents the part of A dependent on σ(u) and Ã(u) represents the part of A
dependent on ṽ(u).

3.2. Monotonicity of the Finite-Difference Operator and Convergence Analysis

Let us assume that the following smoothness properties hold true:

1. the functions σ and g are continuous in u and continuously differentiable in (x, y). Moreover,
the functions α and s are continuous in their variables;

2. σ is uniformly bounded in (x, y) ∈ Ω and u ∈ L∞(Ω): there exist two positive constants σmin and
σmax such that 0 < σmin ≤ σ(x, y, u) ≤ σmax. Moreover, we also assume α(x, y) ≥ αmin ≥ 0 and
that ṽ = (ṽ1, ṽ2)

T is constant;
3. for fixed (x, y) ∈ Ω, the function σ is Lipschitz continuous in u (uniformly in x, y) with

constant Λ > 0;
4. for fixed (x, y) ∈ Ω, the function g is uniformly monotone in u (uniformly in x, y) with constant

c > 0 [15] (p. 114); moreover, it is continuously differentiable in u.

Under these smoothness assumptions, the monotonicity of the finite different operator and the
convergence of the algorithm are assured for grid functions ui,j belonging to a set Bρ,β, where ρ is a

bound on the discrete l2(Ωh) norm ‖u‖h := (h2 ∑N
i=1 ∑M

j=1 u2
i,j)

1
2 and β is a bound over the absolute

value of the backward difference quotients of ui,j.
Thus, considering for instance the discretization by central finite differences and time integration

by the θ−method, the following theorems hold true
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Theorem 1. Let u∗ ∈ Bρ,β be a solution of the nonlinear system F(u) = 0. If

αmin +
1
τ
+ c >

β2Λ2

2σmin
(13)

then F(u) is uniformly monotone in Bρ,β and the solution u∗ of Equation (9) is unique.

Theorem 2. Let u∗ ∈ Bρ,β be the solution of the nonlinear system F(u) = 0 defined in Equation (9) with
A(u) non-singular M-matrix and G(u) diagonal mapping. We assume the smoothness Properties 1–4 to be
satisfied and that condition Equation (13) on the monotonicity of F(u) is satisfied.

Starting from an arbitrary starting vector u(0), let then u(ν+1) be the solution of system Equation (10) with
residual r(ν+1) satisfying Equation (12), with εν → 0 for ν→ ∞. Finally, u(ν) belongs to Bρν ,βν

, ν = 0, 1, ....
Then, the sequence {u(ν)} converges to u∗.

The proofs of these theorems and more information on Bρ,β can be found in [16]. In the literature
it is also possible to find proofs of the convergence of the procedure for less general cases (e.g., see [2]
for steady state reaction diffusion problems). Proceeding analogously, similar results can be easily
found also for the other discretizations.

4. Solution Procedure

In this section, we present some insights on the implementation that is used in the numerical
experiments. This implementation follows the description in [2], with the difference that the inner
systems are here solved by an inexact, simplified Newton iteration and that we use the correction on
the initialization of tolerances presented in [16] and here summarized in Section 4.2. Then, we also
briefly summarize the systems arising from the discretization and from the LDM and provide an
algorithm which describes the entire procedure.

4.1. Solution of the Inner Systems

We solve the lagged system of Equation (10) by a simplified Newton method [12] (p. 182). At each
Newton’s iteration we then have to solve a system of linear equations. For achieving the maximum
efficiency, we do this approximately by an iterative linear solver, whose tolerance is chosen so that the
solution procedure of Equation (10) makes up an inexact (simplified) Newton method [17].

In particular, denoting the Newton’s iteration by a second superscript k = 0, 1, ...,
the simplified Newton iteration at the (ν + 1)-th lagged iteration consists in computing the solution
∆u(k+1) = u(ν+1,k+1) − u(ν+1,k) of the linear system

F′ν(u
(ν+1,0))∆u = −Fν(u(ν+1,k)), (14)

where F′ν(u(ν+1,0)) is the Jacobian matrix of Fν(u) evaluated at u(ν+1,0), which is

F′ν(u
(ν+1,0)) = I + τA(u(ν)) + τG′(u(ν+1,0)), (15)

where G′(u(ν+1,0)) is the Jacobian matrix of G(u) evaluated at u(ν+1,0). From Equation (15), we can
appreciate the advantage of the lagging iteration. Indeed, since the LDM linearizes A(u), it is easy to
compute the Jacobian matrix of F′ν(u), since the only nonlinear term is the diagonal mapping G(u) .

Finally, the linear system arising at each Newton iteration is solved by an iterative solver.
We henceforth refer to the inner linear iteration by a third superscript j.

4.2. Starting Vectors and Stopping Criteria

Starting vectors and tolerances of the iterative procedures are chosen as in the diagram in Figure 2,
where η̂ ∈ (0, 1) and εν is initialized by ε1 = ε̃0‖F(u(0))‖, with ε̃ positive constant smaller than 1.



Algorithms 2017, 10, 88 8 of 19

Method

Lagged diffusivity
method

Simplified
Newton method

Iterative linear solver

Starting vector

u(0) = un

u(ν+1,0) = u(ν)

u(ν+1,k+1,0) = u(ν+1,k)

Tolerance

ε

εν+1 = 1
2 εν

ε̂k+1 = η̂‖Fν(u(ν+1,k))‖

Figure 2. Starting vectors and tolerances of the iterative methods.

The choice of the starting vectors is made so to start as close as possible to the solution of the
system. Moreover, it also allows to write conveniently the linear system arising at each Newton
iteration (e.g., see [16]). The stopping criteria, on the other hand, descend directly by the description of
the LDM and by the choice of an inexact Newton iteration to solve the inner systems.

The starting vectors determine also the initialization of the tolerances: for example, at the
first Newton iteration of the (ν + 1)-th lagged iteration, the tolerance of the linear solver is
ε̂1 = η̂‖Fν(u(ν+1,0))‖ = η̂‖Fν(u(ν))‖. We can also easily notice that all the tolerances are initialized at
η̂‖F0(u(0))‖ = η̂‖F(u(0))‖ = ε1 at the first lagged iteration.

However, if we do not apply any correction, the initial tolerance of the linear solver, ε̂1,
may become smaller than the minimum possible tolerance of the simplified Newton method, η̂εν+1.
Thus, ε̂1 would be smaller than what could be required by an inexact Newton method, leading to an
increase in computational cost with no foreseeable improvement in accuracy.

To avoid this situation, we simply impose η̂εν+1 as the minimum acceptable tolerance of the
linear solver:

ε̂1 = max
(

η̂‖Fν(u(ν))‖, η̂εν+1

)
. (16)

This does not lead to a worsening of the accuracy of the lagged procedure (indeed, η̂εν+1 is the
tolerance of the simplified Newton method), while significantly reducing the computational cost.

4.3. Summary of the Solution Method

The diagram in Figure 3 summarizes the equations and the systems that we used, illustrating
how the partial differential equation is first transformed in a system of ordinary differential equations
and then in a series of nonlinear algebraic systems, which are afterwards progressively linearized by
the iterative methods.
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∂u
∂t = ∇ × (σ∇u) − ṽ × ∇u − αu − g + s(x, y) ∈ Ω, t > t0

du(t)
dt = −A(u(t))u(t) + b(u(t)) − G(u(t)) + s(t)

F(u) = [I + τA(u)] u − τ [b(u)−G(u)] − w = 0

Fν(u) =
[

I + τA(u(ν))
]

u − τ
[
b(u(ν))−G(u)

]
− w = 0

F′ν(u(ν))u = τG′(u(ν))u(ν+1,k) − τG(u(ν+1,k)) + τb(u(ν)) + w

Figure 3. Systems arising from the discretization of the initial PDE and from the used iterative methods.

Finally, we can write the algorithm summarizing the entire procedure as follows.

Algorithm 1 Lagged diffusivity procedure

Require: initial condition u|0 at t = 0; a tolerance ε
1: for n = 1, 2, ... do Time level
2: Initialize solution vector for lagged iteration: u(0) = u|n−1
3: Initialize lagged tol.: ε1 = ε̃0‖F(u(0))‖
4: for ν = 0, 1, ... do Lagged iteration
5: Initialize linear solver tol.: ε̂1 = max(η̂‖Fν(u(ν))‖, η̂εν+1)
6: for k = 0, 1, ... do Simpl. Newton iteration
7: for j = 0, 1, ... do Linear solver iteration
8: Compute (j + 1)-th iterate u(ν+1,k+1,j+1)

9: Compute residual rj+1 of the linear system
10: if ‖rj+1‖ ≤ then break
11: j = j+1
12: end for
13: Compute Newton residual Fν(u(ν+1,k+1))
14: if ‖Fν(u(ν+1,k+1))‖ ≤ εν+1 then break
15: Update linear solver tol.: ε̂k+1 = η̂‖Fν(u(ν+1,k+1))‖
16: k = k+1
17: end for
18: Update vectors and matrices: find Fν+1(u(ν+1))
19: ν = ν + 1
20: εν+1 = 0.5εν

21: if εν+1 ≤ ε then return
22: end for
23: n = n + 1
24: end for

Here, break means that we exit the current loop and go back to the outer one. On the other hand,
return means that we exit from the entire procedure and the algorithm returns the final result. If the
smoothness assumptions in Section 3.2 are satisfied (and if the inner linear solver converges), then the
convergence of Algorithm 1 is ensured by Theorem 2 or by analogous theorems, depending on the
chosen discretization.
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5. Numerical Experiments

We consider a square domain Ω = [0, 1] × [0, 1], which we discretize by a uniform grid of
N × N inner points. We build test problems from known solutions u∗ (specified in the following) by
computing an appropriate source term. When not otherwise specified, time discretization is performed
by a θ−method with ∆t = 0.1 and θ = 0.5 and we compute the solution from a starting time t0 = 0 to
a final time t f = 1.

In the test problems we choose α = 0, σ = 0.4 + 0.5u and g = 100e0.5u, which has the form of the
radiation model. We instead consider several different choices of u∗ and of ṽ.

The linear systems arising at each Newton iteration are solved considering Krylov and
splitting methods. In particular, we use the Preconditioned Conjugate Gradient (PCG) method [18]
when the coefficient matrix of the linear system is symmetric and positive definite (i.e. ṽ = 0). Here,
the used preconditioner is the diagonal matrix M whose elements mi,i are given by the l2-norm of the
i-th row of the coefficient matrix of the linear system. We instead compare the AM method [14] and
the BiConjugate Gradient-stabilized method with parameter l (BiCGstab(l)) [19] when ṽ 6= 0.

We choose ε = 10−4; the other stopping criteria are determined as in Section 4. The maximum
number of simplified inexact Newton iterations is kmax = 500 and the maximum number of linear
iterations is jmax = 10, 000. In the following subsections, ν∗, k∗ and j∗ denote, respectively, the total
number of lagged, Newton and linear solver iterations required for computing the solution at the last
time level. By res0 and res we instead denote, respectively, the initial residual and the last residual of
the linear system at the last time level, while errh and rel. err2 denote the global error (in l2(Ωh) and in
relative Euclidean norm respectively).

5.1. Effect of the Discretization Scheme

Let us analyze the effect of the space discretization. In Table 1 we report the results obtained for
different choices of ṽ with u∗ = u∗1 := (1 + x− y)3t. We set N = 250; with this choice, Equation (7) is
satisfied for ṽ1, ṽ2 < 200.

Table 1. Comparison between discretization by central finite differences and by upwind scheme.

ṽ Discretization Lin. Solver res0 res errh err2 rel. j∗ ttot

(0, 0)T
Central FD

AM 91,812 1.37× 10−5 4.16× 10−5 1.97× 10−5 7581 341.9
BiCG(1) 91,812 1.36× 10−5 4.16× 10−5 1.97× 10−5 1199 57.5

Upwind
AM 91,812 1.37× 10−5 4.16× 10−5 1.97× 10−5 7581 356.5

BiCG(1) 91,812 1.36× 10−5 4.16× 10−5 1.97× 10−5 1199 64.0

(10, 10)T
Central FD

AM 91,814 1.37× 10−5 3.63× 10−5 1.71× 10−5 6608 311.0
BiCG(1) 91,814 1.33× 10−5 3.61× 10−5 1.71× 10−5 979 63.6

Upwind
AM 92,397 1.38× 10−5 2.25× 10−3 1.07× 10−3 6710 407.9

BiCG(1) 92,397 1.33× 10−5 2.25× 10−3 1.07× 10−3 967 72.5

(300, 300)T
Central FD

AM 93,532 1.38× 10−5 1.21× 10−5 5.71× 10−6 594 37.5
BiCG(1) - - - - - -

Upwind
AM 110,834 1.62× 10−5 9.07× 10−3 4.30× 10−3 748 41.7

BiCG(1) 110,834 1.57× 10−5 9.08× 10−3 4.30× 10−3 1534 79.7

(500, 500)T
Central FD

AM - - - - - -
BiCG(1) - - - - - -

Upwind
AM 124,785 1.71× 10−5 9.41× 10−3 4.46× 10−3 552 42.2

BiCG(1) 124,785 1.47× 10−5 9.41× 10−3 4.46× 10−3 1398 94.0

In Table 1, we see that the two discretization schemes are identical for ṽ = 0, also in terms
of global errors and number of iterations. Indeed, in this case, the first-order derivative in the
differential equation is multiplied by a null term. Thus, A(u) is symmetric positive definite and the
two discretizations are equivalent.

In the other cases, both methods always work properly when ṽ respects the spacing condition,
although global errors are larger when we use the upwind discretization. As mentioned above, this
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is to be attributed to the discretization of the first-order derivative by forward or backward finite
difference quotients, leading to a larger discretization error.

Lastly, when the spacing condition is not respected anymore, we can have problems in the
solution of the linear system. Indeed, the convergence of the AM method requires that the coefficient
matrix is an M-matrix. Although the AM still works for values of ṽ for which this is not satisfied
(e.g., ṽ = (300, 300)T), we soon have problems for larger values of the velocity term. For example,
ṽ = (500, 500)T (and any other larger velocity term) leads the AM to stall. Also the BiCGstab(1)
presents some problems and it already stalls for ṽ = (300, 300)T . Contrary to the AM, however,
the BiCGstab(1) does not explicitly require that the coefficient matrix is an M-matrix. Its stalling is,
however, not surprising. Indeed, the BiCGstab(1) (which is equivalent to the BiCG-STAB [20]) is known
for stalling especially when the coefficient matrix is real but its eigenvalues are complex with large
imaginary part. This could certainly be the case, since, irrespective of the chosen discretization, the
coefficient matrices are non-symmetric when ṽ 6= 0. Complex eigenvalues are, thus, possible.

Then, it is interesting to see what happens increasing l in the BiCGstab(l) method. Indeed, l has
been introduced exactly to overcome these difficulties. Let us then consider yet larger values of ṽ and
analyze what happens using BiCGstab(2) and BiCGstab(4) as well. The results are reported in Table 2.

Table 2. Comparison between discretization by finite differences and by upwind scheme with high ṽ.

ṽ Discretization Lin. Solver res0 res errh err2 rel. j∗ ttot

(500, 500)T

Central FD

AM - - - - - -
BiCG(1) - - - - - -
BiCG(2) 96,513 1.14× 10−5 9.45× 10−6 4.47× 10−6 807 99.1
BiCG(4) 96,513 1.37× 10−5 9.45× 10−6 4.47× 10−6 382 96.0

Upwind

AM 124,785 1.71× 10−5 9.41× 10−3 4.46× 10−3 552 42.2
BiCG(1) 124,785 1.47× 10−5 9.41× 10−3 4.46× 10−3 1398 94.0
BiCG(2) 124,785 1.46× 10−5 9.41× 10−3 4.46× 10−3 673 72.7
BiCG(4) 124,785 5.36× 10−6 9.41× 10−3 4.46× 10−3 299 96.8

(2000, 2000)T

Central FD

AM - - - - - -
BiCG(1) - - - - - -
BiCG(2) 150,303 8.03× 10−6 4.77× 10−6 2.26× 10−6 629 69.6
BiCG(4) 150,303 1.04× 10−5 4.77× 10−6 2.26× 10−6 296 89.7

Upwind

AM 241,926 1.49× 10−5 9.81× 10−3 4.65× 10−3 370 36.7
BiCG(1) - - - - - -
BiCG(2) 241,926 1.37× 10−5 9.81× 10−3 4.65× 10−3 514 73.2
BiCG(4) 241,926 1.74× 10−5 9.81× 10−3 4.65× 10−3 247 86.0

(50000, 50000)T

Central FD

AM - - - - - -
BiCG(1) - - - - - -
BiCG(2) 2,976,435 1.36× 10−5 1.01× 10−6 4.79× 10−7 1077 162.4
BiCG(4) 2,976,435 1.35× 10−5 1.01× 10−6 4.79× 10−7 507 197.7

Upwind

AM 4,300,370 9.19× 10−6 9.96× 10−3 4.71× 10−3 322 33.5
BiCG(1) - - - - - -
BiCG(2) 4,300,370 2.39× 10−6 9.96× 10−3 4.71× 10−3 476 69.0
BiCG(4) 4,300,370 8.79× 10−6 9.95× 10−3 4.71× 10−3 233 86.6

As we expected, the AM and the BiCGstab(1) are not able to solve the linear systems arising when ṽ is large
and central FD are used. Indeed, they stall and the maximum number of allowed linear iterations is reached.
On the other hand, if the discretization is performed by an upwind scheme, the AM method always converges
without presenting any problem (on the contrary, the algorithm gets faster with larger values of ṽ). This was to be
expected, since the coefficient matrix is now an M-matrix, as required by the convergence of the AM method. The
BiCGstab(1), instead, keeps stalling for large values of ṽ, as we could expect from what we said in the previous
paragraph. However, we can see that this can be overcome by increasing the parameter l of the BiCGstab(l): the
algorithms using BiCGstab(2) or BiCGstab(4), indeed, converge in all cases. We can also see the big difference
between the global errors obtained when discretizing by central finite differences or by an upwind scheme. Indeed,
they are in the order of 10−6 for central finite differences and in the order of 10−3 for the upwind scheme. However,
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it is also to be noted that the upwind scheme is much faster, especially when we use the AM as inner solver. Thus,
we may opt for central finite differences with, for instance, BiCGstab(2) as linear solver if we require smaller
errors, while we may choose an upwind method with AM if we require lower computational cost.

5.2. Blow-Up

We now apply the LDM to problems with blow-up and boundary layer solutions. In particular,
we consider the solutions in Figure 4, where T denotes the blow-up time.

u∗2 =
1

x(y + T − t) + 1− x
(17)

(0,0)

(0,1)

(1,0)

(1,1)

Blow-up zone Plot of u∗2 at t ' T

u∗3 =
x + 1

1− x + T − t
(18)

(0,0)

(0,1)

(1,0)

(1,1)

Blow-up zone Plot of u∗3 at t ' T

u∗4 =
y + 1

sin((T − t)π) + sin(πx)
,

T < 1
(0,0)

(0,1)

(1,0)

(1,1)

Blow-up zones Plot of u∗4 at t ' T

u∗5 =
1

sin((T − t)π) + sin(πx) + sin(πy)
,

T < 1
(0,0)

(0,1)

(1,0)

(1,1)

Blow-up zones Plot of u∗5 at t ' T

Figure 4. Blow-up solutions and representation of where and how the blow-up occurs.

We set T = 1 for u∗ = u∗2 and u∗ = u∗3 ; instead, u∗4 and u∗5 require T < 1 by the periodicity of the
trigonometric functions. In these two cases we therefore set T = 0.8.

With no loss of generality, the velocity vector ṽ is here set equal to zero and the system matrix
A(u) is a Stieltjes matrix. We thus use the PCG solver for solving the linear systems arising at each
Newton iteration and discretize space by central finite differences.

In the following results, max u denotes the maximum of the computed solution vector at the
last computed time level, while max u∗ denotes the maximum of the analytical solution u∗ at the last
computed time level in the point where max u occurs. Analogously, we define min u and min u∗.

5.2.1. Preliminary Results and Analysis

Let us first analyze how the computed solution evolves as the blow-up time approaches. To this
end, let us start from t0 = 0 and see what happens at different times, until reaching T; at first, we here
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choose ∆t = 0.1 and N = 100. In Figure 5 we report what we get considering e.g., u∗2 (example of
solutions with blow-up on one corner), u∗4 (example of solutions with blow-up on one or more edges)
and u∗5 (example of solutions with blow-up on more corners). In Table 3 we report some information
on errors and data of the iterative procedure.

Table 3. Error and data of the lagged diffusivity procedure for u∗2 , u∗4 and u∗5 as t approaches T.

t res0 res errh err2 rel. max u min u kt jt

u∗ = u∗2 , T = 1.0

0.3 369 1.35× 10−5 1.74× 10−5 1.86× 10−5 1.403 0.594 19 185
0.6 1209 8.66× 10−6 6.89× 10−5 6.27× 10−5 2.405 0.721 21 202
0.9 15,619 1.57× 10−5 1.04× 10−3 6.88× 10−4 8.402 0.918 25 254

u∗ = u∗4 , T = 0.8

0.3 592 1.03× 10−5 1.84× 10−3 1.88× 10−3 1.930 0.505 20 186
0.5 1828 1.68× 10−5 1.76× 10−3 1.56× 10−3 2.369 0.558 21 208
0.7 22,484 1.08× 10−5 1.54× 10−2 7.66× 10−3 5.851 0.772 25 263

u∗ = u∗5 , T = 0.8

0.3 112 1.53× 10−5 3.51× 10−4 7.59× 10−4 0.941 0.333 17 120
0.5 346 1.17× 10−5 3.29× 10−4 6.42× 10−4 1.148 0.356 19 138
0.7 3077 1.45× 10−5 1.36× 10−3 1.85× 10−3 2.694 0.433 22 175

Of course, in all these cases, the iterative procedure stops when we are still quite far from the
blow-up time: indeed, using ∆t = 0.1, the last computable time step is at t = 0.9 when T = 1 and
t = 0.7 when T = 0.8. Indeed, the blow-up occurs at t = 0.9 + ∆t and at t = 0.7 + ∆t respectively. We
therefore need a smaller time step in order to get closer to the singularity. However, we notice that the
computed solutions behave as the analytical ones (as proven by the errors in Table 3) and that, as the
blow-up time approaches, they get more and more similar to the ones in Figure 4.

It is also interesting to notice that the residual computed at the beginning of the lagged iteration,
res0, gets larger as we get closer to T. This can be viewed as an indicator of incoming blow-up: indeed,
by the initialization u(0) = un, at the time step n + 1 we have res0 = ‖F(un)‖. Therefore, res0 is the
residual of F(u) = 0 as in (9) for un at time n + 1. So, if the solution is smooth in the time variable (and
∆t is not excessively large), we do not expect res0 to be large: in these hypotheses, the solution un+1

will not be dramatically different from the solution un. However, if we have a singularity at some time
T, the solution vector will change faster and faster as we approach T, leading to progressively larger
initial residuals res0. In this light, the analysis of res0 gives information similar to the analysis of the
derivative of u∗ with respect to t.
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Figure 5. Evolution of the computed solution as t approaches T in the cases u∗ = u∗2 , u∗ = u∗4 and u∗ = u∗5 .

5.2.2. Effect of Refining the Time Grid

Taking into account the previous results, let us set ∆t = 10−3. We now start our analysis from
t0 = T− 0.1, so that we do not need an extremely large number of iterations in order to get close to the
blow-up zone.

In Figure 6 we show how the computed solution looks like at the last computable time step before
the blow-up; we call t f this final time. In Table 4 we report some data on the lagged iterative procedure
at t = t f .

Table 4. Error and data of the lagged diffusivity procedure for the last computable solution for the
problems in Figure 4 for ∆t = 10−3.

u∗ t f res0 res errh err2 rel. max u min u max u∗ min u∗

u∗2 0.993 3.48× 106 1.04× 10−5 4.74× 10−3 2.35× 10−3 37.545 1.000 37.545 1.000
u∗3 0.972 1.28× 1010 1.03× 10−5 2.90× 10−2 3.54× 10−3 52.508 0.992 52.508 0.992
u∗4 0.789 353,703 1.29× 10−5 3.54× 10−1 6.65× 10−2 30.314 0.976 30.314 0.976
u∗5 0.806 1 8301 1.89× 10−5 9.77× 10−2 7.38× 10−2 24.049 0.505 23.067 0.505

1 In this case we slightly exceed the limit T = 0.8. This is due to the discretization: also when we have
t > T, the singularity is still sufficiently far from the grid points and the algorithm keeps working for a while.
However, after a few other time steps, the algorithm stalls as expected. The role of the discretization can be
proven by increasing the number of elements (e.g., see Table 5, where the algorithms stalls at t = 0.795).
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Figure 6. Last computed solution for the problems in Figure 4 for ∆t = 10−3. (a) u2, t f = 0.993; (b) u3,
t f = 0.972; (c) u4, t f = 0.789; (d) u5, t f = 0.806.

The first thing we notice is the extremely large values of res0, which are even more remarkable
considering that ∆t has been reduced. This can be explained as in the previous paragraph by
considering that the solution changes more and more rapidly as we approach T. A gradual increase of
res0 with t is indeed what can be observed by considering the value of res0 at different time levels.

The analysis of the plots reveals that the lagged diffusivity procedure is able to reproduce the
behavior of all the solutions near their respective blow-up zones. On the other hand, the global errors
gradually increase, but they generally remain in the order of 10−3 ÷ 10−2. Indeed, only for u∗4 they
exceed 10−1 near T.

Notwithstanding this, maximum and minimum values of the solution vector u correspond to
the maximum and minimum values of u∗ (computed in the inner grid points) to at least the second
decimal digit in all the cases. It is to be noticed that the maximum of u is the point where the solution
is nearest to the blow-up one; a good precision in evaluating the solution in this point is thus important
for accurately reproducing the blow-up behavior.

Finally, we also notice that these maxima and minima of u are not so large after all: we are near
to the blow-up time, but the maximum of the solution never exceeds values ∼ 30, nonetheless. This
cannot be explained by numerical errors in the solution procedure, since we said that the maximum
of the computed u is really similar to the value of u∗ in the grid point where the maximum occurs.
Different causes concur to this:

• the blow-up occurs on the boundary, where the solution is given by the Dirichlet boundary
conditions. Thus, at inner points, where we compute the solution vector, the maximum of u is
always smaller than the maximum of u at boundary points when t ∼ T;

• as a consequence of the previous point, the smaller the number of grid points, the smaller max(u).
Indeed, we get farther from the boundary and, thus, from the singularity. This is also shown in
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the next subsection, where we observe that max(u) increases when we increase the number of
points of the space grid;

• the singularity occurs abruptly when t = T is reached, so the solution is still quite small also at
times quite close to T. Next, we show that by further reducing ∆t, we are able to get nearer to T,
leading to an increase of max(u).

All these facts can be better viewed by considering a short example. Let us consider u∗ = u∗2
and N = 100. We remind that the blow-up here occurs at T = 1.00 in the point (1, 0). The solution at
t = t f = 0.993 at the inner point closest to (1, 0), which is (xn, y1) = (100/101, 1/101) is:

1
x(y + T − t) + 1− x

∣∣∣∣
(xn ,y1)

=
1

xn(y1 + T − 0.993) + 1− xn
∼ 37.545,

as computed.
The algorithm, then, does not stall due to large values of u, but because its derivatives become

large. Indeed, considering the largest first-order derivative in x, we have

ux|(xn ,y1)
' − y1 + T − 0.993− 1

(xn(y1 + T − 0.993) + 1− xn)2 ∼ 103

This makes so that the bound β on backward difference quotients increases as the blow-up
approaches. Then, it is harder to satisfy the monotonicity condition of Theorem 1, which, in turn,
affects the uniqueness of the solution and the convergence of the LDM. We can try to counterbalance
the larger β by reducing ∆t (and, thus, τ, which appears in the condition of Theorem 1), as we verify in
the next subsection. However, further decreasing ∆t means increasing the number of time levels and,
thus, the computational time. Nonetheless, we can compensate this effect by starting our computations
nearer to the blow-up time.

5.2.3. Effect of Refining the Space Discretization

Let us then analyze what happens when the space grid is refined; in this regard, the results
obtained with N = 250 and ∆t = 10−3 are reported in Table 5.

We notice that t f slightly decreases, while the maximum and the minimum of u in t f are about
the same as previously computed for N = 100. Indeed, being the grid finer, the point nearest to the
blow-up point is closer (in space) to the blow-up point than in the case N = 100. Thus, the solution
gets larger earlier.

Table 5. Error and data of the lagged diffusivity procedure for the last computable solution for the
problems in Figure 4 for ∆t = 10−3 and N = 250.

u∗ t f res0 res errh err2 rel. max u min u max u∗ min u∗

u∗2 0.981 2.93× 106 1.11× 10−5 9.68× 10−4 4.97× 10−4 37.207 0.985 37.207 0.985
u∗3 0.965 9.86× 109 1.95× 10−5 1.04× 10−2 1.34× 10−3 51.201 0.974 51.201 0.974
u∗4 0.783 544,443 8.42× 10−6 1.53× 10−1 3.09× 10−2 30.287 0.953 30.290 0.953
u∗5 0.795 14,438 1.20× 10−5 1.82× 10−2 1.42× 10−2 24.430 0.496 24.546 0.486

To better see this, we can again consider the short example proposed earlier and analyze what
happens for N = 250. Let us again consider u∗ = u∗2 with T = 1.00 in the point (1, 0). The solution at
t = t f = 0.981 at the inner point closest to (1, 0), which is (xn, y1) = (250/251, 1/251) is:

1
x(y + T − t) + 1− x

∣∣∣∣
(xn ,y1)

=
1

xn(y1 + T − 0.981) + 1− xn
∼ 37.207,
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as computed. Analogous results can be easily verified with regard to the derivatives. We also notice
that global errors decrease due to the finer space grid, while res0 is of the same order of magnitude as
above.

Lastly, we verify that further reducing ∆t allows us to better approach the blow-up time, as
remarked at the end of the previous subsection. Thus, in Table 6 we report the results obtained by
setting ∆t = 10−5 and by using as t0 the last computed time step t f of Table 5.

Table 6. Error and data of the lagged diffusivity procedure for the last computable solution for the
problems in Figure 4 for ∆t = 10−5, N = 250.

u∗ t0 t f res0 res errh err2 rel. max u min u max u∗ min u∗

u∗2 0.981 0.99193 3.67× 108 7.42× 10−7 6.02× 10−4 2.87× 10−4 62.539 0.999 62.539 0.999
u∗3 0.965 0.97141 2.75× 108 7.48× 10−5 2.07× 10−3 2.41× 10−4 61.276 0.980 61.276 0.980
u∗4 0.783 0.79343 6.87× 108 1.05× 10−6 4.33× 10−2 5.89× 10−3 60.203 0.984 60.203 0.984
u∗5 0.795 0.80277 1 1.13× 109 2.15× 10−7 1.38× 10−2 9.34× 10−3 61.238 0.502 61.238 0.502

1 Again, we slightly exceed the blow-up time; this is again due to the discretization.

In all cases we are able to get closer to the blow-up time, as expected. Moreover, global
errors decrease.

5.3. Boundary Layer

Lastly, for completeness, let us consider a stationary case with non-constant ṽ which presents a
boundary layer solution.

Let us consider the problem given by

− σ1
∂2u
∂x2 − σ2

∂2u
∂y2 + v∇u = 0 (19)

and
σ1 = u2 + 1 σ2 = u2 v1 = λu2 + λ v2 = λu2. (20)

with λ < 0 real parameter and boundary condition u = eλx + eλy on ∂Ω. The solution of this test
problem is evidently

u∗ = eλx + eλy, (21)

which presents a boundary layer as the absolute value of λ increases. Since we do not have any
nonlinear reaction term, at each iteration of the LDM we just have to solve a linear system, which we
do by the BiCGstab(l) algorithm.

The results as |λ| increases are reported in Table 7 and the computed solutions are in Figure 7.
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Figure 7. Solution of the boundary layer test problem for N = 250; inner solver: BiCGstab(4).
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Table 7. Analysis of a boundary layer example as |λ| increases (boundary layer occurs for large |λ|).

ṽ Lin. Solver res0 res errh err2 rel. ν∗ j∗

λ = −1
BiCG(1) 1.6× 106 1.48× 10−4 7.50× 10−8 5.84× 10−8 31 1925
BiCG(2) 1.6× 106 1.25× 10−4 7.26× 10−8 5.65× 10−8 31 977
BiCG(4) 1.6× 106 1.32× 10−4 7.09× 10−8 5.53× 10−8 31 460

λ = −10
BiCG(1) 1.7× 106 1.41× 10−4 2.18× 10−5 6.43× 10−5 31 1389
BiCG(2) 1.7× 106 1.14× 10−4 2.18× 10−5 6.43× 10−5 31 708
BiCG(4) 1.7× 106 1.53× 10−4 2.18× 10−5 6.43× 10−5 31 366

λ = −100
BiCG(1) 1.8× 106 1.36× 10−4 7.63× 10−4 9.36× 10−3 31 638
BiCG(2) 1.8× 106 1.41× 10−4 7.63× 10−4 9.36× 10−3 31 156
BiCG(4) 1.8× 106 9.10× 10−5 7.63× 10−4 9.36× 10−3 31 314

We notice that the number of iterations of the linear solver decreases as |λ| increases. The global
errors, instead, increase, but they never get larger than 10−3, confirming the good approximation of
the solution. In particular, Figure 7c, correctly reproduces the profile of a boundary layer solution.

6. Conclusions

We analyzed the effect of the discretization on the LDM for the solution of nonlinear, non-steady
convection-reaction-diffusion equations. Some insights on an efficient implementation of the algorithm
are provided and are followed by numerical experiments, which highlight the differences arising when
the space discretization is performed by central finite differences or by the upwind method.

The paper is completed by a numerical study on the application of the LDM to problems
characterized by blow-up and boundary layer solutions. The numerical experiments show that
the LDM is able to correctly reproduce the analytical solution also in proximity of the blow-up time or
in presence of a boundary layer.
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