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Abstract: In this paper, a robust technique based on a genetic algorithm is proposed for estimating
two-view epipolar-geometry of uncalibrated perspective stereo images from putative correspondences
containing a high percentage of outliers. The advantages of this technique are three-fold: (i) replacing
random search with evolutionary search applying new strategies of encoding and guided sampling;
(ii) robust and fast estimation of the epipolar geometry via detecting a more-than-enough set of inliers
without making any assumptions about the probability distribution of the residuals; (iii) determining
the inlier-outlier threshold based on the uncertainty of the estimated model. The proposed method
was evaluated both on synthetic data and real images. The results were compared with the most
popular techniques from the state-of-the-art, including RANSAC (random sample consensus), MSAC,
MLESAC, Cov-RANSAC, LO-RANSAC, StaRSAC, Multi-GS RANSAC and least median of squares
(LMedS). Experimental results showed that the proposed approach performed better than other
methods regarding the accuracy of inlier detection and epipolar-geometry estimation, as well as the
computational efficiency for datasets majorly contaminated by outliers and noise.

Keywords: sparse matching; outlier detection; genetic algorithm; epipolar geometry; evolutionary
search; guided sampling; adaptive thresholding

1. Introduction

Sparse image matching is one of the most critical steps in many computer vision applications,
including structure from motion (SfM) and robotic navigation. In contrast to dense image matching,
where image correspondences are established at nearly each pixel, sparse matching establishes the
correspondences at salient image points only. Recent research works apply sparse matching to address
a variety of problems including simultaneous localization and mapping [1,2], feature tracking [3]
and real-time mosaicking [4,5]. The results of sparse matching are usually contaminated with false
correspondences. Given the recent advancements in the fields of low-altitude, oblique and ultra-high
resolution imagery, the rate of contamination has increased, and detecting the correct correspondences
with high accuracy has become more challenging [6]. This is due to several factors, which include noisy
measurements, the inefficiency of local descriptors, the lack of texture diversity and the existence of
repeated and similar patterns that cause matching ambiguity [7–9]. Therefore, outlier detection should
be substantially integrated into sparse matching. From now on, the term putative correspondence
is used for referring to the raw results of sparse matching. The term inlier applies to true matches
among the putative correspondences, and the term outlier refers to false matches. Besides, the terms
correspondence and match have the same meanings throughout this paper. The problem of outlier
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detection implies the detection of inliers by eliminating outliers from putative correspondences given
no prior information about the parameters of relative orientation or intrinsic camera calibration
assuming straight line-preserving perspective camera models.

Outlier detection techniques are based on the fact that inliers have some spatial characteristics in
common. The correspondences that are not consistent with such spatial characteristics can be classified
as outliers. The idea of using epipolar geometry as a spatial constraint to detect inliers/outliers has
been proposed in several studies. In this regard, the outlier detection problem turns into two problems
of (i) robust estimation of epipolar geometry given the putative correspondences and (ii) detecting all of
the inliers and outliers using the estimated model. In this paper, the term model refers to the two-view
epipolar geometry, which is described here by the fundamental matrix. In particular cases where
approximations can be made on the perspective camera model or assumptions can be formulated
about the planarity of the scene, the model can refer to affine transformations and homographies, as
well. Figure 1 presents the summary of the outlier detection techniques that are discussed in Section 2.
In addition to the techniques using epipolar geometry, several methods are based on other spatial
criteria, such as the distribution of parallax values [10,11], spatial patterns of outliers [12], orientations
of the lines connecting inliers [13] and two-way spatial order differences [14]. However, such methods
use spatial consistency measures that are less general and valid for specific imaging configurations.

Figure 1. Summary of outlier detection techniques in stereo sparse matching based on robust estimation
of epipolar geometry.

In this paper, we also focus on the problem of outlier detection based on the robust estimation
of epipolar geometry. To this end, we use the integer-coded genetic algorithm (GA) followed by an
adaptive inlier-classification method. The proposed technique can be considered as an extension and
generalization of RANSAC-like methods for handling a high percentage of outliers, varying amounts
of noise and degenerate configurations. This technique has the following distinctive characteristics.
First, random sampling is replaced with an evolutionary search. The evolutionary search brings a
significant advantage: new sample sets are generated considering the feedback information obtained by
evaluating previous sample sets. Second, a guided sampling scheme based on the spatial distribution
of the correspondences is proposed and applied to the evolutionary search. This sampling scheme
increases the robustness of the solutions against degenerate configurations and local optima without
requiring additional computation or prior information about the matches. Third, the objective function
of robust estimation is not defined based on the support cardinality, but the robust least trimmed sum
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of squared residuals is used instead. Therefore, there is no need to successively set a threshold at
any iteration for detecting the support of the estimated model or to assume any specific probability
distribution for outlier/inlier residuals. Finally, to identify all of the inliers, a detection method based
on adaptive thresholding is proposed, as opposed to using a fixed threshold. In this approach, the
uncertainty of the estimated model is taken into account to identify all of the inliers correctly.

The rest of the paper is organized as follows. In Section 2, a review of the techniques of robust
epipolar-geometry estimation is presented. The main problem of simultaneous inlier detection and
epipolar-geometry estimation is formulated in Section 3. Section 4 describes the solution using the
genetic algorithm, which is followed by the method of detecting all of the inliers. The experimental
results are discussed in Section 5, and the conclusion is presented in Section 6.

2. Related Works

Random sample consensus (RANSAC) techniques are popular approaches in fields of robust
estimation [15]. RANSAC is a method to estimate the parameters of a mathematical model from a
set of observations that contain outliers, assuming that the quality of the model and the observations
are inter-dependent. More precisely, RANSAC aims at determining the optimal model from an
outlier-free sample set of correspondences by maximizing the support size of the model. The inliers
that support the model are detected as correspondences whose residuals from the estimated model
are less than a given threshold. To find an outlier-free sample set, successive random sampling is
performed. To ensure, with probability p, that at least one outlier-free set of m correspondences is
drawn from a dataset containing ε percent of inliers, at least k sample sets should be drawn such that
k ≥ log(1− p)/ log(1− εm). This also means that within RANSAC, approximately, log(1− p)−1 good
models are generated before the confidence p is achieved.

By this definition, six major questions are involved in RANSAC-like techniques. (i) Is maximizing
the support cardinality a robust objective function when no information about the rate of the outliers is
available? (ii) How does one handle a large number of required samples in cases where ε is very small?
(iii) Why does the algorithm not take advantage of the probability of generating good hypotheses
before reaching the termination criterion; i.e., why not include the feedback of previous samples in
the sampling procedure? (iv) How can the robustness of the estimated model be ensured against
the influence of noise since it is relying on a minimal (just enough) subset of inliers? (v) How does
one control the effect of degenerate sample sets, which naturally maximize the support cardinality?
(vi) Does the threshold used to detect the inliers reflect the uncertainty of the estimated model as well?
Some of these questions are answered by different variants of RANSAC, which are discussed here.

Unlike the standard RANSAC, there are improved variants, which use robust objective functions
to determine the support cardinality. In m-estimator sample consensus (MSAC), inliers are scored based
on their fitness, and outliers are scored with a non-zero constant penalty [16]. Maximum likelihood
estimation sample consensus (MLESAC) maximizes the log-likelihood of the solution via the RANSAC
process by assuming that outliers are distributed uniformly and residuals distribute a Gaussian
function over inliers [17]. Maximum a posterior estimation sample consensus (MAPSAC) is also a
refined version of MLESAC with Bayesian parameter estimation [18]. These objective functions make
models with similar inlier scores more distinguishable. However, they make certain assumptions
about the distribution of the residuals either for inliers or outliers. Besides, they still score the models
and detect the final inliers by applying a hard threshold to the residuals. Generally, this threshold is
determined from the standard deviation of the residuals themselves. Assuming that the noise in data
points follows a Gaussian distribution N(0, σ) and that the residuals are expressed as point-model
distances, then the residuals follow a Chi-square distribution. Therefore, the threshold can be expressed
as χ−1(p)σ2, where χ(p) is the cumulative Chi-square distribution with one degree-of-freedom at
probability p as the fraction of the inliers to be captured (e.g., 0.95). However, this assumption is
valid when ignoring the uncertainty of the model itself. Besides, estimating the standard deviation
σ at any RANSAC iteration is another problem. One of the most common methods is to estimate
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this variable from the median of the residuals on the potential inliers that support the best tentative
model. Therefore, it might not be robust against outliers [19]. Another method is to determine a
Gaussian distribution fitting to the smallest residuals in the dataset (modified selective statistical
estimator (MSSE) by [20]). While this method is more robust against outliers, it is sensitive to the
distinction of inliers from outliers. One strategy to eliminate the requirement of a fixed threshold
is to run RANSAC several times using a range of pre-determined thresholds (the stable random
sample consensus (StaRSAC) method by [21]). However, depending on the range of the thresholds to
be tested and the number of RANSAC executions, this strategy can be computationally exhaustive.
In the RANSAC with uncertainty estimation (Cov-RANSAC) algorithm, the uncertainty of the model
estimated from the minimal sample set is used to determine a subset of potential inliers, to which the
ordinary RANSAC is applied afterwards [22]. However, the uncertainty of the estimated model highly
depends on the uncertainty of the configuration of the points appearing in the minimal sample set.

The sampling strategy in RANSAC is also an important factor, as it influences the algorithm
efficiency with respect to both the number of RANSAC iterations and degeneracy (Degeneracy in
robust epipolar-geometry estimation occurs when one or more degenerate configurations exist in the
scene. This usually happens when the majority of the correspondences belong to a dominant plane in
the scene and the rest of the correspondences are not on the plane (planar degeneracy), or when the
correspondences belong to a very small region of an image (ill-configuration).) of the estimated model.
There are several methods to control each of these two factors. The main contributions in this regard are
discussed here. To control the speed of the algorithm, two strategies can be applied. The first strategy
is to enforce an initial consistency check to filter the putative correspondences. This consistency
can be measured as the fraction of neighbouring features in a region around a point in one image
whose correspondences fall into the similar region in the other image (Spatially Consistent Random
Sample Consensus (SCRAMSAC) method by [23]). This strategy is sensitive to the region size and the
threshold used to define the spatial consistency. Alternatively, sampling can be guided by keypoint
matching scores (Progressive Sample Consensus (PROSAC) method [24], Efficient Guided Hypothesis
Generation (EGHG) method by [25]). However, such a strategy is not effective when foreground
motion happens. In addition, the scenes with repetitive textures may result in many false matches
with high matching scores. Another example of such strategies is to assume that correspondences have
a natural grouping structure, in which some of the groups have higher inlier probability than others
(the GroupSAC method by [26]). However, finding a meaningful and efficient grouping among the
correspondences is itself a concerning challenge in different applications.

The strategies mentioned so far mostly require supplementary information about the scene or
the matches. Comparatively, guided sampling based on the information from sorted residuals can
be used to accelerate the hypothesis generation while avoiding any application-specific ordering
or grouping technique (Multi-Structure Hypothesis Generation (Multi-GS) by [27]). In this method,
sampling is guided towards selecting the points that are rising from the same structure. This strategy
speeds up the procedure to reach an outlier-free sample set. However, this method causes more
computational complexity, since every point in the hypothesized sample set should be compared
against all of the other points in the dataset in order to determine its intersection (in terms of structure)
with them. The fast consensus sampling (FCS) method based on the residuals is developed by [28]. In
this method, proposal probabilities are calculated for the correspondences based on their normalized
residuals and a concentration score. Although this method accelerates the sampling, it is still sensitive
to degeneracy, image noise and uncertainty of the model estimation. This is due to the fact that it
reduces the number of potential inliers by thresholding the proposal probabilities that are, themselves,
dependent on the robust estimation of normalized residuals. Several studies have attempted to apply
evolutionary algorithms instead of the random search [29,30]. Although promising results were
achieved, several limitations were not addressed yet. For instance, their objective functions still require
a hard threshold to distinguish outliers from inliers; the two-dimensional spatial configuration of
the correspondences is ignored; the uncertainties of the estimated model are not taken into account;
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and the experiments are limited to small datasets. Genetic Algorithm Sample Consensus (GASAC) is
also another technique that is, to the best of the authors’ knowledge, the most similar technique to
the one proposed in our study. The difference of GASAC from typical RANSAC is that the random
sampling is replaced with evolutionary search based on classic genetic algorithms (genetic algorithms
are meta-heuristics inspired by biological evolution, which are used for solving optimization problems
by relying on evolutionary search operators) [31]. This study shows that the computational cost
could be sped up 13-times by applying the evolutionary search instead of the random one. However,
according to their report, the technique is applicable to small datasets with less than 50% outliers; the
objective function is still based on support cardinality; and it introduces no solution to avoid local
optima (such as degeneracy). The second strategy proposed in the literature in order to speed up
RANSAC is to reduce the solution space by only verifying the hypotheses with a higher probability
of being optimal. These highly probable hypotheses can be selected by a Td,d test [32], a bail-out test
[33] or a sequential probability ratio test (SPRT) [34,35]. In addition, the hypothesis verification can
be performed preemptively in a breadth-first manner only for a fixed number of sample sets [36].
These techniques may increase the number of required hypotheses, as good models may wrongly be
rejected by not being verified completely.

It has been observed that, in the case of degenerate configurations, RANSAC-like algorithms
result in a model with a very large support, while it is completely incorrect. This behaviour can be
explained by the fact that a high inlier support can be obtained even if the sample set includes some
outliers and at least five inliers that belong to a dominant plane or to a very small area of the image.
This large support causes the termination of RANSAC before a non-degenerate outlier-free sample set
can be picked up [37]. The main strategy to control the degeneracy of solutions is to re-investigate
the support of the best tentative model either locally or globally. For instance, the support of the
best model can be re-sampled, and the model estimated from those subsamples can be compared to
the best one to find out the degenerate models (the Locally Optimized Random Sample Consensus
(LO -RANSAC) method by [38]). Another example of such strategies is the Quasi Degenerate Sample
Consensus (QDEGSAC) (proposed by [39]), where a hierarchical RANSAC is performed by changing
the number of the parameters in the model and verifying it over the entire dataset. The main issue
concerning these techniques is that they cause additional operations, as a separate mechanism is
added to the original RANSAC; i.e., they do not directly handle degeneracy in the sampling process.
Universal RANSAC (USAC) is also a modular fusion of some of the mentioned RANSAC algorithms,
including PROSAC sampling, SPRT verification and LO-RANSAC local optimization [40]. In general,
its performance is better than any of the single modules integrated into the universal implementation.
However, it does not improve any of the modules individually.

To conclude, in most variants of RANSAC, the termination criterion is decided based on the size
of the maximum consensus set found, which itself depends on the methods of threshold selection.
These methods usually ignore the effect of the uncertainties of the estimated models caused by
noisy image observations and spatial configurations of the matches in the minimal sample sets.
Most RANSAC algorithms require extra operations or validations to increase the robustness of the
results against degenerate configurations, and finally, they do not provide an explicit solution to
maximize the accuracy of inlier detection.

3. Problem Formulation

In this section, the main problem of inlier detection is mathematically formulated. First, the
fundamental theories of two-view epipolar geometry are explained, and our fast solution to this
problem is presented. Then, a threshold-free objective function for robust estimation is formulated.

Notation: Column vectors are represented by italic, bold lower case letters, such as x. Therefore,
xᵀ (the transpose of x) is a row vector. Matrices are denoted by italic uppercase letters, such as F.
The elements of the matrix are denoted as Fij, where i represents the row index and j represents the
column index. Sets are denoted by italic, bold uppercase letters, such as U.



Algorithms 2017, 10, 87 6 of 28

3.1. Fundamental Theories: Two-View Epipolar Geometry

Epipolar geometry defines the geometry of stereo vision, all elements of which can be captured
by a matrix called the fundamental matrix. It can also be captured by an essential matrix in the case of
calibrated images, where the parameters of intrinsic camera calibration are known. There are different
methods for estimating the fundamental matrix: linear, iteration-based and robust techniques [41].
Robust techniques, which use linear techniques as their base, are the most applicable ones since
they can handle the presence of outliers and, finally, can detect the inlier correspondences required
for structure reconstruction. This category of estimation is considered in this study. The following
paragraphs present the theoretical background with this regard.

For any pair of homogeneous coordinates of correspondences u ↔ u′ in two images, the
fundamental matrix (F) is defined by Equation (1).

u′ᵀFu = 0 (1)

It can be noticed that F is defined up to an unknown scale. It is also a rank-two matrix with zero
determinant. Consequently, it has only seven degrees of freedom [42]. Given m matches ui ↔ u′ i, it
would be possible to form a linear homogeneous system of equations in the nine unknown coefficients
of matrix F as:

A f = 0, (2)

where f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)
ᵀ, and matrix A is the m × 9 coefficient matrix as

A = [a1, a2, . . . , am]
ᵀ. The coordinates of the points are also usually normalized so that A can

gain a better condition number [43]. Given a pair of matching points with normalized coordinates
ui = (ui, vi, 1)ᵀ and u′ i = (u′i, v′i, 1)ᵀ, the row ai corresponding to this match is defined as:

ai = (uiu′i, viu′i, u′i, uiv′i, viv′i, v′i, ui, vi, 1)ᵀ. (3)

In robust estimation, non-parameterized linear methods of fundamental-matrix estimation
are used due to the reasonable agreement between the speed and accuracy yielded from these
methods [44]. Given exactly seven matches (m = 7), it would be possible to determine f by spanning
the two-dimensional nullspace of A and applying the rank deficiency constraint to it (seven-point
algorithm). However, this results in up to three fundamental matrices. Thus, when the goal is the
robust estimation of the fundamental matrix, computational expenses for hypothesis evaluation would
increase up to three times. Depending on the total number of correspondences and the percentage
of outliers, this can be a major drawback. Therefore, eight or more matches (m ≥ 8) are required to
determine a single solution for the fundamental matrix (eight-point algorithms). Using at least eight
points, the solution to F can be found from Equation (2) by linear least-squares methods. In the end,
the rank deficiency constraint must be applied to the estimated F by setting its smallest singular value
to zero [43].

In the case of the eight-point algorithm, an additional constraint should be imposed to define
an arbitrary scale factor for F and to prevent the trivial solution F = 0. There are two options in
this regard. One would be to fix the two-norm of the fundamental matrix (e.g., ‖ f‖ = 1). The other
would be to fix one element of the matrix (e.g., F33 = 1). In the first case (‖ f‖ = 1), an orthogonal
least-square minimization should be applied. It can be shown that the solution is the right singular
vector of A corresponding to the smallest eigenvalue of AAᵀ, which can be determined by singular
value decomposition (SVD) of matrix A. Technically, to compute the SVD of the matrix A ∈ Rm×9,
8019 + 162m flops (amount of arithmetic operations) are at least required [45]. In the second case
(F33 = 1), a set of non-homogeneous linear equations with equation matrix A ∈ Rm×8 is produced,
the solving of which requires 170 + 64 m flops [45]. Therefore, applying the linear scale constraint
(F33 = 1) is computationally 13-times faster than the non-linear constraint for the minimal case of
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m = 8. In addition, it would be possible to add the observation weights directly and to use weighted
linear least-squares techniques [46]. However, using this option is quite risky, as it influences the
estimation of F if the coefficient F33 approaches zero ([47]. Such situations (F33 → 0) can be raised in
cases that we will call poor camera models. In these cases, the above-mentioned assumption (F33 = 1)
fails; e.g., the rotation of the second camera coordinate system with respect to the first one is mainly
planar, the camera motion contains pure translation or two cameras are only shifted along each other’s
optical axes. A way to avoid such exceptions is to examine all nine elements of the fundamental
matrix for setting them to a constant non-zero value (i.e., Fij = 1) and choosing the best solution [48].
However, this increases the computational time.

In this study, Gaussian elimination with partial pivoting is used to detect the free variable of the
consistent linear system of Equation (2) and to solve it. The free variable corresponds to the element
of the fundamental matrix, whose corresponding column in the coefficient matrix (A) is not a pivot
column. Therefore, that element cannot be zero and can take a fixed value, e.g., one, to resolve the scale
deficiency of the fundamental matrix. In terms of complexity, partial pivoting requires 2/3 m3 flops.
Therefore, its application is not efficient for large datasets. However, in the case of robust estimation
where only a minimal number of eight points is used, this method requires only 341 flops (compared
to 9351 flops for SVD decomposition).

Given an estimated fundamental matrix, it is possible to express how well the correspondences
fit to it by calculating the residuals of the correspondences [19]. There are various error measures to
represent the residuals, including algebraic distance, epipolar-weighted distance, two-sided point to
epipolar line distance and the Sampson distance:

dS =
|u′ᵀFu|√

l2
1 + l2

2 + l′1
2 + l′2

2
, (4)

where (l1, l2, l3)
ᵀ = Fu and (l′1, l′2, l′3)

ᵀ = u′ᵀF. The ideal measure for robust estimation should not be
highly sensitive to image noise. As the previous studies have shown, the Sampson distance is less
sensitive to image noise in comparison with other error measures. Therefore, the Sampson distance is
used in this study to represent the residuals.

3.2. Robust Estimation Problem

The main problem of robust estimation is to find a minimal sample set of inliers, from which the
fundamental matrix (the model) can be estimated correctly. To determine how correct an estimated
model is, an objective function is required. In RANSAC robust estimation, this objective function is
defined as the support of the estimated model. However, as mentioned in Section 2, this requires a
threshold to decide whether a correspondence supports the estimated model or not. In this study, to
avoid such a threshold, the concept of least trimmed squares (LTS) [49] is applied. The objective is
to minimize the sum of squared residuals over a minimum number of inliers, which we would call
an inlier set of minimum cardinality denoted by I. Given a candidate sample set of correspondences,
a fundamental matrix, F, can be estimated via Equation (2). Therefore, the inlier set of minimum
cardinality, I, would be the set of a∗ correspondences with the smallest residuals, dk, leading to the
cost function Cost(F):

Cost(F) = ∑
k∈I

d2
k , (5)

where I = {k|dk < di for all i /∈ I}. The cardinality of I, n∗, can be hypothesized without loss of generality.
For instance, one can assume that, in a dataset containing 1000 putative correspondences, at least 100 matches
are inliers without having any knowledge of the errors; i.e., n∗ = 100. The minimum number of inliers
would be a more relaxed assumption in comparison with the approximate ratio of outliers.
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4. Robust Estimation via the Genetic Algorithm

In this paper, a modified version of the integer-coded genetic algorithm, originally proposed
by [50] is applied to stochastically search for a sample set of correspondences that minimizes
Equation (5). In GA terminology, each candidate sample set of correspondences is called an individual.
The characteristics of an individual are represented by a chromosome. Each chromosome is made of
a number of elements, called genes. In the context of this study, each gene accounts for a putative
correspondence. Considering the minimal number of correspondences needed to find a solution for F,
the length of a chromosome remains constant (e.g., eight points). A group of individuals, e.g., 30 ones,
forms a population. The first step in applying the GA is to generate an initial population. The size of the
population and the way its individuals are drawn (sampling strategy) are the most important factors
to decide. Afterwards, in any iteration of the evolution, the model estimated from each individual is
evaluated based on the objective function (Equation (5)). Then, the genetic reproduction operators are
performed to reproduce a new population. This evolution continues the same way until reaching an
optimal solution. The overall pseudo-code of the proposed technique is given in Algorithm 1.

Algorithm 1: The proposed robust-estimation technique via the genetic algorithm.

Input
A set of n putative correspondences
Output
Estimated fundamental matrix and the entire set of inlier correspondences

(a) Genetic Algorithm
−Input: The lookup table of matches (Section 4.1)
−Output: The fundamental matrix (F) and an inlier set of minimum cardinality

1. Decide the minimum ratio of inliers, n∗/n
2. Initialize the first population by guided sampling (Section 4.2)

While the best solution gets improved do
3. Compute F from each individual (Section 3.1)
4. Evaluate each individual by computing the sum of the n∗ smallest residuals (Section 3.2)
5. Perform genetic operators (selection, crossover, mutation, random exploration) on the

individuals of the current population, and reproduce the next population through the
replacement process (Section 4.3)

6. Save the best overall solution achieved so far and the inlier-set-of-minimum cardinality
associated with it ( Î with cardinality of n∗)
End while

7. Re-estimate the fundamental matrix (F̂) using the inlier set of minimum cardinality from the
best solution ( Î) (Section 4.4)

(b) Estimate the uncertainty of the model (∑̂F̂) (Section 4.4)
(c) Estimate the average and uncertainty of the Sampson residuals (µ̄d, σ̄d) for matches belonging
to Î to determine the outlying threshold (Section 4.4)
(d) Compute and threshold the Sampson residuals on other matches to identify the entire set of
inliers (Section 4.4)

4.1. Encoding

A significant step in the design of the GA is to find an appropriate representation of individuals,
which is an encoding of candidate solutions to the problem as a chromosome. Assume that the
input dataset contains n putative correspondences as (uk ↔ u′k, k = 1, . . . , n). Each correspondence
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has an index, k, which is given to it based on a random permutation of numbers from one to n.
In previous studies (Rodehorst and Hellwich, 2006), the genes are directly defined as the index of
each correspondence. However, GA operators take these integers as inputs to create new solutions.
Therefore, these integers would better represent the correspondences in a way that makes geometrical
or physical sense. To this end, in this study, each correspondence is labelled with a triplet of integers:
one integer, k, as its index, as well as two integers, h and v, as the horizontal and vertical coordinates of
the left point relative to the other points on the left image. In this study, the length of the chromosomes
(the size of each minimal sample set) is set to 12. Therefore, each individual can be encoded as a sample

set M =
{

mi(ki, hi, vi), k = 1, . . . , 12|ki ∈ {1, . . . , n} ∧ hi ∈ {1, . . . , η} ∧ vi ∈ {1, . . . , v}
}

. Values η and
v represent the vertical and horizontal dimensions of an overlapping rectangle, which is defined as
the rectangle that minimally bounds all of the putative correspondences on the left image (Figure 2a).
Note that the reason why the size of M is set to 12 is explained in Section 4.2.

(a) (b) (c)

Figure 2. Encoding scheme: (a) the overlapping rectangle, (b) an example list of some putative
correspondences, which are identified by their indices, and their positions relative to the overlapping
rectangle and (c) a part of the 2D lookup table constructed using Equation (6); the bold numbers show the
indices of the original matches, and the regular numbers show the indices assigned to the other pixels.

Given this encoding, to reach the coordinates of the i-th gene inside an individual M
(i.e., umi ↔ u′mi ), the index ki is used. However, the genetic operators are applied to hi and vi.
One may note that applying the genetic operators to hi and vi can result in new integers, where
no correspondence might be located. To resolve this issue, a 2D lookup table is produced, by which
an index is assigned to any empty pixel of the overlapping rectangle based on its proximity to the
putative correspondences. In other words, the lookup table, T, finds the closest match to any arbitrary
coordinates, (h̃, ṽ), inside the overlapping rectangle:

T(h̃, ṽ) = k , where

k = arg min
j=1,...,n

(|h̃− hj|, |ṽ− vj|) . (6)

The lookup table in Equation (6) is identical to the indices in the Voronoi diagram of the points
in the left image, measured with Manhattan distances. As an example, consider the matches in
Figure 2b and their corresponding lookup table in Figure 2c. An instance of an encoded gene would
be m = (5, 6, 7). Now, consider the application of the mutation operator to this gene. The mutation
operator randomly changes the values of the genes. Assume that the application of the mutation
operator to m (indeed to values of h = 6 and v = 7) has resulted in new integers h̃ = 8 and ṽ = 9.
From the lookup table (Figure 2c), it can be seen that these integers correspond to k = T(8, 9) = 1.
Therefore, the mutation operator changes m = (5, 6, 7) to m = (1, 7, 9).
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4.2. Sampling GA Individuals

The first step to initiate GA is to generate a random population of individuals. As mentioned in
Section 3.1, at least eight points are required to form a minimal sample set from which the fundamental
matrix can be calculated. As discussed in Section 2, random sampling can be either done uniformly or
with an order based on the quality of the correspondences. However, none of these sampling strategies
avoids degenerate configurations. To decrease the degenerate solutions, guided sampling based on the
spatial distribution of the correspondences is proposed in this paper. To this end, first, the overlapping
rectangle (shown in Figure 3a) is divided into 12 sub-regions of equal area as in Figure 3b. Then, the
density of each region is calculated as the number of correspondences enclosed by it, normalized by
the total number of correspondences.

(a)

(b) (c) (d)

Figure 3. Guided sampling: (a) a stereo pair and the putative correspondences; the bounding rectangle
on the left image represents the overlapping rectangle; (b) dividing the overlapping rectangle into
12 sub-regions of equal area; (c) the minimal rectangle and the distribution of putative matches over
the sub-regions; (d) density-based roulette-wheel for region selection.

For the first half of the population, the 12 correspondences are picked up from the regions
that are selected successively in a roulette-wheel selection. The density of a region determines its
probability to participate in sampling. In simple words, the wheel is turned 12 times, and every time,
a region is selected from which to draw a match. For the other half of the GA population, every
individual is made of twelve correspondences in a way that at least one match is sampled from each
region. The reason for introducing this two-step sampling is to avoid high-density regions having full
dominance in the population. Figure 3c illustrates an example of putative correspondences distributed
on the overlapping rectangle, and the roulette wheel corresponding to it is shown in Figure 3d.
Once the population is formed, the correspondences of every sample set M in the population should
be substituted into Equation (2) to determine the fundamental matrix (F). Then, each fundamental
matrix is evaluated using the cost function in Equation (5), and its fitness is decided; the lower the
value of the cost function, the fitter the individual.

The primary goal of the proposed scheme for subdividing the overlapping rectangle is to decrease
the risk of sampling ill-configured points. Evidently, more than 12 sub-grids could be considered for
sampling. However, the greater the number of points, the higher the risk of encountering outliers
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and the lower the probability of reaching outlier-free sample sets. Besides, 12 data points are already
proposed by other studies such as [38,51]. Of course, there would still be a probability that the sampled
points are too close to each other and cause ill-configurations. Such cases might especially happen
when the points are selected from the regions close to the same edges or the same corners of the grid
cells. It can be shown that the gridding scheme of Figure 3b is up to two-times more robust to this type
of ill-configuration compared to a simple regular 4× 3 grid.

4.3. Genetic Operators

Once the individuals are evaluated, a selection operator is applied to the population to allocate
the instances of fitter individuals for entering a mating pool as parents to reproduce a new generation
(a generation in the context of genetic algorithms is equivalent to an iteration in the context of RANSAC).
The tournament selection is used here due to its higher computational efficiency over other selection
techniques [50]. Afterwards, new individuals are generated from the selected parents by applying
crossover and mutation operators during a reproduction process. Crossover means creating two new
individuals (called offspring) by combining two selected parents. Mutation means randomly changing
the genes inside a chromosome. These procedures are explained below.

Let Mparent1 =
{

mp1
i = (kp1

i , hp1
i , vp1

i ), i = 1, . . . , 12
}

and Mparent2 =
{

mp2
i =

(kp2
i , hp2

i , vp2
i ), i = 1, . . . , 12

}
be two selected parents. Furthermore, let the followings auxiliary

variables be defined as xp1
i = (xp1

i1
, xp1

i2
) := (hp1

i , vp1
i ) and xp2

i = (xp2
i1

, xp2
i2
) := (hp2

i , vp2
i ). The parameter

βi = (βi1 , βi2) is defined via Equation (7) in order to respect the bounds of correspondences on
the images.

β j=1,2 =
1−min(xp1

ij
, xp2

ij
) + ξ j −

(
max(xp1

ij
, xp2

ij
)− 1 + min(xp1

ij
, xp2

ij
)
)
uj

ξ j − 1
(7)

In Equation (7), u = (u1, u2) includes two uniformly-distributed random numbers between
zero and one, and ξ = (ξ1, ξ2) := (η, v). The crossover operator combines the two parents to
produce two offspring, Mo f f spring1 =

{
mo1

i = (ko1
i , ho1

i , vo1
i ), i = 1, . . . , 12

}
and Mo f f spring2 =

{
mo2

i =

(ko2
i , ho2

i , vo2
i ), i = 1, . . . , 12

}
, via Equations (8) and (9).

ko1
i = T(h, v)

where x = (x1, x2) := (h, v) and

xj=1,2 = round
(
xp1

ij
+ β j|x

p1
ij
− xp2

ij
|
)
, (8)

ko2
i = T(h, v)

where x = (x1, x2) := (h, v) and

xj=1,2 = round
(
xp2

ij
+ β j|x

p1
ij
− xp2

ij
|
)

(9)

The mutation operation should be applied with caution to not highly distort sound solutions [52].
Furthermore, it should take into account the fact that usually inliers tend to be closer to each other than
outliers (as assumed in the N Adjacent Points Sample Consensus (NAPSAC) robust estimation method by
[53]). Therefore, mutation should perform a random local search for possibly finding more inliers in the
vicinity of the currently-sampled points. A mutated solution, Mmutated =

{
mm

i = (km
i , hm

i , vm
i ), i = 1, . . . , 12

}
is created from a recently-produced offspring solution Mo f f spring =

{
mo

i = (ko
i , ho

i , vo
i ), i = 1, . . . , 12

}
using

Equation (10)
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kmut
i = T(h, v)

where x = (x1, x2) := (h, v) and

xj=1,2 =


round

(
xo

ij
− sj

(
xo

ij
− min

k=1,...,12
(xo

kj
)
))

, if τij < uj

round
(

xo
ij
+ sj

(
max

k=1,...,12
(xo

kj
)− xo

ij

))
, if τij ≥ uj

(10)

where xo
i = (xo

i1
, xo

i2
) := (ho

i , vo
i ) and xo

i = (xm
i1

, xm
i2
) := (hm

i , vm
i ). In Equation (10), τi = (τi1 , τi2) :=

xo
i − 1

ξ − 1
, u = (u1, u2) includes two random uniformly-distributed numbers between zero and one;

s = (s1, s2) := π ◦ π follows a power distribution with π having random values between zero and one.
At any iteration, a random exploration is also performed by generating a fixed number of

individuals based on the proposed guided sampling strategy in Section 4.2. Generating random
solutions as a fixed portion of the population reduces the chance of converging to local optima.

The replacement strategy applied in this study can be considered as a combination of steady-state
and elitist replacement methods. It helps to keep the best solutions from older generations and to
maintain the population diversity to avoid premature convergence. Assume that P− is the population
of the last generation, P+ is the population of the selected parents from P− and P++ is the population
of the reproduced offspring using P+. Accordingly, q− demonstrates the least fitness value among the
best third quartile of individuals in P−. Therefore, the new population P starts forming by the fittest
individuals of P− (elites). Among the elite individuals with similar fitness, those who are formed
by correspondences coming from more distinct regions of the overlapping rectangle have priority in
replacement. This way, the chance of ending with the local optima is highly reduced. In fact, this
factor is used to distinguish models with similar fitness values. The rest of the spots available at P are
occupied by the following replacement condition:

Pi =

{
P++

i if fitness(P++
i ) > q−

P+
i if fitness(P++

i ) < q−
, (11)

where Pi means the i-th individual in the population, i = {1, . . . , population size}. Equation (11)
implies that an offspring whose quality is worse than 75% of the previous solutions is not qualified
enough to replace its parents. The genetic algorithm iterates the procedures mentioned above until there
is no improvement in the average of the elites’ fitness values during a specified number of generations.

4.4. Inlier Classification

Once the genetic algorithm terminates, the inlier set of minimum cardinality, Î, is found, and the
final fundamental matrix, F̂, is re-estimated using these points by performing iterative least squares
adjustment using the Gauss–Helmert model as:

U(θ, l) = s′Tk Fsk = 0, k ∈ Î

s.t. det(F) = 0 (12)

where the vector observations, l, include the coordinates of correspondences, uk ↔ u′k, k ∈ Î, which are
normalized by T and T′ as Hartley normalizing transformation as such sk = Tuk, s′k = T′u′k. The vector
of parameters is θ = (F11, F12, F13, F21, F22, F23, F31, F32, F33)

T ; note that one element of the fundamental
matrix, here F33, is assumed fixed based on the direct result of F obtained from the GA.

Now, inliers can be distinguished as the correspondences with residuals from F̂ that are less than
a given threshold. The important issue would be determining this threshold. Standard RANSAC
algorithms determine this quantity using maximum likelihood estimation based on the median of
the residuals associated with the best tentative model. In this paper, the uncertainty of the final
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fundamental matrix is considered to calculate an adaptive threshold as follows. First, the covariance
matrix of the estimated parameters can be derived using the covariance law as in Equation (13):

Σ̂θ̂ =
v̂Tv̂

n∗ − 8
(

AT(BBT)
−1

A
)−1

, (13)

where A =
∂U
∂θ

and B =
∂U
∂l

are Jacobian matrices calculated at re-estimated coordinates of the

correspondences ûk ↔ û′k, k ∈ Î, and v̂ is the vector of estimated residuals. From Equation (12),
F̂ = T′T FT := G(θ̂). We can determine the uncertainty of the estimated fundamental matrix using the
rules of error propagation as follows.

Σ̂F̂ =
(∂G

∂θ̂

)
Σ̂θ̂

(∂G
∂θ̂

)T
. (14)

For each match uk ↔ u′k belonging to the inlier set of minimum cardinality, the Sampson distance
dk and its variance σ2

dk
can be calculated via Equation (15).

σ2
dk

=
(∂dk

∂y
)
Σy
(∂dk

∂y
)T

, k ∈ Î

where :

y = (F̂11, . . . , F̂32, F̂33, uT
k , u′ Tk )

T

Σy =

[
Σ̂F̂ 09×4

04×9 σmax I4

]
. (15)

The average of these distances, µ̄ = ∑k∈ Î dk/n∗, and their standard deviation, σ̄ =
√

∑ σ2
dk

/n∗,
can represent the distribution of the residuals for inliers. Considering Chebyshev ’s inequality, at least
95% of the population is within 4.47-times the standard deviation from the mean, no matter what kind
of probability distribution they are following. Therefore, every match with index j is an outlier by the
confidence of 95% if its residual, dj, is greater than µ̄d + 4.47σ̄d. To ensure a maximum set of inliers and
avoid possible false positives or negatives, this whole procedure can be repeated a few times using the
new set of detected inliers.

5. Experimental Results and Discussion

To demonstrate the efficiency of our algorithm and its individual components, we performed
several experiments on simulated and real data. The variables that are tested with these experiments
include: (i) the performance of our sampling scheme; (ii) the accuracy of our adaptive thresholding
method for inlier classification; (iii) the effect of GA population size on the performance of the
algorithm and (iv) the performance of the overall algorithm under different levels of noise, outliers
and degeneracy. Table 1 summarizes the criteria used to assess these variables.

The experimental results obtained from the proposed technique are compared with those of
the following state-of-the-art techniques: RANSAC, MSAC, MLESAC, LO-RANSAC (Lebeda et al.,
2012), StaRSAC, Cov-RANSAC, Multi-GS-RANSAC and least median of squares (LMedS). Note that
for implementing these techniques, the programs were prepared by the authors of this manuscript
except for the following ones. The MATLAB built-in computer-vision toolbox was used for LMedS.
For measuring the uncertainty of the fundamental matrix in Cov-RANSAC, the code was provided by
the original authors [54]. The code for Multi-GS sampling was also provided by the authors [27].
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Table 1. Criteria for performance assessment.

Symbol Description

Itr number of iterations before the termination of robust estimation

µd
precision of estimation (pixel2): the average of squared Sampson residuals over the detected inliers
that shows how well the estimated fundamental matrix fits the detected inliers

α
accuracy of inlier classification (%): percentage of correctly identified outliers and inliers among all
the matches, which is calculated as the sum of true positives and true negatives divided by the total
number of putative matches (applicable when the ground-truth is available)

TPR
sensitivity or true-positive rate (%): percentage of correctly identified inliers, which is calculated as the
true positives divided by the sum of true positives and false negatives (applicable when ground-truth
is available)

TNR
specificity or true-negative rate (%): percentage of correctly identified outliers, which is calculated
as the true negatives divided by the sum of true negatives and false positives (applicable when
ground-truth is available)

µd · CP
accuracy of estimation (pixel2): an average of squared Sampson residuals on control points or true
inliers that shows how well the estimated model fits the real inliers; the real inliers are noise free
(applicable when the ground-truth is available)

DF
difference between the estimated fundamental matrix and the true one (expressed in pixels), which is
measured using a method described by [46] (applicable when the ground-truth is available)

5.1. Experiments on Synthetic Data

Several synthetic datasets were used to evaluate the performance of our algorithm. Using the
synthetic data allowed us to control the imaging geometry, the fraction of outliers and the image noise.
Besides, it let us assess the accuracy of inlier detection and model estimation in comparison with the
ground-truth. Instead of creating random correspondences without having any particular geometric
or physical form, real 3D point clouds were used to generate synthetic images. The synthetic outliers
were produced in a relatively small range of error because large gross errors can be easily detected by
statistical tests. Thus, we are interested in testing the performance of the proposed method in dealing
with medium ranges of errors (smaller than 40 pixels). The synthetic datasets are described in Table 2.
Different scenarios were chosen to cover diverse real-world cases including close-range and aerial
photography, narrow and wide baselines and degenerate configurations. The following paragraphs
briefly explain the reasons for which each dataset was selected for these performance tests.

The Table dataset: This is mainly generated to simulate a degenerate configuration, where a large
number of correspondences is located on a planar object. Therefore, the performance of the sampling
technique under degeneracies (Section 5.2.1) was tested on this dataset.

The Church dataset: This does not have any degenerate configurations. This close-range
stereo-pair contains a small number of correspondences, which allows the application of the
Multi-GS-RANSAC method. Furthermore, a low level of noise is simulated, which is usually the case
of close-range images with static imaging platforms. The relative orientation of two cameras is quite
challenging from the photogrammetric point of view (a narrow baseline and large relative rotations).
Therefore, the performance of the sampling technique under varying outlier ratios (Section 5.2.2), the
stability and the effect of GA population size were tested on this dataset.

The Urban dataset: This represents the case of aerial imagery, where the level of image noise is
considerably higher compared to close-range imagery. The lower spatial resolution of the images and
the motion blur caused by movements of an airborne platform are the main reasons to make such an
assumption. Therefore, this dataset was used to test the performance under various noise levels.

The Multiview dataset: This dataset was designed to be unbiased and representative of general
photogrammetric applications. This dataset includes stereo images with short, long and moderate
base-lines. There is no specific degenerate configuration or any particular structuring pattern in the
scene. Some of the images are simulated at very low altitudes (similar to close-range imagery), while
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the others are at higher altitudes (similar to aerial imagery); this also causes high variations of scale
across the images. Therefore, the performance under various outlier ratios (Section 5.4) was tested on
this dataset. The results obtained from the StaRSAC method were not represented in the graphs of
Section 5.4 since they were not as good as the results of the other methods, and their representation
would have caused mis-scaling of the graphs. The Multi-GS-RANSAC was not tested on this dataset
since most stereo pairs contained thousands of correspondences, the processing of which with Multi-GS
would have been too time consuming.

Furthermore, a stereo pair from this dataset with a large number of matches (4510 matches) and
a low level of noise was used to test the performance of inlier classification (Section 5.3). There is
no specific structuring pattern in this stereo pair. Furthermore, there is no challenge or complexity
regarding the relative poses of the cameras; i.e., the baseline is neither too short, nor too long, and the
relative rotation between images includes yaw differences only.

Table 2. Description of synthetic datasets.

Dataset Label Figure (3D Scene and Cameras Orientation) Description

Multiview

– 40 synthetic images
– averagely 3000 correspondences per stereo pair
– focal length: 4730 pixels, sensor size: 4870× 3250 pixels
– Gaussian noise: from 0 to 2 pixels
– outlier ratio: from 20 to 80%
– outliers: gross errors from both normal and uniform

probability distributions ranging from 10 to 30 pixels

Urban *

– 2500 correspondences
– focal length: 8889 pixels, sensor size: 5750× 3750
– Gaussian noise: from 0 to 4 pixels
– outlier ratio: from 0 to 80%
– outliers: from 10 to 30 pixels

Church

– 800 correspondences
– focal length: 1000 pixels, sensor size: 3000× 2000
– Gaussian noise: from 0 to 2 pixels
– outlier ratio: from 20 to 70%
– outliers: from 10 to 40 pixels

Table

– focal length: 3500 pixels, sensor size: 1940× 1460 pixels
– Gaussian noise = from 0 to 2 pixels
– correspondences are either on the monitor plane or other

objects on the table
– λ is the number of matches located on the monitor plane

divided by the total number of matches
– six instances of the data created by varying λ from 0.4 to 0.9
– 258 correspondences placed on the surface of the monitor at

each instance of data
– a total of 100 random outliers at each instance of data

* The urban 3D point cloud, from which the images are synthesized belong to ISPRS benchmark datasets from
the Toronto area.
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5.2. Performance of the Guided Sampling Technique

5.2.1. Performance under Degeneracies

To verify the efficiency of our sampling algorithm to avoid planar degeneracy, the Table dataset
was used. In each instance of these data, 258 synthesized correspondences were placed on the surface
of the monitor, and the number of matches from other objects of the scene was varied to get the ratio λ.
For instance, at λ = 0.4, the total number of correspondences was 645, from which 258 correspondences
were located on the monitor plane. It should be noted that synthetic images were captured so that
all of the objects of the scene were visible in the images, and the monitor plane only occupied a
small area in each image. For any instance of the dataset at different ratios λ, we limited the total
number of hypotheses to 1000 and compared the results of our method with those of RANSAC and
Multi-GS-RANSAC. That is, each algorithm was stopped when exactly 1000 sample sets were drawn.
This limited number of sample sets is approximately six-times more than the theoretical number of
sample sets for achieving 95% probability of drawing at least one outlier-free random sample set
from the data containing 40% outliers, which is the maximum outlier ratio in the dataset instances.
The performance criteria used for this experiment were (i) the percentage of outlier-free (an outlier-free
sample set is a set of matches where all of the matches are inlier) sample sets among the 1000 sample
sets; (ii) the percentage of non-degenerate (a degenerate sample set (due to planar degeneracy) has
more than five points from the dominant plane (in this example, the monitor plane); see Section 2) and
outlier-free sample sets among the 1000 sample sets that we denote as non-degenerate sample sets for
simplicity and (iii) estimation accuracy (µd · CP). The medians of the results obtained after five trials
are represented in Figure 4.

(a) (b)

(c)

Figure 4. Performance of sampling methods on the Table dataset as the ratio λ increases: (a) percentage
of outlier-free sample sets, (b) percentage of non-degenerate sample sets and (c) estimation accuracy.
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The proposed algorithm drew up to 75-times more outlier-free sample sets in comparison with
RANSAC within a limited budget of 1000 sample sets (Figure 4a). The percentages of outlier-free
samples for our algorithm and Multi-GS-RANSAC were very close. This showed that the Multi-GS
sampling strategy performed well in the absence of degeneracy. However, Multi-GS sampling failed
to draw non-degenerate sample sets as the ratio λ increased (Figure 4b). For ratios higher than 0.7,
both RANSAC and Multi-GS-RANSAC failed to estimate the model correctly (Figure 4c), while the
proposed algorithm estimated the model robustly even in the presence of serious degeneracy (λ = 0.9).

5.2.2. Performance under Varying Outlier Ratios

A similar test was performed to assess the performance of the sampling algorithm under various
ratios of outliers. To this end, the Church dataset was used. The limited sampling budget was set to
1000 and 5000 sample sets for outlier rates less than or equal to 50% and higher than 50%, respectively.
The percentage of outlier-free sample sets among the budgeted sample sets (either 1000 or 5000) and
the estimation accuracy (µd · CP) are presented in Figure 5.

For most of the outlier ratios, the outlier-free sampling rates of the proposed algorithm and those
of Multi-GS were very close. RANSAC drew quite less outlier-free sample sets in comparison with
the other two methods. For outlier ratios higher than 50%, RANSAC completely failed to detect
outlier-free sample sets and to estimate the model correctly. For an outlier ratio of 80%, only the
proposed algorithm kept good performance by drawing at least 22% outlier-free sample sets, given
the limited sampling budget. As a conclusion, the sampling strategy based on the spatial distribution
of correspondences along with the evolutionary search not only increased the speed of reaching an
outlier-free sample set, but also decreased the probability of ending up with a degenerate solution.

(a) (b)

Figure 5. Performance of sampling methods on the Church dataset as the outlier ratio increases:
(a) percentage of outlier-free sample sets, (b) estimation accuracy.

5.3. Performance of Inlier Classification with Adaptive Thresholding

In order to verify the performance of the proposed thresholding method for inlier classification
(Section 4.4), a stereo pair from the Multiview dataset at the baseline of 20 m was used. To eliminate the
effect of other components of the algorithm, such as sampling and the objective function, no outlier was
introduced to the images; i.e., the dataset was outlier-free. The results from our method were compared
with those of the median-based and covariance-based algorithms. To this end, each algorithm was applied
500 times. In any trial, a minimal sample set of eight points was randomly drawn, and the fundamental
matrix was estimated with the normalized eight-point algorithm. For our algorithm, the technique of
Section 4.4 was applied to determine the inlier thresholds. For the median-based algorithm, the robust
standard deviation of residuals was defined as σ = 1.4826

(
1+ 5/(n− 8)

)√
mediani(ri), i = {1, . . . , n}.
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Since the dataset was outlier-free, n was equal to the total number of matches, and ri was the residual of
any correspondence with respect to the estimated fundamental matrix. Then, the inlier threshold was
calculated as 1.96σ. For the covariance-based algorithm, which is the core component of Cov-RANSAC,
first, the uncertainty of the estimated model was used to narrow down the total set of matches to the set
of potential inliers. Then, the median-based algorithm was applied to the potential inliers for determining
the inlier threshold.

In order to evaluate the performance of these algorithms, the fraction of runs
(from a total of 500 runs) in which a correspondence was classified as inlier was calculated, namely
the inlier probability of that match. The inlier probabilities (sorted in ascending order) are shown in
Figure 6. Knowing that the dataset was outlier-free, the inlier probability for all of the points was
ideally one. Our thresholding algorithm resulted in the most stable and robust solutions. That is, for
92% of the points, the inlier probability was higher than 0.9. For the median-based algorithm, this
percentage was only 15%. The covariance-based algorithm had poor performance in comparison with
both of the other methods. Our algorithm resulted in inlier ratios higher than 90% for more than 88%
of the runs. However, the median-based and covariance-based algorithms yielded inlier ratios greater
than 90% at only 32% and 15% of the runs, respectively.

(a) (b)

(c)

Figure 6. Inlier probability of correspondences obtained using (a) our adaptive thresholding method:
(b) median-based algorithm; (c) covariance-based algorithm.

To investigate the reason behind the performance of each algorithm, the threshold values
determined at each run are illustrated versus the run index as black points in Figure 7. Then, the true
residuals, which are residuals of the matches from the true fundamental matrix, were calculated. Note
that the true fundamental matrix is the one based on which the matches are synthesized. The maximum



Algorithms 2017, 10, 87 19 of 28

and the median of the true residuals are shown in Figure 7 as the red and green lines, respectively.
Then, the parameter σ = 1.4826

(
1+ 5/(n− 8)

)√
mediani(ri) using true residuals was used to calculate

the true median-based threshold. The blue line illustrates this value in Figure 7.
The true median-based threshold was slightly higher than the true maximum residual, and it

would be an ideal choice of threshold only if the fundamental matrix were perfect. However, in these
tests, the fundamental matrix was calculated from a minimal sample set of eight correspondences,
which had different values of noise and did not necessarily have an ideal spatial configuration either.
Because of the uncertainty of the fundamental matrix and the noise value of the points participating
in the estimation of the fundamental matrix, the threshold value should be larger than the ideal
one to detect all of the inliers correctly. Although the covariance-based method tried to consider
this effect, it underestimated the potential inliers. The main reason was that the uncertainty of the
fundamental matrix was estimated only from the minimal sample set. As shown in Figure 7, our
algorithm calculated the threshold adaptively. Frequently, the estimated threshold value was slightly
higher than the ideal median-based threshold. This was reasonable since the calculated fundamental
matrix, although determined from an outlier-free sample set, was not necessarily perfect. However,
for the other two methods, the threshold values were approximately around the true median-based
threshold, which could be suitable threshold values only if the estimated fundamental matrices were
as accurate as the true one.

(a) (b)

(c)

Figure 7. Inlier thresholds determined by (a) our adaptive thresholding method; (b) the median-based
algorithm and (c) the covariance-based algorithm.

5.4. Performance under Various Outlier Ratios

To assess the performance of the overall algorithm under different ratios of outliers, the Multiview
dataset was used. In the following experiments, the stall generation of the GA was set to 60. The upper



Algorithms 2017, 10, 87 20 of 28

bound to the standard deviation of image noise (σmax) was set to three pixels. The GA population
size was set to 27. The parameter n∗ was set to n/10 in all of our experiments. The algorithm
was implemented in the MATLAB environment directly without using its optimization toolbox.
The average of the results over all of the stereo pairs versus the outlier ratios are presented in Figure 8.

The results can clearly illustrate the performance of the proposed algorithm. For instance,
to reach 95% accuracy in inlier detection from a dataset with 70% outliers, at least 45,658 sample
sets must be drawn in random sample consensus. However, the proposed algorithm reached 95%
accuracy by drawing only 2100 sample sets. Similarly, our algorithm achieved 78% accuracy over
the 80% contaminated dataset with only 1440 hypotheses, while 591,455 random sample sets would
be theoretically required to reach that accuracy. There was a combination of reasons caused by the
evolutionary search and the sampling strategy that boosted this improvement. Furthermore, for all
of the outlier ratios, the number of GA iterations was lower than other algorithms (average Itr of 93).
However, it should be noted that any iteration of GA corresponds to the maximum of 27 hypothesis
generation. In the case of data with a low percentage of outliers, there are many correct solutions that
each can be slightly fitter; such slightly fitter solutions may violate the termination criterion mentioned
in Section 4.3. Therefore, an additional condition based on the rate of improvement achieved by the
new elites must be considered to avoid unnecessary iterations. One can use the following method;
whenever the elite solutions of two generations have fitness values within 10% of one another, then
the fitter solution should duplicate itself, and the less fit solution should be removed to ensure a low
standard deviation over the stall generations.

Figure 8. Performance of different algorithms under various percentages of outliers for the Multiview
dataset. In the graphs, the x-axis represents the percentage of synthetic outliers in the dataset.

From the accuracy point of view, the proposed algorithm was more robust to outliers in
comparison with other algorithms, especially when the outlier percentage grew over 40%. On average,
the proposed technique achieved 91% ± 6% accuracy for inlier detection. The considerably high
estimation accuracy (average µd · CP of 0.376) confirmed this, as well. The improvement obtained by
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the proposed algorithm was also evident regarding the true negative rate (average TNR of 94%), which
showed the efficiency of the algorithm to distinguish outliers from inliers. Figure 8 also indicates that
LMedS performs robustly for outlier ratios less than 50%. However, model estimation and, particularly,
inlier detection for higher outlier rates is the bottleneck of this algorithm. The Cov-RANSAC resulted
in better TNR compared to our algorithm. However, the spatial configuration and the level of noise
in the sampled points are ignored in this method. As a result, the estimation of model uncertainty
becomes impractically too large or too small. Consequently, the number of inliers is usually over- or
under-estimated. That is why this technique resulted in very low TPR. .

5.5. Performance Stability

Another variable that should be tested under various outlier ratios is the stability of the results
obtained by running the algorithm multiple times. To this end, the Church dataset was used.
The algorithm was repeated 50 times for each instance of the data. For outlier ratios ranging from
10 to 70%, the variations of accuracy was not considerable (α = 99% ± 2%). However, at an 80%
outlier rate, the average accuracy decreased to 92% ± 8%. Although this was a noticeable change
in the performance of the algorithm, the median of the accuracies was yet reasonably high (95%).
Regarding the number of models hypothesized before termination, a large range of changes was
observed at lower outlier ratios. As explained earlier, this happened due to the stopping criterion in
GA. However, this was itself an advantage for large outlier ratios (more than 50% outliers).

5.6. Performance under Various Noise Levels

The Urban dataset was used to evaluate the robustness of the proposed algorithm against noisy
image observations. To this end, the effects of image noise along with varying percentages of outliers
were tested using 81 instances of the Urban dataset. The results are illustrated in Figure 9.

From the accuracy point of view, the accuracy of estimation (described by µd ·CP) did not decrease
by increasing the noise level. The different noise synthesized on putative matches varies between zero
and four pixels. The robustness of the algorithm to noise means that the sample sets whose points
have a lower level of noise can be recognized through the LTS-based objective function. Thus, the
estimation of the fundamental matrix would be based on the least-noisy correspondences of the
dataset. Regarding the accuracy of inlier detection, the true positive rate was not affected by the noise.
However, the true negative rate decreased slightly by increasing the noise level. Since the outliers
were synthesized by adding gross errors as low as 10 pixels to correspondences, distinguishing real
outliers from noisy inliers at higher noise levels became a more difficult task, and the false positive
rate increased. In terms of convergence speed, increasing the magnitude of image noise decreased the
number of iterations. The total number of iterations required to find the final solution changed only
from 80 to 250 as the ratio of outliers increased to 80% and the level of noise increased to four pixels.
This shows the high computational efficiency of the overall algorithm in the presence of high ratios of
outliers and noise.
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Figure 9. Performance of the proposed algorithm with noisy images. The graph at the bottom of each
surface-plot represents the average of respective performance criterion versus the amount of noise.

5.7. Effect of the GA Population Size

To evaluate the effect of GA population size on the performance of the algorithm, the Church
dataset was applied. The GA population size was varied from 20 to 70 by steps of five individuals,
and the performance of the algorithm was assessed under various outlier ratios. The results obtained
from this experiment are illustrated in Figure 10.

There was no considerable correlation between the accuracy and the size of the population.
The average accuracy of inlier-detection (α) with different population sizes was 99.1% with a standard
deviation of only 0.9%. The accuracy of estimation (µd ·CP) also remained below 0.05, which confirmed
the stable accuracy of model estimation. The number of iterations before termination (Itr) seemed to
be more dependent on the outlier percentage rather than the population size. The average number
of iterations at outlier ratios less than 50% was 122, while it was only 62 at higher outlier ratios.
The number of generated hypotheses (Nmodel) increased by either decreasing the outlier ratio or
increasing the GA population size, since it depended both on the population size and the number
of iterations. Showing that the accuracy does not have any distinct correlation with the population
size, the moderate size of the population is suggested to both avoid the unnecessary generation of
hypotheses and to keep the number of iterations small.
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Figure 10. Performance of the proposed algorithm with varying GA population size. The graph at the
bottom of each surface-plot represents the average of the respective performance criterion versus the
population size.

5.8. Experiments on Real Data

The proposed algorithm of robust estimation and inlier detection was compared with other
RANSAC-like techniques for 15 stereo pairs (Table 3). These examples were chosen to cover
various cases, such as close-range and aerial photography, narrow and wide baselines, degenerate
configurations, scale variation, multi-platform photography and highly contaminated data. The first
seven pairs and their putative matches were gathered from [40]. For these data, the percentages of
true inliers in the dataset (ε) were manually determined in the reference article. For the 8th, the
9th and the 10th stereo pairs, we used signalized targets to provide ground control data when
acquiring the images. The reference fundamental matrices were calculated from these control
points. The 11th stereo pair belongs to the ISPRS datasets for urban classification www2.isprs.org/
commissions/comm3/wg4/detection-and-reconstruction.html. The 14th stereo pair belongs to the
ISPRS benchmark for multi-platform photogrammetry http://www2.isprs.org/commissions/comm1/
icwg15b/benchmark_main.html [55]. For these last two pairs, the exterior and interior orientation
parameters provided by ISPRS were used as reference values for evaluation. For the last five stereo
pairs, SIFT key points were detected and matched using the VlFeat www.vlfeat.org feature-based
matching library. For the second and the 12th stereo pairs, we could not apply Multi-GS, since the low
inlier ratio and a high number of correspondences made that algorithm too slow to be executable.

It can be noticed from the results that our algorithm generally yielded solutions that were
compatible with the ground-truth in terms of either inlier-detection accuracy or estimation accuracy.
For the eight and the ninth images, a dominant plane existed in the scene. Therefore, most of the
algorithms ended up with a degenerate solution. However, the degeneracy could be avoided quite
efficiently by our algorithm. This was mainly due to the guided sampling based on the spatial
distribution of matches. Finally, it was noticed that the algorithm had good performance in challenging
cases such as multi-platform photography.

www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html
http://www2.isprs.org/commissions/comm1/icwg15b/benchmark_main.html
http://www2.isprs.org/commissions/comm1/icwg15b/benchmark_main.html
www.vlfeat.org
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Table 3. Performance of the proposed algorithm and other techniques on real data.

Image Pairs Criteria Our Algorithm RANSAC MSAC LO-RNASAC Cov-RANSAC StaRSAC Multi-GS-RANSAC

1

ε = 38%, n = 1088 Itr 82 2823 3201 16,038 503 160,818 2645

ρ 34.0 32.0 32.0 34.2 1.1 43.2 42.8

µd 0.163 0.111 0.092 0.228 24.916 6.076 28.593

2

ε = 22%, n = 1516 Itr 203 46,329 50,000 500,000 505 112,200

ρ 21.6 8.0 20.6 6.9 0.7 14.9

µd 0.163 0.208 0.074 0.455 139.683 15.881

3

ε = 38%, n = 1088 Itr 80 217 1044 18757 503 91,638 198

ρ 31.8 32.7 33.4 34.8 2.6 49.5 100.0

µd 0.199 0.115 0.170 0.194 154.951 46.196 4911

4

ε = 45%, n = 904 Itr 78 964 1100 2547 502 52,692 1259

ρ 44.1 42.3 40.5 43.0 1.4 59.5 43.7

µd 0.179 0.102 0.100 0.250 0.614 32.472 20.919

5

ε = 85%, n = 2471 Itr 80 100 100 100 502 6211 101

ρ 83.9 76.1 75.4 82.6 17.0 61.4 93.1

µd 0.155 0.139 0.144 0.332 0.048 0.053 0.373

6

ε = 65%, n = 1110 Itr 63 100 100 134 502 17,595 101

ρ 66.4 55.0 57.5 66.4 9.2 58.5 74.4

µd 0.252 0.303 0.219 0.369 0.081 0.187 0.605

7

ε = 60%, n = 962 Itr 178 100 100 144 502 14,122 101

ρ 60.7 65.5 56.3 62.2 10.2 72.6 70.5

µd 0.209 0.613 0.136 0.254 0.099 4.009 1.103

8

ε =N/A, n = 1497 Itr 105 100 100 100 502 6028 101

ρ 89.9 96.8 81.0 98.1 17.3 97.2 90.5

µd 0.122 5.911 1.908 26.657 0.053 248.279 0.621

DF 4.0 147.2 234.5 235.3 2433.3 122.3 9036.2

µd · CP 0.335 543.293 750.871 293.029 9052.456 112.079 30,254.320
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Table 3. Cont.

Image Pairs Criteria Our Algorithm RANSAC MSAC LO-RNASAC Cov-RANSAC StaRSAC Multi-GS-RANSAC

9

ε =N/A, n = 4355 Itr 120 100 100 100 502 6000 101

ρ 94.7 84.7 89.1 97.4 37.7 97.7 96.9

µd 0.071 0.093 0.077 0.744 0.041 0.435 0.117

DF 2.5 284.9 371.3 76.3 733.4 93.0 96.9

µd · CP 0.737 3138.844 5820.395 233.113 33,732.238 298.400 214.419

10

ε =N/A, n = 1647 Itr 59 100 100 100 502 27,292 101

ρ 60.7 88.4 73.3 89.9 3.8 92.0 83.5

µd 0.309 3.447 1.986 2.821 0.061 7.403 2.865

DF 13.7 80.6 74.2 70.1 806.2 96.1 94.6

µd · CP 1.356 2.707 2.774 1.218 4459.101 4.675 4.134

11

ε =N/A, n = 1213 Itr 74 100 100 100 502 26343 101

ρ 37.3 44.2 45.5 99.3 21.9 98.0 73.6

µd 0.258 0.255 0.252 9.747 0.085 6.251 3.065

DF 10.8 38.2 51.5 119.6 150.5 26.0 131.4

12

ε =N/A, n = 582 Itr 207 50,000 5035 8965 507 310,000

ρ 24.9 5.5 2.7 36.8 8.4 38.0

µd 4.001 6377.040 6.921 5.953 0.106 9.657

DF 159.3 1750.5 367.6 509.0 179.3 556.0

* ε is the inlier ratio, and n is the total number of correspondences.

6. Conclusions

In this study, we proposed an integer-coded genetic algorithm for the problem of accurate
epipolar-geometry estimation from putative matches, followed by an adaptive thresholding algorithm
for inlier classification. The proposed algorithm can be considered as a solution to resolve some of the
drawbacks involved in conventional robust estimators, specifically RANSAC-like methods. Based on the
experiments, the proposed approach showed robustness to high percentages of outliers, planar degeneracy
and image noise. On a general note, the success of the proposed algorithm is due to a combination of
elements: (i) the evolutionary behaviour of the search for outlier-free sample sets; (ii) the definition of the
objective function to not depend on the maximum number of the inliers, but their minimum number;
(iii) the integration of guided sampling and (iv) the uncertainty analysis in the final inlier classification
scheme. It should be noted that, except for the first element, other ones could be easily integrated
with different iterative robust estimation algorithms, as well. In the future, the proposed sampling and
classification techniques will be integrated with the variants of RANSAC, and their improvement will be
assessed. In general, the algorithm was able to detect the inliers by more than 85% accuracy, which is
a remarkable success for large datasets containing over 80% outliers. Furthermore, the computational
expenses of the algorithm were not increasing with either the ratio of outliers or the magnitude of image
noise. The efficiency of the proposed algorithm regarding speed was greater than other methods for
datasets with a high ratio of outliers (with more than 50% outliers). In the future, the algorithm could
also become more robust to degeneracy by extending the proposed two-dimensional guided sampling to
three dimensions by finding the probable three-dimensional structures.
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