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Abstract: The literature contains several reports evaluating the abilities of deep neural networks in
text transfer learning. To our knowledge, however, there have been few efforts to fully realize the
potential of deep neural networks in cross-domain product review sentiment classification. In this
paper, we propose a two-layer convolutional neural network (CNN) for cross-domain product review
sentiment classification (LM-CNN-LB). Transfer learning research into product review sentiment
classification based on deep neural networks has been limited by the lack of a large-scale corpus;
we sought to remedy this problem using a large-scale auxiliary cross-domain dataset collected from
Amazon product reviews. Our proposed framework exhibits the dramatic transferability of deep
neural networks for cross-domain product review sentiment classification and achieves state-of-the-art
performance. The framework also outperforms complex engineered features used with a non-deep
neural network method. The experiments demonstrate that introducing large-scale data from similar
domains is an effective way to resolve the lack of training data. The LM-CNN-LB trained on the
multi-source related domain dataset outperformed the one trained on a single similar domain.

Keywords: cross-domain; CNN; sentiment classification; large-scale; product review

1. Introduction

Much sentiment classification research focuses on training and testing classification models
within a specific domain [1]. Transfer learning is a necessary technique to resolve the lack of labeled
reviews in cross-domain product review sentiment classification. In many situations, plentiful product
reviews from one domain (source domain) exist in which the sentiment is labeled but the application
requires product review prediction from different, but related, domains (target domains) where the
sentiment is unlabeled. For example, assume that the task is to build a book review classifier and
that an insufficient number of labeled book reviews are available for training the classifier but that
labeled electronics reviews are abundant. However, different domains have different feature spaces and
distributions. In the book domain, words such as “exciting” and “graphic novel” are usually used to
express a positive sentiment, whereas words such as “boring” or “drowsy” express a negative sentiment.
In contrast, in the electronics domain, words such as “durable” and “light” are used to express a positive
sentiment, whereas words such as “expensive” or “short battery life” often express a negative sentiment.
Annotating reviews for a new domain is an expensive task that requires linguists skilled in natural
language processing (NLP). Unlabeled reviews, however, are abundantly available. Nevertheless, when
a sentiment classification model-trained source domain is directly applied to a different target domain,
the result is often unsatisfactory because the bias between the source domain reviews and the target
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domain reviews hinders the learning of an accurate sentiment classification model. In such scenarios,
transfer learning focuses on the challenge of disentangling this domain discrepancy.

Researchers have proposed various methods to tackle this problem using non-deep neural
networks [2–8]. However, these conventional approaches must extract customized features from the
text and then feed the features into a classical shallow classifier such as a support vector machine (SVM).
This process is empirical and task dependent, and it requires considerable engineering skills and
domain expertise to construct features that are specific to a certain task. If a different classification
task is addressed, this feature engineering method may not work well. However, such problems can
be avoided if representative features can be automatically learned using a general-purpose learning
procedure. This process is the key advantage of deep learning [9].

As a subfield of machine learning, deep learning aims to use a learning-based method to
solve complex non-linear problems that normally rely on the processes and structure of the human
brain. The deep learning approach can capture intermediate representations by constructing them
hierarchically. Some research has been conducted to address various issues that text-fields face in
deep neural networks. Kim [10] used word vectors as input and trained a simple CNN with a
single convolutional layer to perform sentence classification. The word vectors were pre-trained by
Word2Vec [11] on 100 billion words from Google News. The results suggested that pre-trained vectors
are satisfactory and function as “universal” feature extractors. Fine-tuning the pre-trained vectors for
each task produced further improvements. Kalchbrenner et al. [12] proposed a dynamic convolutional
neural network that used dynamic K-max pooling to model sentences and introduced multiple feature
maps that could capture short- or long-range semantic relations between words. This method did not
rely on external sources, making the DCNN directly applicable to hard-to-parse sentences.

For transfer learning, deep neural networks can generalize well from one domain to another.
The internal representation of the neural network contains no discriminative information about
the raw input [13]. The transfer learning ability of a deep neural network in the image field has
been evaluated [14,15]. Kandaswamy et al. [14] proposed a deep learning layer based on a feature
transference approach for image classification. By transferring low-, middle- and high-layer features in
unsupervised or supervised ways, using lower-layer features trained in a supervised fashion in the
case of CNNs and unsupervised features trained in the case of SDAs, this method achieved superior
performance. Yosinski et al. [15] quantified the transferability of each layer in an 8-layer convolutional
neural network. For text, Pan et al. [16] proposed a multi-layer transfer learning method based on
non-negative matrix tri-factorization. This method used supplementary latent factors to improve the
transfer learning performance. It also built every layer by including common and specific latent feature
spaces to reduce negative transfer. Collobert et al. [17] proposed a framework capable of multi-task
transfer learning. Xiao Ding et al. [18] proposed a convolutional neural network method for mining user
consumption intention (CIMM) on a child and baby corpus (source domain). This domain-adaptive
framework was also effective for identifying user consumption intention in the movie domain
(target domain). Studies have also focused on learning satisfactory representations via deep architecture
to reduce transfer loss (improve the transfer ratio). Glorot et al. [19] proposed a deep learning method
to learn an effective representation for domain adaptation based on stacked denoising auto-encoders.
Bengio [20] proposed several challenging problems for transfer learning faces and investigated how
to employ deep learning to resolve them. Mesnil et al. [21] found that models that interleaved
different layer-wise representation learning algorithms performed well. Contractive auto-encoders,
denoising auto-encoders and spike-and-slab RBMs worked best on dense datasets, and sparse rectifier
denoising auto-encoders worked best on sparse datasets. Liu et al. [22] applied domain supervision
and sentiment supervision to representation learning to address domain adaptation. By introducing
domain labels and sentiment labels for loss functions based on KL divergence, the model could learn a
more accurate domain-specialized and sentiment-specialized representation. The combination enabled
the representation to be more domain-specific and sentiment-oriented and demonstrated that domain
supervision is more effective than sentiment supervision. Gani et al. [23] proposed a representation
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learning method by aligning the distributions of features across domains via standard back-propagation
training. This method can be applied to both shallow and deep feed-forward architectures. To measure
the transferability of neural network, similar to [15], which involved transfer learning in image analysis,
Mou et al. [24] studied the transferability of semantic-relative and semantic-irrelative tasks, layers and
parameter initialization, multi-task learning and their combinations on three datasets.

Other previous studies based on deep neural networks have focused on consumption
intention [18], learning satisfactory representations [19–23], verifying the transferability of deep neural
networks [24], multi-task transfer learning [17], online transfer learning [25]. Although there have
been efforts to address product review text, such as [16], the neural network architecture and transfer
schema used in this study are different from those presented in [16], and research on transferability
still needs to be completed. No work has been conducted to fully realize the potential of deep neural
networks in cross-domain product review sentiment classification, probably because existing product
reviews for transfer learning have fewer resources. Transfer learning research of product review
sentiment classification in deep neural networks has been severely limited by the lack of large-scale
resources. The small size of benchmarks (e.g., 2000 reviews for each domain) [2] limits their utility
as a research corpus. Deep learning methods typically outperform conventional non-deep neural
networks on large-scale corpuses. Thus, this work remedies the problem of the lack of training data
using an auxiliary large-scale cross-domain dataset collected from Amazon product reviews. Then, we
demonstrate the transferability of the deep neural network using a cross-domain product review
dataset. As a platform for evaluation, because the data are dramatically larger than any existing corpus
of comparable quality, these data are suitable for training parameter-rich models such as deep neural
networks, which have not previously been studied in this domain.

A CNN is a neural network that can learn the internal structure of data. CNNs have performed
well in the image field; however, feeding a one-dimensional text data structure through the
convolution layers leads to each unit in the convolution layer responding to only a small region
of text. Existing studies on text with CNNs have attempted to resolve numerous problems, such as
sentence modeling [12], relation classification [26,27], sentence level text classification [10], machine
translation [28], short text classification [29], and domain-adaptive mining of user consumption
intentions [18]. In this paper, a text transfer learning framework based on a two-layer convolutional
neural network (LM-CNN-LB) is introduced that requires only a tiny number of labeled reviews
from the target domain. Experiments over a large-scale auxiliary cross-domain dataset collected
from Amazon product reviews demonstrate that the proposed framework can effectively learn a
non-discriminative feature representation from the source domain and transfer it to the target domain.

The remainder of this paper is organized as follows: Section 2 describes the problem and presents
definitions. Section 3 introduces the datasets used for the training method. The details of the neural
network architecture are presented in Section 4. The results of a series of experiments to evaluate the
effectiveness of the proposed solution are presented in Section 5. Section 6 concludes the work and
outlines recommendations for future work.

2. Problem Setting

The definitions used in this work are presented below.

• Domain: A domain D consists of the following two components: a feature space, χ, and a
marginal probability distribution, P(X). χ is the space that includes all the term vectors, and X
is an individual learning sample. In general, different domains have different feature spaces or
different marginal probability distributions.

• Source domain: DS = {(XSi , YSi )}
ns
i=1 refers to a set of labeled reviews from a certain domain. XSi

is the i-th labeled review, denoting one product review in the source domain. YSi is the sentiment
label of XSi , YSi ∈ {+1,−1}, where the sentiment labels +1 and -1 denote positive and negative
sentiments, respectively. nS is the number of labeled instances in the source domain and denotes
the total number of product reviews in the source domain.
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• Target domain: DT = {(XTi )}
nT
i=1 refers to a set of unlabeled reviews from a domain different from

but related to the source domain. Here, XTi is the i-th unlabeled review corresponding to one product
review in the target domain, and nT is the number of unlabeled reviews in the target domain.

• Cross-domain sentiment classification: Cross-domain sentiment classification is defined as the
task of training a binary classifier using labeled DS to predict the sentiment label YTi of a review
XTi in the target domain.

3. Data Collection

Cross-domain product review transfer learning benchmark (Db): A transfer learning
benchmark defined as described by Blitzer et al. [2] has been widely used in many cross-domain
sentiment classification methods. It contains Amazon product reviews consisting of the following
four different product types: books (BDb ), DVDs (DDb ), electronics (EDb ) and kitchen appliances (KDb ).
There are 1000 positive reviews and 1000 negative reviews for each domain. In this dataset, 12 pairs
of cross-domain sentiment classification tasks are constructed as follows: DDb→BDb , EDb→BDb ,
KDb→BDb ,KDb→EDb , DDb→EDb , BDb→EDb , BDb→DDb , KDb→DDb , EDb→DDb , BDb→KDb , DDb→KDb ,
and EDb→KDb , where the word before an arrow corresponds to the source domain and the word
after an arrow corresponds to the target domain. Due to its small size, Db is typically confined to
conventional non-deep neural network methods and has been considered unsuitable for training
parameter-rich neural networks.

Amazon product review dataset (Dl): To evaluate the ability of the deep neural network to
perform cross-domain product review sentiment classification, a large-scale Amazon product review
dataset collected by McAuley et al. [30] is introduced to supplement Db. This dataset contains product
reviews and scores from 24 product categories sold on Amazon.com, including 142.8 million reviews
spanning from May 1996 to July 2014. Review scores lie on an integer scale from 1 to 5. Reviews with
ratings of 1 and 2 are viewed as negative, and reviews with ratings of 4 and 5 are considered positive.
For this study, the following four categories of original product reviews were extracted for testing
purposes: Books (BDl ), Movies and TV (DDl ), Electronics (EDl ) and Home and Kitchen (KDl ) from
the most recent year (2014). In total, 50,000 positive reviews and 50,000 negative reviews were used
from each domain. Such a large-scale dataset can effectively reflect the transferability of a deep neural
network.

Auxiliary product review dataset (Dbl ): KL (Kullback–Leibler) divergence is a method for
measuring the similarity between two probability distributions and can be applied to measure the
similarity between domains. Table 1 displays the KL divergence of the corresponding domain between Db
and Dl, while Table 2 shows the KL divergence between the different domains of Db and Dl. In Table 2,
the second and third columns show the KL divergence between the different domains in Db and Dl,
respectively. The fourth column is the KL divergence between the domains (the source domain is Dl
and the target domain is Db). Comparing Table 1 with Table 2, the KL divergence of the corresponding
domains between Db and Dl is far less than between the different domains in Db or Dl. For example,
the similarity of BDb and BDl is far higher than that of EDb→BDb or EDl→BDl . Thus, a similar auxiliary
corpus (denoted as Dbl

) can be constructed for each domain (see Table 3) to supplement the small-size
benchmark Db. The Dbl

corpus is sufficiently large to train parameter-rich models such as deep neural
networks; thus, the use of deep neural networks is expected to succeed in terms of cross-domain product
review sentiment classification and its evaluation on the benchmark dataset.

Table 1. Corresponding domain Kullback–Leibler (KL) divergence of Db and Dl .

Db Dl KL Divergence

BDb BDl 0.1005126
DDb DDl 0.0956735
EDb EDl 0.0661170
KDb KDl 0.0397648
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Table 2. KL divergence of different domains.

Domain Dl Db Dl→Db

D→B 0.2643 0.2052 0.3017
E→B 0.6069 0.4864 0.5113
K→B 0.6048 0.5064 0.5126
B→D 0.2294 0.1925 0.2439
E→D 0.5225 0.4587 0.4734
K→D 0.5677 0.5043 0.4938
B→E 0.6153 0.3171 0.4014
D→E 0.5363 0.3025 0.3610
K→E 0.3010 0.2379 0.2189
B→K 0.6280 0.3029 0.3746
D→K 0.6211 0.2642 0.3425
E→K 0.3033 0.1936 0.1800

Table 3. Auxiliary dataset Dbl for cross-domain product review sentiment classification.

Domain Db + Dl Positive Negative

BDbl BDb + BDl 50,000 + 1000 50,000 + 1000
DDbl DDb + DDl 50,000 + 1000 50,000 + 1000
EDbl EDb + EDl 50,000 + 1000 50,000 + 1000
KDbl KDb + KDl 50,000 + 1000 50,000 + 1000

4. Neural Network Architecture

In this paper, a two-layer convolutional neural network is presented for cross-domain product
review sentiment classification (LM-CNN-LB). This classification model is deployed with its
convolution layers interleaved with pooling layers. The architecture of LM-CNN-LB is illustrated in
Figure 1.

A CNN works only with fixed length inputs; thus, every input length is standardized to l by
trimming the longer sentences and padding the shorter sentences with zeros. Given an input instance
Xi ∈ Rl , xi is the i-th word in this instance.

layer-0: The first layer is the embedding layer. Words in sentences are converted to
low-dimensional word vectors vi ∈ Rk through pre-training by Word2Vec [11], where k is the dimension
of the word vector. Thus, the input instance X ∈ Rl×k is concatenated with the word vector as follows,
where ⊕ is the concatenation operator:

X1:l = v1 ⊕ v2 ⊕ ...⊕ v1 (1)

The word vectors are applied to initialize the weight of the embedding layer, and this layer is
fine-tuned during training in the source domain. In subsequent steps, the network is regularized by
dropout. The output can then be used to augment the neural network layer.

layer-1: This layer consists of a one-dimensional convolutional operation and a max pooling
operation. The convolutional operation can learn an internal feature representation. The essence of
the convolutional layer is to convert text regions of a fixed size (e.g., “do not waste your time” which
has a size of 5) to feature vectors. The vector m ∈ Rn is the filter of the convolution, namely, the
weight. A filter width of n enables the convolution layer to make use of text word order to capture
the contextual feature of a word. For a word vector vi, the feature vectors around vi are concatenated
within n. Then, the vector is input to the convolution operation to take the dot product of the weight
vector m ∈ Rn and an input vector vi ∈ Rk with the activation function. The new feature representation
is as follows:

f j = mTvj:j+n−1 (2)
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The output of the layer is as follows:

O = σ( f j + b) (3)

where σ is activation function relu.
f (x) = max(0, x) (4)

The weight vector m ∈ Rn and the bias vector b ∈ Rn are shared by all units in the same layer and
are learned through training. This filter is applied to each possible window of words in the sentence
{x1:h, x2:h+1, ..., xn−h+1:n} to produce a feature map. By putting the one-dimensional max pooling layer
on top of the local vectors, the network is enhanced, and it can capture the most useful local features
for a task with a fixed size.

Figure 1. Architecture of LM-CNN-LB for cross-domain product review sentiment classification.

layer-2: The output of layer-1 is used as the input to this layer. Layer-2 is another layer consisting
of a one-dimensional convolutional operation and a max pooling operation that is the same as layer-1.

layer-3: The output of layer-2 is then fed into a fully connected layer (regularized by dropout).
The activation function is relu.

layer-4: The output of layer-3 is fed into a fully connected layer (regularized by dropout) at the
end to classify the output. The activation function is sigmoid.
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f (x) = 1
1 + e−x (5)

In this scheme, a two-layer convolutional neural network is constructed and trained on the source
domain data from Dbl

. The constructed model is designated as Scnn. To transfer the data, another model
(designated Tcnn) is built with the same neural network architecture as that of Scnn. The parameters
are transferred from Scnn to initialize the corresponding layer in Tcnn. By freezing the embedding layer,
the remaining layers of Tcnn are trained on a small quantity of target domain data from Dl to obtain
the model Tcnn for the test target domain from Db. For example, for task B→D, first, Scnn is trained on
the auxiliary dataset BDbl . Then, the parameters of Scnn are transferred to Tcnn to initialize its neural
network architecture. After freezing the embedding layer of Tcnn, the remaining layers are fine-tuned
on small amounts of DDl . Finally, Tcnn is tested on DDb . Introducing the large-scale auxiliary data
causes the small-size benchmark to become sufficient for training the neural network. Moreover, these
conditions are suitable to fully demonstrate the transferability of deep neural networks. Furthermore,
Scnn can automatically extract feature representations that can be shared across the source and target
domains. Finally, fine-tuning the parameters transferred from Scnn using small amounts of target
domain data enhances Tcnn, causing it to learn features that are specific to the target domain task and
increasing its accuracy.

5. Experimental Evaluation

5.1. Benchmark Experiments

To evaluate the effectiveness of the proposed framework, the LM-CNN-LB method was compared
with the following methods:

• SVM-NBB: A model trained on the source domain was directly applied to predict the target
domain without any transfer learning method. The classifier was an SVM using the bag-of-words
(BOW) schema and a linear kernel; the source domain and target domain were all from Db.
For example, the source domain was BDb and the target domain was DDb ; the cross-domain
classification task was BDb→DDb .

• SVM-NLB: The model trained on the source domain was directly applied to predict the target
domain without any transfer learning method. The classifier was SVM, using BOW and a linear
kernel. The source domain was from Dbl , and the target domain was from Db. For example, when
the source domain was BDbl , the target domain was DDb , and the cross-domain classification task
was BDbl→DDb .

• SCL-MI: Blitzer et al. [2] applied structural correspondence learning for cross-domain sentiment
analysis (SCL). SCL-MI was an improvement of SCL [31]. The source domain and the target
domain were both from Db.

• SFA: Spectral feature alignment was proposed by Pan et al. This approach bridged the gap
between different source and target domains via word alignments [3]. The source domain and
target domain were both from Db.

• SS-FE: The SS-PE approach was used to conduct both labeling adaptation and instance adaptation
for domain adaptation as in [5]. The source domain and target domain were each from Db.

• CSC: The authors of [8] proposed a common subspace construction method for cross-domain
sentiment classification called CSC. The source domain and target domain were each from Db.

• PJNMF: This method links heterogeneous input features via pivots via joint non-negative matrix
factorization [6]. The source domain and target domain were each from Db.

• LM-CNN-NLB: LM-CNN-LB was applied to the source domain using Dbl to train the Scnn. Then,
the Scnn was directly applied to predict the target domain from Db.

• LM-CNN-BB: Like LM-CNN-LB but the Scnn was trained on the source domain from Db.
The training set size was 1600 and the validation set size was 400. Then, the Tcnn was also
trained on the target domain from Db. The training set size was 400, the validation set size was
200, and the remaining 1400 data points comprised the test set.
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In the process of training the Scnn of LM-CNN-LB, the training set size was 90,000, and the
validation set size was 12,000. To train the Tcnn, the training set size was 4000 (4% of the target domain
from Dl) and the validation set size was 1000 (1% of target domain from Dl). Finally, the Tcnn model
was used to test 2000 target domain product reviews from Db. The embedding layer weights were
pre-trained on Google News.

5.2. Experimental Configuration

The weight of the embedding layer in LM-CNN-LB was initialized with 300-dimensional word
vectors. These vectors were pre-trained with 100 billion words from Google News or a self-built corpus
by Google Word2Vec https://code.google.com/p/word2vec/. The training parameters are as follows:
cbow is 0, size is 200, window is 8, negative is 25, hs is 0, sample is 1e-4, threads is 20, binary is 1
and iter is 15. For the self-built corpus, reviews from four domain, Books, Movies and TV, Electronics
and Home and Kitchen were extracted from a large Amazon product review dataset covering the
year 2014 (collected by McAuley et al. [30]). Neutral reviews (score rating 0) were removed, all
the characters were converted to lower case, and punctuation was removed. The corpus contained
6.96 million product reviews, 386 million words and a vocabulary of 2.31 million words. Similarly,
when preprocessing Db and Dbl , punctuation was removed, and all characters were converted to lower
case. For computational reasons, the review input lengths were normalized to 100. Accuracy was
used as an evaluation metric, and the experiment was implemented as described by Keras 2.0 [32].
The programming language is Python and with NLTK natural language toolkit. The batch size of
the neural network was 128. The number of convolution filters was 250, the filter width was 5, the
convolution layer border mode was ‘same’, and the activation function was relu. The optimizer was
RMSProp, the max pooling length was 2, and all dropouts were 0.1. The activation function of the first
fully connected layer was relu, and the number of hidden units was 250. The activation function of the
second fully connected layer was sigmoid, and the number of hidden units was 1. Shuffling occurred
after every epoch. The training procedure periodically evaluated the binary cross-entropy objective
function on the training set and the validation set. The test performance was associated with the last
epoch validation accuracy. The learning rates were set to 0.0005. The Scnn network was trained with
15 epochs, and the Tcnn network was trained with 50 epochs. Our networks are trained on one NVIDIA
Tesla K20c GPU in a 64-bit Dell computer with two 2.40 GHz CPUs, 64 G main memories in Dalian,
China, and Ubuntu 12.04. The runtime of training our framework (such as LM-CNN-BB) is: one epoch
requires 123 s when training Scnn on the kitchen appliances domain and 15 s when training Tcnn on the
electronics domain.

Comparison results and discussion. Figure 2 shows the accuracy scores of the different methods
for all pairs of tasks. The second set of bars shows that SVM-NLB performed better than SVM-NBB
due to the introduction of the large-scale source domain. The large-scale similar auxiliary corpus was
beneficial for cross-domain product sentiment classification tasks. Expanding the source domain data
introduces more useful knowledge, which is the advantageous factor for cross-domain classification, is
introduced. However, SVM-NLB still performs worse than methods that applied the transfer learning
method, such as SCL-MI, SFA and SS-FE. Although SVM-NLB can learn more knowledge from
large-scale data for cross-domain classification tasks, this algorithm is insufficient to bridge the gap
between different domains. However, when LM-CNN-NLB is applied to the same corpus as SVM-NLB,
the performance improves greatly. This improvement can be attributed primarily to the following two
factors: first, as is well-known, word embedding is more effective than BOW. BOW is unable to capture
the complex linguistic phenomena of words that are available in the word embedding representation,
in which semantically close words are likewise close in the lower-dimensional vector space. Thus, word
embedding contains more semantic information. The results confirm that the pre-trained vectors are
both satisfactory and “universal” feature extractors that are beneficial for cross-domain classification.
Second, through the convolutional and max pooling operations, LM-CNN-NLB can effectively use
local contextual features and global contextual features to capture the generic variations present in all

https://code.google.com/p/word2vec/
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factors that are suitable for cross-domain classification. LM-CNN-NLB behaves better than previous
baselines on most tasks, while LM-CNN-LB achieves the best performance. When training Scnn on
the source domain, it extracts no discriminative feature representation, therefore, the features can be
shared across the source domain and target domain. Fine-tuning the parameters transferred from
Scnn on a small amount of target domain data causes the Tcnn to learn a feature specific to the target
domain task. Comparing LM-CNN-BB with LM-CNN-LB, when the available corpus is small, it is
inappropriate for training parameter-rich models such as neural networks. However, introducing a
large-scale similar auxiliary dataset effectively expands the corpus. By transferring parameters from
the convolutional neural network trained on the source domain to initialize another identical neural
architecture and then fine-tuning with small amounts of target domain data, the target network can
learn a feature representation that generalizes well across different domains.

Figure 2. Comparison of different methods on the benchmark dataset for cross-domain
sentiment classification.

Corpus size and multi-source domain: Figure 3 shows the effect of corpus size and a multi-source
domain. For a multi-source domain, one domain was used as the target domain, and the other three
domains were used as the source domain. The three source domains were related but were different
from the target domain. For computational reasons, each domain dataset consisted of 20,000 reviews
extracted from Dl and 2000 from Db. For example, the Scnn was trained on source domain reviews
consisting of the following three domains: BDbl , DDbl and EDbl . To train the Scnn, the source domain
dataset was split into a training set and a validation set. The training set included 54,000 reviews (90%
of each domain extracted from Dl) and a validation set of 12,000 reviews. The Tcnn was trained on the
target domain KDl using a training set size of 700 and a validation set size of 300, totalling 5% of KDl .
The Tcnn model can then be used to predict KDb (denoted as the multi-source domain in Figure 3). The
multi-source domain was also compared with LM-CNN-LB on different corpus sizes. LM-CNN-LB62k
andLM-CNN-LB22k were the datasets for each domain consisting of 60,000 data points, 20,000 reviews
extracted from Dl and 2000 from Db. The source domain dataset for training the Scnn from Dbl was
split into a training set and a validation set. The training set was 90% of each domain extracted from Dl .
The validation set consisted of the remaining reviews from each domain extracted from Dl plus 2000
from Db. To train Tcnn on the target domain, the training set and the validation set totaled 5% of each
domain extracted from Dl . The compositions of the corpuses are displayed in detail in Table 4. The
accuracy of the target domain dataset is the average score of the other domains used for prediction. For
example, for LM-CNN-LB62k, accuracy of D→B, E→B, K→B is AcurD, AcurE and AcurK, respectively,
while the average classification accuracy for Books is (AcurD + AcurE + AcurK)/3. The embedding
layer weight of the above methods is a 300-dimension word vector pre-trained on the self-built corpus
described in Section 5.2.
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Figure 3. Effect of corpus size and multi-source domain.

As shown in Figure 3, the proposed method performed better using the larger corpus. This finding
demonstrates that a large corpus size boosts accuracy. However, the best performance was achieved
by a multi-source-related domain decoupled from the corpus size; the proportions of the training and
validation set used for Tcnn are both smaller than those used for LM-CNN-LB. The results indicate that
transfer parameters trained on multi-source related domain data yield superior performance. Based on
multi-source related domain data, a convolutional neural network can discover features that capture
the generic variations across a wide range of factors. In other words, training with multi-source-related
domain data further promotes cross-domain classification.

Table 4. Composition of different size corpus.

Training Validation Training ValidationMethod
(Scnn) (Scnn) (Tcnn) (Tcnn)

LM-CNN-LB22k 18,000 4000 700 300k
LM-CNN-LB62k 54,000 8000 2000 1000

LM-CNN-LB 90,000 12,000 4000 1000
Multi-source domain 54,000 12,000 700 300

Corpus for training word vector: Using LM-CNN-BB, the word embedding weight pre-trained
on Google News and the self-built corpus were also compared. Figure 4 shows that the word vector
pre-trained on a self-built corpus yields a superior performance over one pre-trained on Google News
in all cross-domain tasks. It can be concluded that a pre-trained word vector from a corpus collected
specifically for a certain task performs better than on pre-trained on Google News in cross-domain
product review sentiment classification.
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Figure 4. Comparison of word embedding pre-trained on Google News and the proposed corpus.

5.3. Large-Scale Corpus Experiments

The transferability was exhibited on the large-scale dataset Dl , as shown in Figure 5. SVM-NLL
was the same as SVM-NLB, but the target domain test set was from Dl . LM-CNN-LL22k,
LM-CNN-LL62k, and LM-CNN-LL were the same as LM-CNN-LB22k, LM-CNN-62k and LM-CNN-LB,
but the Tcnn model was used to test the reviews from Dl (excluding those used for training and
validation). The results shown in Figure 5 indicate that the proposed method performed better than
SVM-NLL. A larger corpus results in higher accuracy; this result is consistent with experiments on the
benchmark Db.

Figure 5. Comparison of different methods and corpus size on Dl for cross-domain
sentiment classification.

Evaluating transfer readiness: In this part, the transferability of LM-CNN-LL62k is evaluated
by freezing different layers of Tcnn, as shown in Table 5. For example, layer-0 of Tcnn was frozen
after transferring parameters from Scnn to Tcnn. The parameters of layer-0 were constant during
training. The parameters of the remaining layers (layer-1, layer-2, layer-3, and layer-4) were trained
and fine-tuned using small amounts of labeled reviews from the target domain. The frozen layer/s
of Tcnn are listed in the first column of Table 5, and the test accuracy is listed in the second column.
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Fine-tuning more layers stimulates learning features that are specific to the target domain. The more
layers that participate in fine-tuning, the more specific the features are to the target domain.

Moreover, we analyzed the effect of epoch number when training the Scnn. As illustrated in
Figure 6, the accuracy increases from epochs 1 to 4. Thus, a larger number of epochs does not
necessarily lead to higher performance, suggesting that well-trained parameters from the source
domain are crucial for this work. The selected number of epochs causes the Scnn to learn discriminative
feature representation that initializes Tcnn well. However, if the source domain is excessively trained,
the parameters transferred from the Scnn to the Tcnn will be overfit to the source domain. The learned
feature representation of the Scnn is then excessively specific to the source domain but will be underfit
to the target domain.

Table 5. Main results of LM-CNN-LL62k for freezing different layers.

Frozen Layer/s Accuracy

0,1,2,3 88.12
0,1,2 88.13
0,1 88.66
0 89.42

Figure 6. Effect of Scnn epoch number.

Labeled target domain data: We also tested the effect of using different proportions of the labeled
target domain data, which varied from 1/120 to 1/5 for every domain of LM-CNN-LL62k. Figure 7
indicates that a larger number of labeled target domain data results in higher test accuracy in every
task. It is not surprising that LM-CNN-LL62k can learn more information specific to the target domain
from the extensive labeled data. The labeled data of the target domain is crucial for learning an effective
feature representation for cross-domain sentiment classification.
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Figure 7. Effect of labeled target domain data ratio for training the Tcnn.

6. Conclusions

This paper proposes a two-layer convolutional neural network for cross-domain product review
sentiment classification. The available low-resource benchmark dataset was unsuitable for training
a deep neural network; thus, a large-scale auxiliary corpus was introduced. The proposed scheme
exhibits the potential of deep neural networks for cross-domain product review sentiment classification.
This increase in scale allows product review sentiment classification to outperform sophisticated
existing methods (regardless of whether they are based on a deep neural network). The use of a
large-scale corpus allowed a neural-network-based model to perform competitively on the product
review sentiment classification benchmark for the first time. These experimental results demonstrate
that introducing a large-scale corpus from a similar domain can significantly boost accuracy. The larger
the corpus, the higher the accuracy achieved. Moreover, parameters transferred from a multi-source
related domain are more effective than those transferred from a single similar domain. Freezing
layers is detrimental to transfer performance, and choosing appropriate epochs for training source
domain results improves performance. Introducing additional labeled data from the target domain for
fine-tuning leads to better transferability.

Research on text transfer learning based on deep neural networks is currently in its infancy,
and more efforts should be made to improve the learning algorithms. This paper describes new
state-of-the-art results achieved while requiring only small amounts of labeled target domain data.
A more complete comparison of approaches based on deep neural networks will be addressed in future
work. Further studies on cross-domain product review sentiment classification on small datasets with
deep neural networks are also essential for future study.
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