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Abstract: In this paper, we consider the problem of estimating stress-strength reliability for
inverse Weibull lifetime models having the same shape parameters but different scale parameters.
We obtain the maximum likelihood estimator and its asymptotic distribution. Since the classical
estimator doesn’t hold explicit forms, we propose an approximate maximum likelihood estimator.
The asymptotic confidence interval and two bootstrap intervals are obtained. Using the Gibbs
sampling technique, Bayesian estimator and the corresponding credible interval are obtained.
The Metropolis-Hastings algorithm is used to generate random variates. Monte Carlo simulations are
conducted to compare the proposed methods. Analysis of a real dataset is performed.
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1. Introduction

The inference of stress-strength reliability in statistics is an important topic of interest. It has
many applications in practical areas. In the stress-strength modeling, R = P(Y < X) is a measure of
component reliability. If X <Y, the component fails or the component may malfunction, where X is
subject to Y. R can also be considered in electrical and electronic systems. Many authors have studied
its properties for many statistical models including double exponential, Weibull, generalized Pareto and
Lindley distribution (see [1-4]). Classical and Bayesian estimation of reliability in a multicomponent
stress-strength model under a general class of inverse exponentiated distributions was researched
by Ref. [5]. Ref. [6] studied classical and Bayesian estimation of reliability in multicomponent
stress-strength model under Weibull distribution. Furthermore, Refs. [7-9] also considered the
problem of the stress-strength reliability.

The inverse Weibull (IW) distribution has attracted much attention recently. If T denotes
the random variable from Weibull model, we define X as follows X = 1/T, then the random variable
X is said to have inverse Weibull distribution. It is a lifetime probability distribution that can be
used in the reliability engineering discipline. The inverse Weibull distribution has the ability to
model failure rates, which is quite common in reliability and biological studies. The inverse Weibull
model was referred to with many different names like “Frechet-type” ([10]) and “Complementary
Weibull” ([11]). Ref. [11] discussed a graphical plotting technique to settle the suitability of the model.
Ref. [12] presented the IW distribution for modeling reliability data, this model was further discussed
by researching the failures of mechanical components subject to degradation. Ref. [13] proposed
a discrete inverse Weibull distribution and its parameters were estimated. The mixture model of two
IW distributions and its identifiability properties were studied by [14]. For the theoretical analysis of
IW distribution, we can refer to [15]. Ref. [16] proposed the generalized IW distribution and several
properties of this model. For more details on the inverse Weibull distribution, see [17].
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In this paper, we focus on the estimation of the stress-strength reliability R = P(Y < X), where X
and Y follow the inverse Weibull distribution. As far as we know, this model has not been previously
studied, although, we believe it plays an important role in reliability analysis.

We obtain the maximum likelihood estimator (MLE), approximate maximum likelihood estimator
(AMLE) and the asymptotic distribution of the estimator. The asymptotic distribution is used to
construct an asymptotic confidence interval. We also present two bootstrap confidence intervals of R.
By using Gibbs sampling technique, we obtain Bayes estimator of R and its corresponding credible
interval. Finally, we present a real data example to illustrate the performance of different methods.

The layout of this paper is organized as follows: in Section 2, we introduce the distribution of
the inverse Weibull. In Section 3, we obtain the MLE of R. In Section 4, we derive the estimator of
R by approximating maximum likelihood equations. Different confidence intervals are presented
in Section 5. In Section 6, Bayesian solutions are introduced. In Section 7, we compare different
proposed methods using Monte Carlo simulation. A numerical example is also provided. Finally,
in Section 8, we conclude the paper.

2. Inverse Weibull Distribution

The probability density function of the known Weibull distribution is given by

f(ta,0) = gt“*le*%, t>0, 1

where a > 0 is the shape parameter and 6 > 0 is the scale parameter.
Let T denote the random variable from Weibull model, namely, W(«, #). Define X as follows:

X=z 2)

The random variable X is said to have inverse Weibull distribution, and its probability density
function (pdf) is given by

x*ﬂ(

f(x;a,0) = %x“"_le_ v, x>0. (3)

The cumulative distribution function(cdf) is given by
F(x)=e"7, x>0, 4)
where a > 0 and 6 > 0. The inverse Weibull distribution will be denoted by IW («, 6).

3. Maximum Likelihood Estimator of R

In this section, we consider the problem of estimating R = P(Y < X) under the assumption that
X ~IW(a,6;)and Y ~ IW(a,6;). Then, it can be easily calculated that

R:p(y<x):919+292. 5)

To computer the MLE of R, first we obtain the MLEs of 6; and 6. Suppose X, X», ..., Xj; is
a random sample from IW(a,6;) and Y3, Y>, ..., Yy, is a random sample from [W(«,6,). The joint
likelihood function is:

lxn-i—mn__ m__ —’.Lﬂ V,'Lyfl
I(w,61,62) = orom (Hxi ‘ 1)(1—[]/‘ . 1)3 O TRV )‘
172 =1
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Then, the log-likelihood function is

L(a,01,0,) = (m+n)lna —nlnf; —mInb, — (a +1)

n m
ani—kZlnyj]
LA qm (6)
_azxilx_e Zy]‘“'

i=1 2 j=1

&, 61 and 6, the MLEs of the parameters &, 6; and 6, can be numerically obtained by solving
the following equations:

oL m+n & i 1 & 1 &

== =Y Inx;— ) Inyj+ ) x “Inxj+— ) y “Iny; =0, 7)
oo i = = e "6, = I

oL n 1 _a

= 4 —, 8
0 o ta Lt ®
oL m 1 &

4 ~r— 0. 9
0, 6 & ]; Yi )

o 1&
01(x) = - 2x;“ and 6 (a Zy (10)

Putting the expressions of 6; () and 6 («) into (7), we obtain

m —&
SEARLL Lim1y; " Inyj
1 1 yvm —u
7 Lim1 % i Lj=1Y;

1 n m
m:”f& [Zlnx;?‘+21nx;‘ — 0. (1)
i=1 =1

Therefore, & can be obtained as a fixed point solution of the non-linear equation of the form
h(a) = ua, (12)
where

—m — 11 1
M) = m—n+Yy Inx} +Z 1ny] 13)

—K
" l”‘lnr, Lty “Iny;

1 1 m —vc
1121 1% Z

Using a simple iterative procedure ]’l(lX(]-)) = a(jy1), where a(;) is the j-th iterate of &, we stop
the iterative procedure when |a )~ X(j1) | is adequately small less than a specified level. Once we
obtain &, then (fl and 6, can be calculated from (10). Therefore, we obtain the MLE of R = P(Y < X) as

1 m
N jly]

DY EE A DY I

(14)

4. Approximate Maximum Likelihood Estimator of R

The MLEs do not take explicit forms; therefore, we approximate the likelihood equation and
derive explicit estimators of the parameters.
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Since the random variable X follows IW (g, 0), then V = In X has the extreme value distribution
with pdf as

v —r

flo;p,o) = —EeT*e 7, —00 <1< +oo, (15)

where y = —1lInfand ¢ = —1. The y and o are location and scale parameters, respectively. The pdf
and cdf of the standard extreme value distribution can be obtained as

4 —0

g(v)=e "¢, Gv)=¢"° . (16)

Suppose X(1) < Xy < ... < X() and Y(1) < Y(p) < ... < Y, are the ordered X;s and Yjs,

we assume the following notations: T(l-) = lnX(l-), Z(i) = Tm_i;m, i=1,..,nand S(]-) = lnY(j),
W(]») = 5(;)_7712’ j=1,..,m, where y; = —%ln(?l, Uy = —%lnﬂz and ¢ = —%.
The log-likelihood function of the data T(l), vy T(n) and S(l), vy S(m) is
n m
L(p1, p2,0) & —(m+n)In(—0) + ) Ing(zy)) + ) Ing(w). (17)
i=1 j=1

Differentiating (17) in regard to yq, yp and o, the score equations are obtained as

oL 1 & &' (z()
==z =0, (18)
dmn (71-:21 8(Z(i))
oL 1 g (wg;)
2 0 ];1 8(w))
oL 1 1& 8 (zh) 1 8 (wg)
—=—-(m+n)——— ZG) — — wey = 0. (20)
ar g ”z; $(zi) " o & 8wy) Y
¢ (z(y)

We note that the function h(z(;)) =

= ) makes the score Equation (18) nonlinear and intricate.

Thus, we approximate the function h(z(;)) = Z((;('i)))) by expanding it in a Taylor series around
¢i = E(Z(;). Furthermore, we also approximate the function h(w;)) = %((’;)) by expanding it
j

in a Taylor series around d; = E(W(;)). From [18], it is known that

4

G(Zy)) = U,

where U;) is the i-th order statistic from the uniform U(0, 1) distribution. Therefore,

d ~—
Zy =G (Upy)),
and
ci =EZ; ~ G YEUy) =G 1(i/(n+1)).
We use the following notations, p; = n%rl' p; = m%rl ; therefore, ¢; = G~ !(p;) = —In(—Inp;),

dj = G7'(p;) = —In(~Inp;).
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Expanding the function h1(z(;)) and h(w(;)) and keeping the first two terms, we have

g (z()) , .
h(zy) = ~h(ci)+h (ci)(z(y —ci) =a; —bizy,i=1,..,n,
(z(3) ) (ci) + 1 (ci)(z) —ci) (i)
g (wg)) , o
h(wy) = ~h(d)+nh(d)(w—d;)=a,—bzn,i=1,..,m,
(w(;)) $(wg) (dj) + h(dj) (w() —dj) = 8j = bjzj),]
where
a; = h(c;) —¢ih'(¢;) = Inp;(In(—Inp;) — 1) — 1,

E]‘ = h(d]) — dh/(d]) = lnﬁj(ln(—lnﬁj) — 1) -1,
b] = —h/(d]) = —lnf]’.

Therefore, (18)—(20) can be represented as

oL 1 &

o~ o 5 bE0) =0 -

oL 1 (" -

87‘1/12 ~ E Zl(a] b]LU(])) =0, (22)
1=

oL 1 d

agz—g(m—HH-Z( = bizg) +Z — bjwg) <j>>—0~ @)

i=1

The estimator of 1 and pp can be obtained from Equations (21) and (22), as

fi1 = A1+ By7, (24)
fio = A2 + Ba0, (25)
where
b T Y™ biS; nog. " a;
Alzzi;ilb@, Ay ==L JE(’),BF ;:1‘;{,32: jnlE’. (26)
i=1Yi j=1Yj i=1"Yi j=1"Yj

The estimator of ¢ < 0 can be determined as the unique solution of the quadratic equation

Co?+Do—E =0, (27)
where
n m n mo
C= (m+n)+B1 Zai+BZZEJ»—B%Zbi—B%ij:m—l—n,
i=1 j=1 i=1 j=1
n m m
D= Y ai(A — Ty) ~ 281 1 (A — T + 1om (A2 — 5¢) — 282 ) Bi(42 =),
i=1 i=1 j=1 j=1
n ) m
E = Zbl(T(z) — A"+ Zb](S(]) —Ay)* >0
i=1 j=1
Therefore,
_D— 2
5 D D +4E(m+n), (28)

2(m+n)



Algorithms 2017, 10, 71 6 of 16

Once 7 is obtained, i1 and jip can be derived immediately. Hence, the AMLE of R is given by
0

R:ﬁ, 29
01+ 6, @)

where

- 1 5 A 1 5
i=——, 0 =erA1tBi?) g — o7(Ar+B20)

Q|

5. Confidence Intervals of R

In this section, we present an asymptotic confidence interval (C.I.) of R and two C.Ls based on
the non-parametric bootstrap methods.

5.1. Asymptotic Confidence Interval of R

In this subsection, we derive the asymptotic distribution of the MLE § = (&,6},6,) and R.
Based on the asymptotic distribution of R, the corresponding asymptotic confidence interval of R is
obtained. We denote the exact Fisher information matrix of 6 = («,61,6,) as J(0) = —E(I;0), where
I'=[Lijlij=123 Lij = 82L/89i89j and L is given in (6):

2L 2L 2L | . .

da? oadf a0,

% fiid o 11l hs
I6) = | o0 a2 000, |=| 1 I Ixs

2L 02L L I31 I3 Is3

aezalx 392391 @

It is easy to see that

1 m
hs =l = =5 y; “Iny;,
2 j=1
n 2
Ip = =Y %
0 ="
m 2 <
L33 Yoy,
6 65
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Moreover,

2L 1

7 of 16

h:AE%E):;“m+ﬂﬂ+¢@”+Mm&f+mm&f+2ﬂﬁmmﬁ+mM%ﬂ,

n

1 _ n
Jiz =1 = 5 ) E(x; “Inx;) = "o [In6; ++/(2)],

61 i=1

m

1 m
—J = = Y By Iny) = -~ [Ing, + /(2

J13 =31 02 ]; (]/] ny;) O [In6 ++'(2)],

n
Jo = @I

m
J33 = @,
Jos=J32 =0,

where y(a) = fooo x*~le=*dx is the Gamma function.

Theorem 1. Asn — oo and m — oo and % — p, then

(Vm(& —a),/n(b — 61),V/m(6> — 65)) 4 N (OzAfl(“/ 91,92)) ,

where
a1 a2
A(w,01,02) = | an  axn
asq 0
and

= 3 [+ D)1 +77(2) + pin6)2 + (62 +29'(2) (p Iy + In6y)]

ap = ay = —91\/*2 [In61 ++'(2)] =
a3 = as] = —92% [In6, + ' (2)] =
ayp = 91% = ”}}gm %]22,
a3 = 1_ lim l]33,

o 97% n,m—oo 1M

a3 = azy = 0.

Proof. We can use the asymptotic properties of MLEs to prove it.

lim @hz,

nm—oco 1

1
Iim —
nm—rco M Sz

Theorem 2. Asn — coand m — coand - — p, then

V(R —R) = N(0,B),

where

1
B=————
MA(91 + 60>

and up = a11a0a33 — 13022431 — 412421433

T [9%(61116122 — a12a91) + 03 (11033 — a13a31) — 2919211126113} ,

(30)
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Proof. By using Theorem 1 and the delta method, we immediately derive the asymptotic distribution
of R as follows:

V(R —R) = N(0,B),

where
B=cyA ey
with
)
Fr 1 0
cp= IR _ 0,
= 90 = - ’
R (61 + 62)2 0
[ 1
22033 —a12a33 —a2013
-1
AT = a —a1433  A11433 — 13431 1413 ’
—a22431 a12a31 a11az2 — 41241
and
U = aq11d22a33 — a13422431 — 412021433-
Therefore,

_ 1
B=chA lcy = PCEYAL {(011%3 — a13a31)03 + (a1102 — A12a21)05 — 20102012413 | -

O

We can derive the 100(1 — )% confidence interval for R using Theorem 2 as

5 B
R—-z 1= R +z 1= )
( Crynt e
where z, is 100yth percentile of N (0, 1). The confidence interval of R can be derived by using
the estimate of B in (30). To estimate B, we use the MLEs of &, 6; and ¢, and the following;:

i = % (14 p)(1+7"(2)) + p(nb1)* + (Inf)? +29'(2) (pIny +nfr) |,

dyp =y = *5/2 [In6; +1/(2)],
1

. . 1 A /

d13 =31 = R [In6, +9'(2)],
b

4oy — L

2 o

X 1

azz — %

5.2. Bootstrap Confidence Intervals

In this subsection, two confidence intervals based on the non-parametric bootstrap methods are

proposed: (i) the percentile bootstrap method (Boot-p) (see [19]) and (ii) the bootstrap-t method (Boot-t)
(see [20]).
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The algorithms for conducting the confidence intervals of R are presented as follows:
(i) Boot-p method:

Step 1: From the sample x1, X3, ..., X, and y1, y2, ..., Y compute &, Gfl and 9}.

Step 2: Generate a bootstrap sample x}, .., x}; using & and 6; and generate a bootstrap sample
i, ..., yi using & and 6,. Based on x7, ..., x}; and y}, ..., v, compute the estimate of R, say R*.

Step 3: Repeat Step 2 NBOOT times.

Step 4: Let Hy(x) = P(R* < x) be the cumulative distribution function(cdf) of R*. Define
Rpoot—p = Hl_l(x) for a given x. Thus, the approximate 100(1 — z)% C.IL of R is given by:

N Z, A z
(RBoot—p(E)/ RBoot—p(1 - 5)) :

Note: In this paper, R* can be computed using (14) in Step 2.
(i) Boot-t method:

Step 1: From the sample x4, ..., x, and y1, ..., ¥, compute &, g, and 6.

Step 2: Generate a bootstrap sample x7, ..., x;, using & and 61 and generate a bootstrap sample
Yy, Yy using & and ¢>. Based on xj,...,x; and y7, ..., y,,, compute the estimate of R as R* and
the statistic is

o VR R
Var(R*)

Step 3: Repeat Step 2 NBOOT times.

Step 4: Let Hy(x) = P(T* < x) be the cumulative distribution function(cdf) of T*. Define
Rpoot—t = R+ n-1 Var(ﬁ)Hz_l(x) for a given x. Thus, the approximate 100(1 — z)% C.I. of R is
given by:

A Z, =& z
(RBootft(E)/RBootft(l - E)) .

Note: In this paper, Var(R*) can be obtained using Theorem 2 in Step 2.

6. Bayesian Inference on R

In this section, the Bayes estimate of R can be obtained under assumption that the shape parameter
« and scale parameters 61 and 6, are random variables. According to the likelihood function in Section 3,
we note that « has a positive exponent and 6; and 6, have negative exponents, respectively, so we
can assume that §; and 6, have independent Inverse Gamma pdf and « follows Gamma distribution.
We choose this family such that prior-to-posterior updating yields a posterior that is also in the family:

b —(1+ay) -

7(6,) = 7(;1)91 Ve 0,0, >0, (31)
bR b

(02 = Sy ()75, g, > o, (32)

where all the hyper-parameters a; and b; (i = 1,2) are assumed to be known and non-negative.
The prior density function of a is denoted as m(x), and we assume that it has
a Gamma (0, 1) distribution.
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We have the likelihood function based on the above assumptions as
1 —u
L(datala,61,0,) = & "0776, ™ ( Hx*“ D) Hy*’x e o Hati, “n Ly (33)
i=1 j=

The joint density of the data, &, 6; and 8, becomes
P(data,a,01,6,) = L(data|a,61,0,) 7w (a)71(61)71(62). (34)
Therefore, the joint posterior density of «, §; and 6, given the data is

P(data,n,61,0,)

01,05|data
(“ ! 2| ) fO fO fO dataoc()l,()z)docd91d92

(35)

Since the expression (35) cannot be written in a closed form, the Bayes estimate of R and
the corresponding credible interval of R are derived adopting the Gibbs sampling technique:

P(a,91,92|data)o< am+n_19;(n+l+a1)9;(m+l+u2)( ;1:1 xi—a—l)( " ly]—zx 1)

exp{—%( Y4 by) — ( =1Y; —l—bz)—tx}.

The posterior pdfs of «, 6; and 6, can be obtained based on the expression P(«, 61,60, |data) as
the following:

n
61a, 0y, data ~ IG(n+a1,by + )_ x;7%)
i=1

m
02|, 01,data ~ IG(m + ap, by + Zy]._”‘),
=1

_ n o m o 1 n _ 1 m _
fa(a|61,0,, data) o ™" 1Hxl."‘ 1Hyj‘" 1eXP{_91(in "‘+b1)—62(2yj“+b2)—¢x}.
=1 =1

i=1 i=1

The posterior pdf of « is not known. We use the Metropolis-Hastings method with normal
proposal distribution to generate random numbers from this distribution.

The algorithm of Gibbs sampling is described as follows:

(0) 9(0)).

Step 1: Start with an initial guess (11(0), 0,7,6,

Step 2: Sett = 1.
Step 3: Generate 9§ ) form IG(n+a1,b1 + 1 x;

Step 4: Generate Gé ) form IG(m +az,by + ¥ y;

2t1)

ol >).

t—1
)

Step 5: Using the Metropolis-Hastings method, generate &) from f, (a(*~1) |9 2 ,data)

e Generate a new candidate value ¢ from N(Ina(*~1),1).
e Seta’ =exp(d).
Sal(o \91 ,92 ,data)
falalt=1) \6‘ dutu)
e Update &) with probability p; otherw1se seta(t) = (t=1),

e calculate p = min(1,

Step 6: Compute R(*) from (14).
Step 7: Sett =t + 1.
Step 8: Repeat step 3—7, M times.
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The approximate posterior mean of R is
R 1 M 0
E(R|data) = — R\"/, 36
( | ¢ a) M t; ( )

and the approximate posterior variance of R is

1

i (RY) — E(R|data))?. (37)

Mz

Var(R|data) =

t=1

Using the method proposed by [21], we immediately construct the 100(1 — 7)% highest posterior
density (HPD) credible interval as

(Rigmy Ria-g)m): (38)

where Ry, and Ry _ 1)y are the [3 M]-th smallest integer and the [(1 — 7 ) M]-th smallest integer of

2

{Ri,t =1,2,.., M}.

7. Numerical Simulations and Data Analysis

In this section, we present a Monte Carlo simulation study and a real data set to illustrate different
estimation methods proposed in the preceding sections.

7.1. Numerical Simulations Study

Since we cannot compare the performances of the different methods theoretically, some simulation
results to compare the performances of the different methods are presented. We mainly compute the
biases and mean square errors (MSEs) of the MLEs, AMLEs and Bayes estimates. The asymptotic C.I.
of R and two C.Is based on the non-parametric bootstrap methods are obtained. We also conduct the
Bayes estimates and HPD credible intervals of R. Here, we assume that a1 = a2 = b1 = b2 = 0.0001.
We consider sample sizes (1, m) = (10,10), (20,15), (25,25), (30,40), (50,50). For parameter values,
weassume thatf, =1,6; = 0.5, 1, 1.5, 2, 3and « = 2. All the results are based on the 1000 replications.
For the bootstrap methods, we compute the confidence intervals based on 300 resampling. The Bayes
estimates are based on 1000 sampling, namely, M = 1000. In each case, the nominal level for the C.Ls
or the credible intervals is 0.95.

We also obtain the average biases and MSEs of the MLEs, AMLEs and Bayes estimates over
1000 replications in Table 1. From Table 1, we can find that the Bayes estimates are almost as efficient
as the MLEs and the AMLEs for all sample sizes. Interestingly, in most of the cases, the MSEs of the
Bayes estimate are smaller than the MSEs of the MLEs or AMLEs. We can find that the biases and
MSEs of the MLEs and AMLEs are very close. As the sample size (1, m) increases, the MSEs of the
estimates decrease as expected.

Table 2 reports the results of 95% asymptotic C.I. of R, we also obtain C.I.s based on the bootstrap
methods and the HPD credible interval. We represent the results of the average confidence/credible
lengths and the coverage probabilities. From Table 2, the coverage probabilities reach the nominal
level 95% with the increase of the sample sizes. We observe that the MLE method is the most valid
procedure to obtain the confidence intervals. The AMLEs and the Bayes estimates are the second best
confidence intervals. Interestingly, we find that the HPD credible intervals provide the most highest
coverage probabilities. The Boot-p confidence intervals perform better than Boot-t confidence intervals,
in terms of coverage probabilities. One point we should know is that the bootstrap method depends on
the number of resampling. For small sample sizes (1, m), the coverage probabilities for the MLEs and
AMLEs are less than the nominal levels, with the increase of sample sizes (1, m), they perform well.
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Table 1. Biases and mean square errors(MSEs) of the maximum likelihood estimate (MLE), approximate

maximum likelihood estimate (AMLE) and Bayes estimate of R, when & = 2, 8, = 1 and for different

values of 6;.

(n, m) 91 = 0.5 91 =1 61 =15 91 =2 91 =3
0.0919(0.0165)  —0.0094(0.0079) —0.0082(0.0108) —0.0223(0.0137)  —0.0098(0.0090)
(10,10)  0.0881(0.0158) —0.0088(0.0078)  —0.0207(0.0137)  —0.0145(0.0143)  —0.0054(0.0091)
0.0721(0.0120)  —0.0084(0.0065)  0.0018(0.0083)  —0.0036(0.0111)  0.0138(0.0078)
0.0281(0.0078)  0.0095(0.0074)  —0.0098(0.0079) —0.0188(0.0091)  —0.0127(0.0065)
(20,15)  0.0317(0.0078) 0.0061(0.0075) —0.0068(0.0078)  —0.0161(0.0095)  —0.0079(0.0065)
0.0207(0.0086)  0.0090(0.0064)  0.0034(0.0079)  —0.0056(0.0078)  0.0043(0.0060)
0.0132(0.0037)  0.0060(0.0025)  0.0025(0.0067)  0.0057(0.0045)  —0.0270(0.0049)
(25,25)  0.0132(0.0038) 0.0062(0.0024) 0.0040(0.0068) 0.0047(0.0045)  —0.0242(0.0049)
0.0055(0.0036)  0.0061(0.0022)  0.0076(0.0063)  0.0128(0.0041)  —0.0165(0.0045)
—0.0094(0.0014)  —0.0039(0.0010)  —0.0714(0.0051)  —0.0048(0.0024)  —0.0510(0.0038)
(30,40) —0.0092(0.0014) —0.0064(0.0011) —0.0760(0.0051) —0.0060(0.0023)  —0.0504(0.0038)
—0.0135(0.0015)  —0.0040(0.0009)  —0.065(0.0042) 0.0058(0.0023) —0.0302(0.0035)
—0.0182(0.0005) —0.0087(0.0007) —0.0033(0.0038)  0.0007(0.0017)  —0.0035(0.0027)
(50,50)  —0.0192(0.0005) —0.0080(0.0006)  —0.0033(0.0039)  0.0012(0.0017)  —0.0022(0.0027)
—0.0217(0.0006)  —0.0079(0.0006) —0.0008(0.0036)  0.0051(0.0015) 0.0023(0.0025)

In each cell, the average biases are provided and corresponding MSEs are presented within brackets. The first
to the third row corresponds the results for MLEs, AMLEs and Bayes estimates respectively.

Table 2. Average confidence lengths and coverage probabilities.

(n,m) 61 =0.5 61=1 6, =15 61 =2 61 =3
0.3879(0.90)  0.4205(0.91) 0.4074(0.90) 0.3880(0.93)  0.3377(0.89)
0.3894(0.90) 0.4206(0.92) 0.4079(0.90) 0.3907(0.93)  0.3403(0.90)

(10,10)  0.4044(0.89) 0.4526(0.92) 0.4303(0.91)  0.4042(0.92)  0.3469(0.91)
0.5179(0.90) 0.4526(0.90) 0.5425(0.90) 0.5240(0.90)  0.3939(0.90)
0.3997(0.95) 0.4113(0.95) 0.4028(0.93) 0.3931(0.95) 0.3546(0.94)
0.3201(0.92) 0.3480(0.92) 0.3427(0.92) 0.3176(0.92)  0.2862(0.91)
0.3205(0.93)  0.3480(0.93) 0.3430(0.94) 0.3186(0.93)  0.2873(0.91)

(20,15) 0.3305(0.92) 0.3657(0.93) 0.3577(0.94) 0.3275(0.93)  0.2915(0.92)
0.3810(0.90) 0.4089(0.91) 0.4020(0.94) 0.3814(0.91) 0.3531(0.90)
0.3281(0.95) 0.3427(0.93) 0.3390(0.95) 0.3207(0.96)  0.2953(0.96)
0.2501(0.93)  0.2729(0.94) 0.2634(0.93)  0.2509(0.96)  0.2244(0.95)
0.2502(0.93)  0.2729(0.95) 0.2637(0.94) 0.2512(0.95)  0.2245(0.95)

(25,25) 0.2510(0.93) 0.2774(0.94) 0.2696(0.92)  0.2555(0.96)  0.2250(0.96)
0.2756(0.93) 0.2961(0.93) 0.2765(0.92)  0.2755(0.93)  0.2354(0.95)
0.2537(0.96)  0.2700(0.96) 0.1884(0.95) 0.2512(0.95)  0.2286(0.96)
0.2278(0.96)  0.2496(0.94) 0.2437(0.94) 0.2261(0.96)  0.2059(0.95)
0.2279(0.96)  0.2496(0.95) 0.2436(0.95) 0.2263(0.96)  0.2062(0.94)

(30,40)  0.2296(0.95)  0.2522(0.95) 0.2482(0.95)  0.2275(0.97)  0.2050(0.94)
0.2482(0.94) 0.2682(0.94) 0.2588(0.95) 0.2458(0.92)  0.2267(0.93)
0.2284(0.97)  0.2470(0.95) 0.2423(0.97) 0?2272(0.97)  0.2090(0.95)
0.1788(0.96) 0.1948(0.96) 0.1887(0.95) 0.1780(0.97)  0.1553(0.96)
0.1788(0.96)  0.1948(0.96) 0.1887(0.96) 0.1781(0.96)  0.1554(0.95)

(50,50) 0.1789(0.96)  0.1952(0.95) 0.1890(0.94) 0.0812(0.96)  0.1598(0.96)
0.1848(0.94) 0.2013(0.94) 0.1942(0.92) 0.1845(0.95) 0.1588(0.95)
0.1784(0.97)  0.1935(0.96) 0.1880(0.96) 0.1778(0.96)  0.1620(0.97)

In each cell, the average confidence lengths are provided and the corresponding coverage probabilities are
given within brackets. The first to the fifth row corresponds the results for MLEs, AMLEs, Boot-p method,
Boot-t method and Bayes estimates respectively.
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7.2. Data Analysis

We consider a real data set to illustrate the methods of inference discussed in this article.
These strength data sets in Tables 3 and 4 were analyzed previously by [3,22]. We know that if
the random variable X follows W(a, 8), the random variable T = § has the IW(a,6). Hence, we
have the following data sets from the inverse Weibull distribution. These data are presented in
Tables 5 and 6. We analyze the data by adding 0.5 from both data sets. We fit the inverse Weibull
models to the two data sets separately. The estimated shape and scale parameters, log-likelihood
values, Kolmogorov-Smirnov (K-S) distances and corresponding p-values are presented in Table 7.
The expected frequencies and the observed frequencies based on the fitted models are also presented
in the Tables 8 and 9. We also obtain the chi-square values of 5.9914 and 5.9915. Obviously, the inverse
Weibull model fits very well to Data Set 1 and Data Set 2.

The K-S values and the corresponding p-values in Table 10 show that the inverse Weibull models
with equal shape parameters fit reasonably well to the modified data sets. It is clear that we cannot
reject the null hypothesis that the two shape parameters are equal.

Table 3. Strength measured in GPA for carbon fibers tested under tension at gauge lengths of 20 mm.

1312 1314 1479 1552 1700 1.803 1.861 1.865 1944 1.958
1966 1997 2.006 2021 2027 2055 2063 2.098 2140 2179
2224 2240 2253 2270 2272 2274 2301 2301 2359 2382
2382 2426 2434 2435 2478 2490 2511 2514 2535 2554
2566 2570 2586 2.629 2633 2642 2.648 2684 2697 2726
2770 2773 2800 2809 2818 2821 2.848 2880 2954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3433 3.585 3.585

Table 4. Strength measured in GPA for carbon fibers tested under tension at gauge lengths of 10 mm.

1.901 2132 2203 2228 2257 2350 2361 2396 2397 2445
2454 2474 2518 2522 2525 2532 2575 2614 2616 2.618
2624 2659 2675 2738 2740 2856 2917 2928 2937 2937
2977 299 3.030 3125 3.139 3145 3220 3223 3.235 3.243
3264 3272 3294 3332 3346 3377 3408 3435 3493 3.501
3537 3554 3562 3.628 3.852 3.871 3.886 3971 4.024 4.027
4225 4395 5.020

Table 5. Transformed Data Set 1.

0762 0.761 0.676 0.644 0588 0.555 0537 0.536 0514 0.511
0509 0501 0499 0495 0493 0487 0485 0477 0467 0459
0450 0446 0444 0441 0440 0440 0435 0435 0424 0420
0420 0412 0411 0411 0404 0402 0398 0398 0394 0.392
0390 0.389 0387 0380 0380 0379 0378 0373 0371 0.367
0361 0361 0357 035 0355 0354 0351 0347 0339 0.332
0326 0324 0324 0323 0320 0309 0291 0279 0.279

Table 6. Transformed Data Set 2.

0526 0469 0454 0449 0443 0426 0424 0417 0417 0.409
0.407 0404 0397 0397 039 0395 0388 0.383 0.382 0.382
0381 0376 0374 0365 0365 0350 0343 0342 0340 0.340
0336 0334 0330 0320 0319 0318 0311 0310 0.309 0.308
0.306 0.306 0.304 0.300 0.299 0.296 0293 0.291 0.286 0.286
0283 0.281 0281 0.276 0260 0.258 0257 0.252 0249 0.248
0.237 0.228 0.199
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Table 7. Scale parameter, shape parameter, log-likelihood, K-S distances and p-values of the fitted
inverse Weibull models to Data Sets 1 and 2.

Data Set  Scale Parameter Shape Parameter Log-Likelihood K-S p-Value

1 4.9497 12.6152 71.8967 0.0417  0.9997
2 19.0814 13.6228 79.4095 0.0846  0.7572

Table 8. Expected frequencies and observed frequencies for modified Data Set 1 when fitting the inverse
Weibull model.

Intervals Expected Frequencies Observed Frequencies

0.00-0.25 0.03 0
0.25-0.40 32.15 33
0.40-0.50 2421 24
0.50-0.70 11.23 10

0.70-c0 1.38 2

Table 9. Expected frequencies and observed frequencies for modified Data Set 2 when fitting the inverse
Weibull model.

Intervals Expected Frequencies Observed Frequencies

0.00-0.19 0.01 0
0.19-0.30 21.06 19
0.30-0.40 29.48 32
0.40-0.50 9.23 11

0.50-00 3.22 1;

Table 10. Scale parameter, shape parameter, log-likelihood, K-S distances and p-values of the fitted
inverse Weibull models to Data Sets 1 and 2. Here, we assume that the two shape parameters
are identical.

Data Set  Scale Parameter Shape Parameter Log-Likelihood K-S p-Value

1 5.3471 13.0933 71.8159 0.0424  0.9996
2 16.7168 13.0933 79.3215 0.0732  0.8878

Based on Equations (14) and (29), we provide that the MLE and AMLE of R are 0.7576 and 0.7571.
The 95% confidence intervals of MLE, AMLE, Boot-p method and Boot-t method are obtained as
(0.6917, 0.8235), (0.6911, 0.8231), (0.6993, 0.8197), (0.7015, 0.8421), respectively.

The Bayesian estimate of R is also presented based on Equation (36). In the previous sections, we
assume that 6 and 6, have independent IG priors, « has a Gamma (0, 1) prior and a1l = a2 = bl =
b2 = 0.0001. Under certain assumptions, we can conduct the Bayesian estimate of R as 0.7437 and
the 95% HPD credible interval of R can be obtained as (0.6690, 0.8102).

8. Inference on R with All Different Parameters

In the sections above, we assume that the shape parameters are taken to be equal. In order
to expand the paper, in this section, we study the inference of R with all different parameters.
We consider the problem of estimating R = P(Y < X) under the assumption that X ~ IW(«q,6;) and
Y ~ IW(ap,6;). Then, it can be easily calculated that

000(2 —ar—1 _& ,ﬂ
R=PY<X)=1—- R4 7 e 01 gy (39)
0 62
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To computer the MLE of R, we first obtain the MLEs of 6; and 6,. Suppose X1, Xp, -+, Xy is
a random sample from IW(aq,61) and Y3, Y>, ..., Yy, is a random sample from IW(ay,6,). The joint
likelihood function is:

—aq —ap
m y]

o _ym ]

n I N o
(a1, 01,a2,02) = @@(Hxi_“l_l)(ny;“rl)e List s ey
Then, the log-likelihood function is

n m
L(ay,61,a2,07) =nlnay + mInay —nlnb; —minfy — (a1 +1) ) Inx; — (a2 +1) ) Iny;
=~ ~
l ’ (40)
EER .
91 = 1 92 ]-:1 y] .

Then, similar to the previous approaches, we can obtain the point estimates and interval estimates
of R by using the MLE, AMLE and Bayesian method. Furthermore, we also can get bootstrap confidence
intervals of R.

9. Conclusions

In this paper, we have addressed the estimator of R = P(Y < X) for the inverse Weibull
distribution. We assume independent inverse Weibull random variables with equal shape parameters
but different scale parameters.

We obtain the maximum likelihood estimator of R and its asymptotic distribution. Note that
MLEs do not have explicit forms, and we propose the approximate maximum likelihood estimator of R.
The confidence interval of R is obtained using the asymptotic distribution. Two bootstrap confidence
intervals are also obtained. By using the Gibbs sampling technique, we present the Bayesian estimator
of R and the corresponding credible interval. The Metropolis-Hastings algorithm with the normal
proposal distribution is used to generate random numbers from a given density function. Monte Carlo
simulations are conducted to compare the proposed methods. Analysis of a real dataset is performed.
In the future, we will consider the MLE, AMLE, asymptotic C.I., bootstrap C.I.s and Bayesian inference
of R = P(Y < X) for inverse Weibull distribution based on incomplete data such as progressively
type-II censored samples.
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