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Abstract: The misalignment of the drive system of the DFIG (Doubly Fed Induction Generator) wind
turbine is one of the important factors that cause damage to the gears, bearings of the high-speed
gearbox and the generator bearings. How to use the limited information to accurately determine
the type of failure has become a difficult study for the scholars. In this paper, the time-domain
indexes and frequency-domain indexes are extracted by using the vibration signals of various
misaligned simulation conditions of the wind turbine drive system, and the time-frequency domain
features—energy entropy are also extracted by the IEMD (Improved Empirical Mode Decomposition).
A mixed-domain feature set is constructed by them. Then, SVM (Support Vector Machine) is used as
the classifier, the mixed-domain features are used as the inputs of SVM, and PSO (Particle Swarm
Optimization) is used to optimize the parameters of SVM. The fault types of misalignment are
classified successfully. Compared with other methods, the accuracy of the given fault isolation model
is improved.
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1. Introduction

With the rapid development of wind power, a lot of wind turbines have faults in the operation
because most of them are installed in remote areas, and their loads are unstable. The operation and
maintenance cost of up to 25–30% seriously restrict the development of wind power industry [1,2].
Therefore, how to reduce the risk of wind turbine operation and decrease the cost of wind power
generation has become a research topic for many scholars. The fault isolation of wind turbine is
the bottleneck to solve the above problems; undoubtedly, it is the key to ensuring long-term stable
operation of the wind turbine, and it is the necessary means to realize the condition-based maintenance
of the wind turbines [3].

Variable speed constant frequency doubly fed wind turbine is the main type in wind farms [4], and
its simplified model is shown in Figure 1. The fault rate of gearbox and generator is relatively high [5].
There are many reasons for the faults of gearbox and generator, and the misalignment between them is
one of the most important [6]. This is mostly because:

1. The precise alignment in the wind turbine is very difficult;
2. The wind speed fluctuation can cause the start-stop of wind turbine frequently, and, as time

goes on, it will cause the shift of generator or the deformation of some parts, resulting in the
misalignment of generator and gearbox.

When the misalignment occurs, it is easy to cause damage to gearbox gears, bearings and generator
bearings and so on. Therefore, the study and fault isolation of the transmission system in the wind
turbine is the key to ensuring its long stable operation.
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Figure 1. Simplified model of a doubly fed wind turbine. 

The misalignment belongs to a latent fault. When the fault is accumulated to a certain extent, 
the equipment is damaged seriously, leading to the outage of the wind turbine, affecting the power 
generation seriously, resulting in huge economic losses. For many years, how to isolate the latent 
fault accurately has been a difficult problem. This is mainly due to the fault feature of latent faults 
not being obvious, and researchers lack the awareness of the developing rules for latent fault. In 
order to identify and isolate the existence of the misalignment fault accurately and to overcome the 
difficulty of obtaining a large number of misalignment fault samples in reality, in this paper, 
Solidworks and Adams models are established according to the 1.5 MW wind turbine. The 
simulation of the transmission system is carried out in Adams under the normal operation, the 
parallel misalignment, the angle misalignment and the comprehensive misalignment. The vibration 
signal (angular acceleration) of a high speed shaft is extracted as the information (the established 
model and its effectiveness are shown in [7]). 

The methods of extracting fault features from vibration signals are mainly based on 
time-domain analysis, frequency-domain analysis and time-frequency domain analysis:  

1. The time-domain analysis is one of the most simple and direct analysis methods, and it is 
effective in isolating the fault in a certain extent. Except for the poor anti-interference of 
serious faults, the numerical values in time-domain are close to that in normal state, so it 
is easy to make misjudgments only using time-domain analysis.  

2. The frequency-domain analysis of signal is the most commonly used method of 
mechanical equipment fault analysis. It can be used to get more intuitive fault information 
than by the time-domain analysis. However, the theoretical basis of frequency-domain 
analysis is the method of Fourier analysis, so it has sidedness, and cannot extract the 
features of vibration signal comprehensively.  

3. The vibration signal is expressed in the time-domain and frequency-domain at the same 
time for the time-frequency domain analysis, and it has very prominent advantages. The 
main methods of feature extraction based on time-frequency analysis are as follows: short 
time Fourier Transform, Wigner-Ville Distribution, Wavelet Transform, Blind Source 
Separation, Empirical Mode Decomposition (EMD) and so on.  

Due to the complexity of the fault mechanism of the wind turbine transmission system, the 
state information is different with different feature indexes, the sensitivity and regularity of the 
running state, as well as the clustering and separability in the model space not being the same. 
Single features or single domain features are difficult to fully reflect the different conditions of wind 
turbines with different degrees and types of faults. Therefore, it is necessary to construct a mixed 
feature library with time-domain, frequency-domain and time-frequency domain, which becomes 
one of the development trends of fault feature extraction.  

Many scholars have applied one or two of the above domains to extract the fault isolation 
feature based on vibration signal. For example, Ref. [8] extracted root mean square (RMS), peak 

Figure 1. Simplified model of a doubly fed wind turbine.

The misalignment belongs to a latent fault. When the fault is accumulated to a certain extent,
the equipment is damaged seriously, leading to the outage of the wind turbine, affecting the power
generation seriously, resulting in huge economic losses. For many years, how to isolate the latent
fault accurately has been a difficult problem. This is mainly due to the fault feature of latent faults not
being obvious, and researchers lack the awareness of the developing rules for latent fault. In order to
identify and isolate the existence of the misalignment fault accurately and to overcome the difficulty of
obtaining a large number of misalignment fault samples in reality, in this paper, Solidworks and Adams
models are established according to the 1.5 MW wind turbine. The simulation of the transmission
system is carried out in Adams under the normal operation, the parallel misalignment, the angle
misalignment and the comprehensive misalignment. The vibration signal (angular acceleration) of
a high speed shaft is extracted as the information (the established model and its effectiveness are
shown in [7]).

The methods of extracting fault features from vibration signals are mainly based on time-domain
analysis, frequency-domain analysis and time-frequency domain analysis:

1. The time-domain analysis is one of the most simple and direct analysis methods, and it is effective
in isolating the fault in a certain extent. Except for the poor anti-interference of serious faults,
the numerical values in time-domain are close to that in normal state, so it is easy to make
misjudgments only using time-domain analysis.

2. The frequency-domain analysis of signal is the most commonly used method of mechanical
equipment fault analysis. It can be used to get more intuitive fault information than by the
time-domain analysis. However, the theoretical basis of frequency-domain analysis is the
method of Fourier analysis, so it has sidedness, and cannot extract the features of vibration
signal comprehensively.

3. The vibration signal is expressed in the time-domain and frequency-domain at the same time
for the time-frequency domain analysis, and it has very prominent advantages. The main
methods of feature extraction based on time-frequency analysis are as follows: short time Fourier
Transform, Wigner-Ville Distribution, Wavelet Transform, Blind Source Separation, Empirical
Mode Decomposition (EMD) and so on.

Due to the complexity of the fault mechanism of the wind turbine transmission system, the state
information is different with different feature indexes, the sensitivity and regularity of the running
state, as well as the clustering and separability in the model space not being the same. Single features
or single domain features are difficult to fully reflect the different conditions of wind turbines with
different degrees and types of faults. Therefore, it is necessary to construct a mixed feature library with
time-domain, frequency-domain and time-frequency domain, which becomes one of the development
trends of fault feature extraction.

Many scholars have applied one or two of the above domains to extract the fault isolation feature
based on vibration signal. For example, Ref. [8] extracted root mean square (RMS), peak value and
kurtosis coefficient of the vibration signal, and combined with the time-domain waveform to judge
whether there was fault in equipment. In Ref. [9], the kurtosis and peak value of the vibration signal
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were selected as the time-domain indexes, and then the wavelet packet algorithm was used to extract
the frequency band energy and the 2-norm as the time-frequency domain indexes, the PCA (Principal
Component Analysis) was used to confirm the principal component, and the crack fault of the wind
turbine gearbox was diagnosed effectively. The EMD method was used to judge the working states
and fault types of the gear by calculating EMD energy entropy of different vibration signals as the
input features of Support Vector Machine in [10], but only the time-frequency domain feature was
considered. Ref. [11] used a testing system for a wind turbine vibration test to collect vibration signal,
and the time-domain and frequency-domain analysis were carried out to get the fault features of the
rotor misalignment through the analysis of wind turbine generator, but the time-frequency analysis
was not considered. In Ref. [12], the wavelet analysis was used to denoise the vibration signals of
the wind turbine gearbox under normal, wear fault and broken tooth fault. Five feature parameters
were extracted into the LVQ (Learning Vector Quantification) neural network, and the results showed
that the method can identify the fault quickly and accurately. In Ref. [13], the time-domain of the
peak, RMS and kurtosis of the vibration signal were extracted as the time-domain features of the fault
gearbox. Combining observation and analysis of the normal signal and fault signal frequency-domain
feature, the possible location of the failure was determined. In Ref. [14], the vibration signals of three
typical states of normal conditions, tooth wear and tooth breakage of the gearbox in the wind turbine
are analyzed, and the margin index, kurtosis index, peak index, pulse index, power spectrum entropy
in the frequency-domain were extracted, the time-domain and frequency-domain features were the
inputs in the fault isolation. In Refs. [15] and [16], the mixed-domain feature set is constructed to
completely characterize the property of each fault by combining Empirical Mode Decomposition
(EMD) with the Autoregression (AR) model coefficients.

A large amount of literature shows that there are few reports on the method of combining
the time-domain, frequency-domain and time-frequency domain features together to construct
a mixed-domain feature library when researching the fault of the wind turbine transmission system.
In order to extract the feature parameters which reflect the vibration signal as much as possible,
and to make the fault isolation more reliable and accurate, in this paper, firstly, the time-domain,
frequency-domain and time-frequency domain of the wind turbine vibration signal are combined to
construct the mixed-domain feature library to obtain more comprehensive and accurate fault isolation
information. The information entropy of the intrinsic mode function (IMF) component decomposed by
EMD is used as the time-frequency feature. Then, the support vector machine that is suitable for small
samples is used as the isolation tool, and the PSO algorithm is used to optimize the relevant parameters
of the support vector machine to obtain better classification performance with high diagnostic accuracy.
The results show that the proposed method can identify the types of misalignment effectively compared
with other methods.

2. Establishment of Mixed-Domain Feature Library

2.1. Feature Extraction of Vibration Signal in the Time-Domain

The vibration signal of the transmission system (assuming that the signal is a discrete time series
x0, x1, x2, ... , xN−1 with finite length) contains the running status information, so a representative
time-domain index can be selected as the fault feature parameter to help determine whether the drive
system has a fault and what type of misalignment has occurred. The time-domain features of the signal
include the dimensional and the dimensionless time-domain index [17].

2.1.1. Dimensional Index

In this paper, the dimensional time-domain indexes selected include the variance, the square root
amplitude, the RMS, the standard deviation (SD) and the kurtosis. Their formulas are as follows:
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Variance:

σ2 =
1
N

N−1

∑
i=0

(xi − x)2 = xa − x2, (1)

where x is the mean of the signal.
Square root amplitude:

xr = (
1
N

N−1

∑
i=0
|xi|

1/2

)2, (2)

RMS:

xrms = (
1
N

N=1

∑
i=0

x2
i )

1/2, (3)

SD:

xstd = (
1
N

N

∑
i=1

(xi − x)2)1/2, (4)

Kurtosis:

β =
1
N

N

∑
i=1

x4
i . (5)

2.1.2. Dimensionless Index

The dimensionless index is not so sensitive to the change of amplitude and frequency of the signal,
that is, it is not directly related to the working parameters of the wind turbine. The kurtosis index,
the waveform index, the peak index, the pulse index and the margin index are commonly used as
dimensionless indexes [18].

The impact component will be produced when there is fault in the transmission system of wind
turbine, and the kurtosis index can reflect the degree of steepness, and the expression is:

xq =
1
N

N−1

∑
i=0

x4
i /x2

a . (6)

The waveform index reflects the shape of the time-domain waveform, which is sensitive to the
waveform change caused by the fault, and the expression is:

K =
xrms

x′
. (7)

The peak index reflects the distribution of large data components in the vibration signal, which
is the deviation degree of the vibration amplitude distribution relative to the normal Gaussian
distribution, and the expression is:

C =
xp

xrms
. (8)

The pulse index represents the magnitude of the impact component in the signal, which is
sensitive at the beginning of the fault, and the expression is:

I =
xp

x′
. (9)

The margin index is sensitive to the impact signal, and the expression is:

L =
xp

xr
. (10)
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2.2. Feature Extraction of Vibration Signal in the Frequency-Domain

For a complex vibration signal, the information extracted in the time-domain is limited. Therefore,
the time-domain signal is often transformed into a frequency-domain signal by a mathematical method
to reveal the frequency component of the signal, so as to extract more information from the signal.
The mathematical basis for the transition from time-domain to frequency-domain is Fourier Transform.
The process of Fourier Transform is called spectrum analysis. The commonly used spectral analysis
includes amplitude spectrum analysis, phase spectrum analysis, logarithmic spectrum analysis and
power spectrum analysis. Power spectrum is a commonly used method for frequency-domain feature
extraction. It can be used to describe the change of signal frequency-domain features by describing the
change of power centroid and the dispersion degree of power distribution [19].

For a discrete time series (x0, x1, x2, ... , xN−1) with finite length, assuming the sampling frequency
is fs, three commonly used frequency-domain parameters are as follows [20]:

Centroid frequency (FC):

FC =
1

2π fs
·
∫ π

0 ωS(ω)dω∫ π
0 S(ω)dω

, (11)

Mean square Frequency (MSF):

MSF =
1

4π2 f 2
s
·
∫ π

0 ω2S(ω)dω∫ π
0 S(ω)dω

, (12)

Variance frequency (VF):

VF =
1

4π2 f 2
s
·
∫ π

0 (ω− 2π fsFC)S(ω)dω∫ π
0 S(ω)dω

= MSF− FC2, (13)

where S(ω) is power spectrum of the discrete signal, S(ω) = X(ω)·X(ω), X(ω) =
N−1
∑

i=0
x(i)e−jπω ; and

ω is the angular frequency.

2.3. Feature Extraction of Vibration Signal in the Time-Frequency Domain

In this paper, EMD is improved by the method of mirror extension, and the energy entropy of the
vibration signal is extracted by the improved EMD (IEMD).

Assuming [21]:

Ei =
∫
|ci(t)|

2
dt =

n

∑
k=1

∣∣∣x2
ik

∣∣∣, (14)

E =
n

∑
i=1

Ei, (15)

pi =
Ei
E

, (16)

where i = 1, 2, 3, ..., n; xik is the amplitude of each discrete point.
The expression of IEMD energy entropy is

Pi = −
n

∑
i=1

pilgpi. (17)

According to Ref. [7], the energy entropy of the first eight IMF components of IEMD decomposition
is the time-frequency domain indexes.

Collecting the vibration signal of the high-speed shaft at normal and three misalignment
conditions with the speeds of 81.3◦/s, 104.4◦/s, 110.7◦/s and 117.0◦/s, respectively, one gets
114 samples at each speed with each case, so the total number of samples is 4× 4× 114. The features of
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time-domain, frequency-domain and time-frequency domain of the samples are extracted to construct
the mixed-domain fault feature library, which are shown in Table 1.

Table 1. Mixed-domain feature library.

Feature Library Feature Index

Mixed-domain
feature library

Time-domain
root mean square, square root amplitude, variance,
standard deviation, kurtosis, waveform index, peak
index, pulse index, margin index, kurtosis index

Frequency-domain centroid frequency, mean square frequency,
variance frequency

Time-frequency domain energy entropy of the first eight IMF components of
IEMD decomposition

Tables 2–4 are partial data of the extracted time-domain, frequency-domain and time-frequency
domain indexes. Type 0, 1, 2, 3 represent normal state, parallel misalignment, angle misalignment and
comprehensive misalignment, respectively.

Table 2. The partial data of the time-domain indexes.

Type RMS
(×10)

Square Root
Amplitude

Variance
(×106)

SD
(×10) Kurtosis Waveform

Index
Peak
Index

Pulse
Index

Margin
Index

Kurtosis
Index

0

10,107 71,069 10,212 10,105 2.49 1.21 3.42 4.15 4.86 2.50
10,112 70,651 10,223 10,111 2.53 1.22 3.02 3.68 4.32 2.54
10,117 69,920 10,229 10,114 2.55 1.22 3.28 4.01 4.74 2.56
10,135 70,627 10,261 10,130 2.52 1.22 3.44 4.19 4.93 2.54
10,136 69,844 10,267 10,132 2.59 1.23 3.03 3.72 4.40 2.60

1

68,743 203,770 47,184 68,690 14.19 1.89 6.26 11.81 21.11 14.40
70,048 213,120 49,046 70,033 15.37 1.85 5.44 10.07 17.89 15.51
70,194 208,350 49,209 70,149 14.69 1.90 5.21 9.90 17.57 14.94
70,720 217,070 49,931 70,662 16.04 1.91 5.11 9.75 16.66 16.30
71,651 227,770 51,201 71,555 12.08 1.84 5.57 10.24 17.53 12.23

2

176,820 689,720 30,935 175,880 7.41 1.64 4.42 7.24 11.34 7.58
177,180 702,010 31,389 177,170 6.72 1.63 4.87 7.92 12.28 6.72
177,930 680,850 31,660 177,930 7.52 1.67 4.78 8.00 12.50 7.52
178,990 679,150 31,589 177,730 7.71 1.69 3.84 6.48 10.13 8.28
179,010 706,130 32,048 179,020 6.77 1.64 5.04 8.26 12.77 6.77

3

601,360 1,681,900 36,139 601,160 14.83 1.95 5.82 11.35 20.81 15.09
625,910 1,801,800 39,127 625,520 13.28 1.91 6.70 12.76 23.26 13.58
656,970 2,154,200 43,123 656,680 11.11 1.79 7.30 13.09 22.27 11.22
664,860 2,069,300 44,194 664,780 11.38 1.82 6.80 12.37 21.85 11.51
671,750 2,101,200 45,063 671,290 12.30 1.83 6.82 12.50 21.81 12.50

Table 3. The partial data of the frequency-domain indexes.

Type FC MSF VF

0

−458 7,083,800 6,873,700
−455 7,047,800 6,841,100
−457 7,077,400 6,868,500
−453 6,958,700 6,753,100
−448 6,988,700 6,787,900

1

−750 12,950,000 12,387,000
−647 11,048,000 10,629,000
−697 12,436,000 11,950,000
−728 13,462,000 12,933,000
−715 12,794,000 12,283,000
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Table 3. Cont.

Type FC MSF VF

2

−440 8,587,500 8,393,500
−443 8,652,700 8,456,200
−475 9,280,300 9,053,800
−447 8,707,000 8,507,200
−451 8,785,300 8,581,700

3

−376 7,338,600 7,196,600
−355 7,033,700 6,907,400
−388 8,190,100 8,039,200
−369 7,400,400 7,264,100
−346 6,958,600 6,838,700

Table 4. The partial data of the energy entropy of the first eight IMF components of IEMD.

Type P1 P2 P3 P4 P5 P7 P7 P8

0

0.3109 0.3429 0.1709 0.0747 0.0476 0.072 0.097 0.0521
0.3166 0.352 0.1553 0.0784 0.0477 0.0688 0.0575 0.0176
0.3186 0.3498 0.1657 0.0814 0.0478 0.0452 0.069 0.0172
0.3256 0.341 0.2031 0.0895 0.0564 0.037 0.0933 0.0148
0.3302 0.3386 0.1669 0.0748 0.0574 0.0522 0.0788 0.0129

1

0.1484 0.3676 0.3623 0.193 0.1201 0.0863 0.0477 0.1012
0.1489 0.3669 0.3678 0.2267 0.0938 0.0481 0.028 0.1249
0.1513 0.3678 0.3662 0.1839 0.1077 0.0665 0.0517 0.2216
0.1558 0.3533 0.3675 0.2133 0.1479 0.0683 0.0637 0.1977
0.1574 0.3601 0.3639 0.157 0.0807 0.062 0.2031 0.1429

2

0.2335 0.3067 0.2325 0.1467 0.0843 0.0763 0.1386 0.3648
0.2361 0.3024 0.3679 0.289 0.1934 0.1157 0.1594 0.0478
0.2423 0.3665 0.3417 0.2574 0.1862 0.0897 0.0395 0.0279
0.2455 0.3476 0.3679 0.3096 0.1083 0.0873 0.0337 0.0536
0.2487 0.3298 0.3134 0.2565 0.1254 0.0804 0.1309 0.3447

3

0.1456 0.2285 0.2912 0.3322 0.2521 0.1672 0.2001 0.1162
0.1061 0.2784 0.3393 0.2876 0.2762 0.0813 0.2059 0.1677
0.1074 0.2581 0.3357 0.3582 0.1606 0.1101 0.1396 0.1396
0.1082 0.2853 0.3271 0.3022 0.1685 0.1765 0.0751 0.1556
0.111 0.3268 0.3654 0.2737 0.2681 0.0886 0.0773 0.1014

3. Fault Isolation of Transmission System Based on PSO-SVM

After establishing the mixed-domain fault feature library of the vibration signal, the samples can
be divided into two groups, one is the training set and the other is the testing set. In this paper, the
training samples are 4 × 304, and the testing samples are 4 × 152. SVM is selected to be the classifier
that will be trained by the training samples.

3.1. The Principles of SVM

SVM was proposed by Vapnik in 1995. The principle of SVM can be briefly described as follows [7].
The giving training samples (x1, y1), (x2, y2), ..., (xl , yl) (where xi ∈ Rn, yi ∈ {1,−1}, and l is

the number of training samples) can be separated by a hyper plane, and the hyper plane can be
expressed as:

ωx + b = 0, (18)

where ω and b, respectively, represent the normal vector and the constant term. When ω and b are the
best, it means the optimal hyper plane has been found, which makes the distance between the positive
and negative samples the largest.
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For linearly inseparable problems, the samples can be mapped to the hyper plane by the kernel
function K(xi, yj) to realize linear separability. Its objective function is as follows:

W(a) =
l

∑
i=1

ai −
1
2

l

∑
i=1

l

∑
j=1

aiajyiyjK(xi, xj),

s.t.
l

∑
i=1

aiyi = 0, 0 ≤ ai ≤ C,

(19)

where ai is the Lagrange operator; C is the punishment factor, and its basic function is to control the
penalty of the wrong samples; K(xi, xj) is the kernel function, and its basic function is to transform the
vectors of low-dimensional to the inner product in the high-dimensional.

The kernel functions used in SVM are mainly linear kernel function, polynomial kernel function,
radial basis kernel function and sigmoid kernel function. Many studies and experiments show that the
radial basis function (RBF) is a better choice. Therefore, in this paper, the RBF is used as the kernel
function. The function is as follows:

K(xi, xj) = exp(−g‖xi − xj‖2), g > 0, (20)

where g is the kernel parameter.
In SVM, parameter C determines the training error and the generalization ability of the classifier;

and parameter g affects the distribution form of the samples in the feature space. The selection of
them is very important for the performance of the classifier. In this paper, PSO is used to select the
parameters of C and g to improve the classification performance.

3.2. Particle Swarm Optimization

PSO is a kind of swarm intelligence optimization algorithm in addition to the ant colony algorithm
and the fish swarm algorithm, and it was first proposed by Kennedy and Eberhart in 1995 [7].
The principle can be briefly described as follows.

Supposing in a D-dimensional search space, there is a population X = (X1, X2, ..., Xn), consisting
of n particles. The i-th particle is represented as a D-dimensional vector of Xi = [xi1, xi2, ..., xiD], which
represents the position of the i-th particle in the D-dimensional search space, and it also represents
a potential solution to the problem. According to the objective function, the fitness value of each
particle’s position Xi can be calculated. If the velocity of the i-th particle is Vi = [Vi1, Vi2, ..., ViD],
the individual extremum is Pi = [Pi1, Pi2, ..., PiD], the population extremum is Pg = [Pg1, Pg2, ..., PgD],
and then the velocity and position of the particle are updated according to the following equations:

Vk+1
id = Vk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id), (21)

Xk+1
id = Xk

id + Vk+1
id , (22)

where d = 1, 2, ..., D; i = 1, 2, ..., n; k is the number of iterations; and c2 are learning factors, which
are non negative constants, making the particles learn from their own or other better particles to
achieve the purpose of being close to the better position of itself or the whole group; r1 and r2 are
random numbers distributed in [0, 1] to maintain the diversity of group. In order to prevent the blind
search of particles, it is generally recommended to limit the position and velocity to a certain range of
[−Xmax, Xmax] and [−Vmax, Vmax].

The realization of the fault isolation based on PSO-SVM ( in the model, PSO is used to select the
parameters of SVM classifier) is shown in Figure 2.



Algorithms 2017, 10, 67 9 of 14

Algorithms 2017, 10, 67 10 of 15 

 

Supposing in a D -dimensional search space, there is a population ),...,,( 21 nXXXX  , 
consisting of n  particles. The i-th particle is represented as a D-dimensional vector of 

],...,,[ 21 iDiii xxxX  , which represents the position of the i-th particle in the D-dimensional search 
space, and it also represents a potential solution to the problem. According to the objective function, 
the fitness value of each particle’s position iX  can be calculated. If the velocity of the i-th particle is 

],...,,[ 21 iDiii VVVV  , the individual extremum is ],...,,[ 21 iDiii PPPP  , the population extremum is 

],...,,[ 21 gDggg PPPP  , and then the velocity and position of the particle are updated according to 

the following equations: 

)()( 2211
1 k

id
k

gd
k
id

k
id

k
id

k
id XPrcXPrcVV 

, (21) 

11   k
id

k
id

k
id VXX , (22) 

where 1, 2,...,d D ; 1,2,...,i n ; k  is the number of iterations; 1c  and 2c  are learning factors, 
which are non negative constants, making the particles learn from their own or other better particles 
to achieve the purpose of being close to the better position of itself or the whole group; 1r  and 2r  
are random numbers distributed in [0, 1] to maintain the diversity of group. In order to prevent the 
blind search of particles, it is generally recommended to limit the position and velocity to a certain 
range of max max[ , ]X X  and max max[ , ]V V . 

The realization of the fault isolation based on PSO-SVM ( in the model, PSO is used to select the 
parameters of SVM classifier) is shown in Figure 2. 
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4. PSO-SVM Fault Isolation Results Based on Mixed-Domain Features

The results of parameters optimizing of SVM using PSO and the mixed-domain features of the
wind turbine are shown in Figure 3, that is, the optimal fitness of PSO algorithm is 83.3882%, and the
obtained optimal parameters are C = 3.1787, g = 26.2761. The classification results of the testing set
using the optimized SVM classifier are shown in Figure 4, where the category label "0" indicates the
normal condition; “1” indicates the parallel misalignment; “2” indicates the angle misalignment; and
“3” indicates the comprehensive misalignment.

The classification accuracy rate of training set obtained by using an optimized SVM classifier
achieves 97.9441%, and the classification accuracy rate of testing set is 92.1053%, so the fault
classification accuracy is very high. In order to better illustrate the superiority of the PSO-SVM
algorithm proposed in this paper, the same fault features are adopted by SVM, GridSearch-SVM (the
parameters of SVM are optimized by GridSearch) and GA-SVM (the parameters of SVM are optimized
by Genetic Algorithm), and the testing results are shown in Figure 5a–c and Table 5.
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Table 5. Comparison of PSO-SVM with other commonly used classifiers.

Item C g Accuracy of
Training Set

Accuracy of
Testing Set

SVM 1 0.01 63.2401% (769/1216) 63.6513% (387/608)

GridSearch-SVM 16 1.4142 93.4211% (1136/1216) 90.9539% (553/608)

GA-SVM 26.2168 6.7162 99.5066% (1210/1216) 91.1184% (554/608)

PSO-SVM 3.1787 26.2761 97.9441% (1191/1216) 92.1053% (560/608)

From the simulation results, it can be seen that the fault isolation by SVM only has a poor
recognition effect. When using GridSearch-SVM, the training accuracy and testing accuracy are better,
but not higher than PSO-SVM. The training accuracy of GA-SVM is very high, but the promotion
ability is less than PSO-SVM. Therefore, it is better to use the PSO-SVM algorithm to isolate the fault.
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5. Comparison of Fault Isolation Results with Different Fault Features

In this paper, the time-domain, frequency-domain and time-frequency domain features are used
to isolation the misalignment fault. In order to compare the superiority of the extracted fault features,
the paper also adopts time-domain indexes, frequency-domain indexes, IEMD energy entropy, and
their combinations of any two kinds as the inputs of SVM, and the recognition results are shown in
Figure 6 and Table 6.
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Figure 6. Testing results of PSO-SVM using different input features. (a) using time-domain features
only; (b) using frequency-domain features only; (c) using IEMD energy entropy features only; (d)
using time-domain + frequency-domain features; (e) using frequency-domain + IEMD energy entropy
features; and (f) using time-domain + IEMD energy entropy features.

From Figure 6 and Table 6, it can be seen that when the time-domain, frequency-domain and
time-frequency domain features are used separately as inputs of the PSO-SVM isolation model,
the accuracy of the training set and the testing set are low, and the recognition results are not good.
When two kinds of features are combined as the inputs, the training set accuracy is above 91%,
the testing set accuracy is more than 84%, and the recognition rate is increased. When the three
mixed-domain features are combined, the correct rate of the training set reaches 97.9441%, and the
accuracy of the testing set reaches 92.1053%. Therefore, it can be concluded that the mixed-domain
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features combining three kinds of domain extractions proposed in this paper can effectively reflect the
characteristics of the misalignment fault, and can be used to classify the fault types. It is also interesting
to note that, whether used individually or combined with energy entropy, the time-domain features
seem to provide better identification results than the frequency-domain data. This is because, when the
wind turbine transmission system fails, it will produce impact components, and time-domain features
can well reflect them, so better results can be obtained when using time-domain features.

Table 6. PSO-SVM classification results of different fault features.

Fault Features C g Accuracy of
Training Set

Accuracy of
Testing Set

Time-domain 22.5396 74.8823 88.0757% (1071/1216) 84.2105% (512/608)

Frequency-domain 7.71812 346.316 77.7138% (945/1216) 74.5066% (453/608)

IEMD energy entropy 7.88573 6.12414 87.4178% (1063/1216) 82.4013% (501/608)

Time-domain + frequency-domain 73.0786 20.0281 93.5033% (1137/1216) 89.9671% (547/608)

Time-domain + IEMD energy entropy 58.3106 1.42904 93.2566% (1134/1216) 87.8289% (534/608)

Frequency-domain + IEMD energy entropy 2.1093 10.0231 91.1184% (1108/1216) 84.8684% (516/608)

Time-domain + frequency-domain + IEMD
energy entropy 3.1787 26.2761 97.9441% (1191/1216) 92.1053% (560/608)

6. Conclusions

This paper is based on the time-domain, frequency-domain and time-frequency domain analysis
of vibration signals of the wind turbine in four different operating conditions with four kinds of
rotating speeds. The mixed-domain features are extracted in the paper, which are the inputs of SVM
classifiers. The parameters of SVM are optimized using the PSO algorithm. The testing results show
that the proposed model for misalignment fault isolation is effective compared with other commonly
used algorithms.

When the wind turbine operates in the condition of misalignment, there will be some changes in
the temperature and electrical signals in addition to the reflection of the mechanical aspects, so ANSYS,
MATLAB, and other software should be included in the simulation further to get temperature and
electrical parameters, so as to study the fault characteristics more comprehensively.

At the same time, it is necessary to point out that the method presented in this paper is a general
method, and it can be used elsewhere.
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