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Abstract: We introduce a seismic signal compression method based on nonparametric Bayesian1

dictionary learning method via clustering. The seismic data is compressed patch by patch, and2

the dictionary is learned online. Clustering is introduced for dictionary learning. A set of3

dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In4

this way, the signals in one cluster could be well represented by their corresponding dictionaries.5

A nonparametric Bayesian dictionary learning method is used to learn the dictionaries, which6

naturally infers an appropriate dictionary size for each cluster. A uniform quantizer and an adaptive7

arithmetic coding algorithm are adopted to code the sparse coefficients. With comparisons to other8

state-of-the art approaches, the effectiveness of the proposed method could be validated in the9

experiments.10

Keywords: Seismic Signal Compression; Nonparametric Bayesian Dictionary Learning; Clustering;11

Sparse Representation12

1. Introduction13

The oil
:::
Oil

:
companies are increasing their investment in seismic explorationdue to the strong14

fluctuations in crude oil prices,
:::

as
:::

oil
:::

is
:::
an

:::::::::::::
indispensable

:::::::::
resource

:::
for

::::::::::
economic

::::::::::::
development.15

A large number of sensors(always more than 10000
::::::::
typically

::::::
more

:::::
than

::::::
10,000) are required to16

collect the seismic signals, which are generated by an active excitation source.
:::::::
Similar

::
to

::::::
other17

::::::::::
distributed

::::::::
vibration

:::::
data

:::::::::
collection

::::::::
methods

:::::
[1,2],

:::::
using

:::::
cable

:::
for

::::
data

::::::::::::
transmission

::
in

:::::::
seismic

::::::
signal18

:::::::::::
acquisitions

::
is

:
a
:::::::
typical

:::::::::
approach.

:
To improve the quality of depth images and simplify acquisition19

logistics, replacing cabling with wireless technology should be a new trend in seismic exploration.20

Benefitting from recent advances in wireless sensor
::::::
sensors, large areas could be measured with a21

dense arrangement of thousands of seismic sensor, which
:::::::
sensors.

::::::
This will create high quality22

of depth images with sufficient textures. It will produce a large amount of data to be collected23

daily, but .
::::::::::

However,
:

the network throughput for single sensor is always limited , for example24

::::
(e.g.,

:
150 kbps down to 50 kbps

:
). Therefore, it is necessary to compress the seismic signals before25

transmission. How to represent the seismic signals efficiently with a transform or a set of basis
:::::
basis26

::
set

:
could be quite important for seismic signal compression. A lossy compression gain of approximate27

:::::::::::::
approximately

:
three has been achieved for

:::
the compression of seismic signals using the Discrete28

Cosine Transform
:::::::
discrete

::::::
cosine

::::::::::
transform

:
(DCT)

:
[3]. To preserve the important features, a two29

dimensional
:::::::::::::::
two-dimensional seismic-adaptive DCT is proposed [4]. However, complicated signals30

could not be well represented by the orthogonal basis used in above methods
:::
the

::::::::
methods

::::::
above.31

Multiscale geometric analysis methods (such as
:::
e.g.,

:
Rigielet, Contourlet and Curvelet[5,6] are

:::::
[5,6])32

::::
have

:::::
been

:
favored in recent years. By neglecting the orthogonality and completeness, complicated33

signals could be well represented by inducing a lot of redundancy component. Thereby
:
,
:
the34
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representation of the signals is sparse. For example, Curvelet is adopted in seismic interpretation35

by exploring the directional features of the seismic data [5]. Another application of Curvelet in36

seismic signal processing is seismic signal denosing
:::::::::
denoising

:
[6]. From a small subset of randomly37

selected seismic traces, seismic signals are recovered,
:

while noise could be efficiently reduced from38

the migration amplitudes with
::
the

:
help of sparsity.39

::
In

:::
the

::::::
above

:::::::::
methods, DCT or Curvelet could be seemed as

::
is

::::
used

:::
to

::::::::
represent

::::
the

:::::::
signals,

::::
and40

:::::
could

:::
be

:::::::
deemed

:
a set of fixed basis, used to represent the signal. Recent research effort has

::::::
efforts41

::::
have

:
been dedicated to learning a set of adaptive basis, called as a dictionary, for the purpose of sparse42

representation
:
a

::::::::::
dictionary.

:::::::
Hence,

::::
the

:::::::
signals

:::::
could

:::
be

::::::::
sparsely

::::::::::::
represented. The dimensionality43

of
::
the

:
representation space could be higher than the input space. Moreover, the dictionary is44

inferred from signal itself
::::::
signals

:::::::::::
themselves. These two properties lead to an improvement in

:::
the45

sparsity of the representation. Therefore, sparse dictionary learning could be widely used in the46

fields of compression, especially
::::::::::::::::::::::
compression—especially

:
in image compression applications. An47

image compression scheme using
:
a recursive least squares dictionary learning algorithm in the 9/748

wavelet domain is proposed
:::
[7].

:::::
This

:::::::
method

::
is
::::::

called
:::

as
::
a

::::::::::::
compression

:::::::
method

::::::
based

:::
on

:::::::
Offline49

:::::::::
Dictionary

:::::::::
Learning(OffDL) [7]

:
in

::::
this

::::::
paper. It achieves a better performance than using dictionaries50

learned by other methods. [8] presents a boosted dictionary learning framework. In this work, an51

ensemble of complementary specialized dictionaries are constructed for sparse image compression.52

A compression scheme using dictionary learning and universal trellis codied
:::::
coded quantization for53

complex synthetic aperture radar(SAR) images is proposed
::
in [9], which achieves superior quality54

of decode
:::::::
decoded

:
images compared with JPEG, JPEG2000,

:
and CCSDS standards. In

:::
the above55

methods, an offline training data is necessary for learning the dictionary for the sparse representation56

of the online testing data. Thus,
:
its compression performance depends on the correlation between57

the offline training data and the online testing data. [10] proposes an input-adaptive compression58

approach. Each input image is coded with a learned dictionary by itself. In this way, both the59

adaptivity and generality are achieved. An online learning based
:::::::::::::
learning-based

:
intra-frame video60

coding approach is proposed to exploit the texture sparsity of natural images
::::
[11].

:::::
This

::
is

:::::::
denoted

:::
as61

:
a
::::::::::::
compression

:::::::
method

::::::
based

:::
on

:::::::::
Dictionary

:::::::::
Learning

:::
by

::::::
Online

::::::::::
Dictionary

::::::::::::
transmitting(DLOD)[11].62

In this method, to synchronize the dictionary used in the coder and decoder, the residual between the63

current dictionary and the previous one is necessary for sending. This will increase the rates.64

In this paper, we focus on how to compress seismic signals in an online way with the65

nonparametric bayesian
::::::::
Bayesian dictionary learning method via clustering. Seismic signals of66

multiple sensors are highly correlated, especially in a propagation form of a seismic wave
:::
are67

:::::::::
generated

:::::
from

::
a
::::::::

seismic
::::::
wave

::::
and

:::::::::
recorded

:::
by

:::::::::
different

::::::::
sensors,

:::::
and

::::
are

::::::
highly

::::::::::
correlated.68

Clustering is introduced for seismic signal compression based on dictionary learning. We optimize69

for a
::
A

:
set of dictionaries , one for each cluster, for which the signals from the same seismic70

wave could be well reconstructed in a sparse representation way. Nonparametric bayesian
:::
can

:::
be71

:::::::::
generated,

:::::
and

:::::
each

:::::::::
dictionary

:::
is

:::::
used

:::
for

::::
one

:::::::::
cluster’s

::::::
sparse

::::::::
coding.

:::
In

::::
this

:::::
way,

::::
the

:::::::
signals72

::
in

::::
one

:::::::
cluster

::::
can

:::
be

:::::::::::::::
well-represented

:::
by

:::::
their

::::::::::::::
corresponding

::::::::::::
dictionaries.

:::::
The

:::::::::::
dictionaries

::::
are73

:::::::
learned

:::
by

:::
the

::::::::::::::
nonparametric

::::::::
Bayesian

:
dictionary learning methodis used to learn the dictionaries,74

which naturally infers an appropriate dictionary size for each cluster. Furthermore, the transmitted75

::::::
online seismic signals are utilized to train these dictionaries, which could exists both in the coder76

and decoder
:::
the

:::::::::::
dictionaries. Thus, the dictionary transmission and synchronization problem is well77

solved
:::::::::
correlation

:::
of

:::::::
training

:::::
data

:::
and

:::::::
testing

::::
data

::::::
could

::
be

:::::::::
relatively

:::::
high. A uniform quantizer and78

an adaptive arithmetic coding algorithm are used to code the sparse coefficients. Experimental results79

demonstrate better rate-distortion performance over other seismic signal compression schemes,80

validating
:::::
which

:::::::::
validates

:
the effectiveness of the proposed method. The rest of this paper is81

organized as follows: In Section 2
:
2, we introduce a seismic signal compression method based on82

offline dictionay learning. A seismic signal compression method using nonparametric bayesian83
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dictionary learning via clustering is introduced in Section 3.
::
3.

:
Experimental results are presented84

in Section 4
:
4, and conclusion is made in Section 5.

:
5.

:
85

2. Seimsic
:::::::
Seismic Signal Compression based

::::::
Based on Offline Dictionary Learning86

In this section, we will introduce how to compress seismic signals in the offline dictionary87

learning way
::::::::
approach

:
(OffDL)[7]. As stated above

::::
[7].

::::::::::
Compared

:::::
with

::
a
:::::
fixed

:::::
basis

:::
set, learning88

an adaptive set of basis
::::
basis

:::
set

:
to a specific set of signals could result in better performancethan89

a fixed set of basis. Suppose
:
.
::::::::::
Supposing

:
input signals Y = {yi}i=1,...,K ∈ RM×K, the dictionary90

D ∈ RM×N ,
:

and the sparse vector W = {wi}i=1,...,K ∈ RN×K, then yi could be well represented91

by a linear combinations
:::::::::::
combination

:
of the basis from the dictionary D: yi = Dwi + εi. εi could92

be seemed
::::
seen

:
as the noise from the deviation of the linear model. To synchronize the dictionary93

used in the coder and decoder, one choice is to send the learned dictionary D. However, this will94

increase the rates by the transmission of the dictionary. Therefore, it is typical
:
it
::
is
::::::::

possible
:
to use a95

pre-learned dictionary by an offline training data, existing in the coder and decoder. Inspired from96

:
.
::::::::
Inspired

:::
by this idea, the diagram of

:::
the

:
seismic signal compression method based on the offline97

dictionary learning is shown Figure 1.
::
in

::::::
Figure

::
1.

:
It includes two steps: offline training and online98

testing. In the offline training step, an offline training data is adopted
::::
used

:
to train the dictionary D.99

In the online testing step, the input testing data is sparsely represented by the trained dictionary D,100

the result of which
::::
and

:::
the

:::::
result

:
is a sparse matrix W. Furthermore, the sparse matrix is quantized.101

The quantized
::::
The sparse matrix is separately

:::::::::
quantized

::::
and

:::::::::
separated

:
into the nonzero coefficients102

and their positions. The positions could be seemed
::::
seen

:
as a binary matrix, where 0 and 1 denote the103

coefficients of the current positionare
:
’s

:
zero and nonzero value separately. Finally, they are separately104

coded by entropy coding algorithms .
:::
are

::::
used

::
to

:::::
code

::::::
them.

Figure 1.
:::::::
Diagram

::
of

::::::
seismic

:::::
signal

:::::::::::
compression

:::::
based

::
on

::::::
offline

:::::::::
dictionary

:::::::
learning.

105 To solve above optimization problems in dictionary learning and sparse representation
::
To106

::::::::
optimize

::::
the

::::::::::
dictionary

:::
D

:::::
and

:::::::
sparse

:::::::
matrix

:::
W, sparsity could be used as the regulation107

term, then the two variables D and W could be solved by two alternating stages: 1) Sparse108

representation. For
:::::::::::::::::
representation—for

:
a fixed dictionary D, wi could

:::
can

:
be solved by some109

sparse representation algorithmssuch as: Order Recursive Matching Pursuit
:
,
::::
such

:::
as

:::::
order

:::::::::
recursive110

::::::::
matching

::::::::
pursuit

:
(ORMP)[12] and Partial Search

::::::::
[12] and

::::::
partial

:::::::
search

:
(PS)

:
[13]. 2) Dictionary111

updating. When
:::::::::::::::
updating—when

:
wi is fixed, the dictionary could

:::
can

:
be updated by some methods112

like Method of Optimized Directions
::::::::
methods

:::::
such

::
as

:::
the

:::::::
method

:::
of

:::::::::
optimized

:::::::::
directions

:
(MOD) [14]113

and K-SVD[15]. The Tree-Structured Iteration-Tuned and Aligned Dictionary
:::::::::::::
tree-structured114

:::::::::::::
iteration-tuned

:::::
and

:::::::
aligned

::::::::::
dictionary

:
(TSITD) has been proposed [16]. It shows using TSITD115

for compressing images belonging to specific classes could
::::
was

:::::::::
proposed

:::
in

:::::
[16].

::::::::
TSITD

::::
can116

outperform other image compression algorithms
::
in

::::::::::::
compression

::::::
images

::::::::::
belonging

::
to

:::::::
specific

::::::
classes.117

A classification and update step are repeated to train the dictionary
:
in

:::::::
TSITD. Nevertheless, it is hard118

:::::::
difficult to determine the number of class

::::::
classes and dictionary size in each iterationof TSITD. These119

methods have demonstrates their efficiency in the applications of denosing, interpolation and so on.120

However, the size of the dictionary is always set a prior or fixed. .
:
Utilizing nonparametric Bayesian121
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methods like the beta process [17], we could
:::
can

:
infer the number of dictionary elements needed to fit122

the data. This could reduce the size of the binary matrix generated from the quantized sparse matrix,123

which is beneficial for compression. To yield posterior distributions rather than point estimation for124

the dictionary and signals, nonparametric bayesian
:::
the

::::::::::::::
nonparametric

::::::::
Bayesian

:
dictionary learning125

model based on beta process
::::
Beta

:::::::
Process

::::::
Factor

:::::::::
Analysis(BPFA)[18] demonstrates its efficiency both126

in inferring a suitable dictionary size and sparse representation.127

3. Seismic Signal Compression using
:::::
Using

:
Nonparametric Bayesian Dictionary Learning via128

Clustering129

The drawback of above
:::
The

:::::::::::::
performance

::
of

::::
the

:
seismic signal compression method is its130

efficiency highly depending
:::::
based

:::
on

::::::
offline

::::::::::
dictionary

::::::::
learning

::::::
highly

::::::::
depends

:
on the correlation131

of the online testing data and
::::::::
between

:::
the

:
offline training data

:::
and

::::::
online

:::::::
testing

::::
data. However,132

it is difficult to keep the correlation always high as the seismic wave is changed
::
the

:::::::::::
correlation

::
is133

:::
not

:::::::
always

:::::
high. In this section, we will introduce a seismic signal compression method using134

nonparametric bayesian
::::::::
Bayesian

:
dictionary learning via clustering. In a typical seismic survey,135

seismic waves are usually generated by special vibrators mounted on trucks. The seismic waves136

are reflected by subsurface formations, and return to the surface,
:
where they are recorded by seismic137

sensors. The trucks are always moved to different locations, where different shots are generated by138

the vibrators. Obviously, seismic signals from the same seismic wave are similar
::::::
highly

:::::::::
correlated. If139

these similar signals could be
:::::::::
correlated

:::::::
signals

:::
are

:
clustered into the same group and each group140

learns its dictionary, the representation of these signals could be very sparse. This is useful for141

compression. Furthermore, we use the transmitted
:::::
online

:
seismic signals to train the dictionaries,142

thus the dictionaries could be updated synchronously both
:::::
which

::::
are

::::::::
updated

:::::::::::::
synchronously

:
in the143

coder and decoder. Therefore, we do not need to send these dictionaries, and high
::::::::::
Meanwhile,

::::
the144

correlation of the
::::::
online training data and testing data could be always guaranteed

:
is

:::::
high. Similar145

to other compression methods, it is common
::::::
typical

:
to divide seismic signals into small patches for146

transmission. The seismic signals recorded by one sensor corresponding to a single shot is always147

called as
:::
are

:::::::
always

::::::
called

:
a trace. In our method, traces of each patch are divided into small148

segments, which are placed as columns for dictionary learning. Suppose seismic signals of current149

patch are denoted as XP = [x1, ..., xi, ..., xN ], and seismic signals of previous L patches are denoted as150

XP−L to XP−1. xi is the ith segment in XP, the dimension of which is M× 1. The number of segments151

for each patch is the same. As seismic signals of
:::
the previous L patches are transmitted to the decoder152

and the seismic signals from adjacent patches are highly correlated, we could use these signals (both153

exists
:::::::
existing in the coder and decoder) to learn the dictionaries for

::
the

:
sparse representation of154

seismic signals from
:::
the

:
current patch. The diagram of

:::
the

:
proposed method is shown in Figure155

2.
:
2.

:
As mentioned above, clustering is introduced for dictionary learning. A set of dictionaries ,156

one for each cluster, is generated. Then seismic signals of current patch could be well reconstructed157

with these dictionariesin a sparse representation way. It
::::::
Seismic

:::::::
signals

:::
of

:::
the

::::::::
current

:::::
patch

::::
are158

:::::::
sparsely

:::::::::::
represented

::::::::::
according

::
to

:::::
their

::::::::
cluster’s

::::::::::::
dictionaries.

:::::
This includes the following steps: 1)159

Online training. Transmitted
::::::::::::::::::::
training—transmitted seismic signals are used to learn the parameters160

of clustering and the dictionary of each cluster. 2) Online testing. Firstly
:::::::::::::
testing—firstly, seismic161

signals are clustered with the parameters learned in the above step. Secondly
:::::::::
generated

:::::
from

::::
the162

::::::
online

:::::::
training

:::::
step;

::::::::
secondly, they are sparse

::::::::
sparsely represented by the corresponding dictionary163

of their cluster. Moreover
:::::::
clusters.

::::::::::::
Furthermore, the sparse coefficients are quantized and coded for164

transmission.165 The details are as follows:166

3.1. Online training
:::::::
Training167

The Mixed-Membership Naive
:::::::::::::::::
mixed-membership

::::::
naive

::
Bayes model (MMNB)

:
[19] and168

BPFA are adopted
:::::::
utilized

:
to learn a set of dictionaries based on clustering, the graphical model169

representation of which is shown in Figure 3.170
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Figure 2.
:::::::
Diagram

::
of

::::::::
proposed

:::::::
method.

::
3.

::::::::::
Suppose

::::
that

::::
the

:::::::::::
transmitted

:
seismic signals of

:::
the

:
previous L patches are denoted as

Suppose the reconstructed

Figure 3.
::::::::
Graphical

::::::::::::
representation

::
of

::::::::
proposed

::::::
model.

171 [
−→
X P−L, . . . ,

−→
X P−1] = [−→x 1, ...,−→x i, ...,−→x N×L]. The online training algorithm includes the following172

steps:173

1) Reduction of feature dimension by Principal Component Analysis
:::::::
Feature

:::::::::::
dimension174

:::::::::
reduction

::
by

:::::::::
principal

::::::::::
component

::::::::
analysis (PCA)175

To reduce the feature dimension and computation time, PCA is used to generate the feature vi
from −→x i as follows:

vi = RT−→x i (1)

where the columns of matrix R ∈ RM×B form an orthogonal basis. It maps −→x i from an original space176

of M variables to a new space of B variables.177

2) Clustering via MMNB178

Probabilistic mixture model is a popular research to latent cluster structure discovery from
observed data, especially

::::
The

:::::
latent

:::::::::
structure

:::::
from

:::
the

:::::::::
observed

:::::
data

:::::
could

:::
be

:::::
well

::::::::::
discovered

:::
by

:::::::::::
probabilistic

:::::::
mixture

:::::::::::::::::
model—especially

:
the mixture models. Therefore, MMNB is used for clustering

with a gaussian
::::::::
Gaussian

:
mixture model as

p(vi|τ, θ) =
V

∑
c=1

p(ρ = c|τ)
B

∏
j=1

p(vi|θjc) (2)

τ denotes a discrete distribution as a prior over the clusters. The density of
:
is

::
a

:::::
prior

::
of

:::
the

::::::::
discrete179

::::::::::
distribution

::::
for

:::::::
clusters,

::::
and

:::
θjc::

is
::::
the

::::::::::
parameters

:::
of

:::
the

:::::::::
Gaussian

::::::
model

:::
for features in cluster cis a180

Gaussian with the parameters θjc = (µjc, δjc). Firstly, we suppose the number of clusters could be a181
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relative
::::::::
relatively

:
large value as V. After clustering, small clusters will be merged for the requirement182

of dictionary learning.183

The learning task in MMNB is to estimate the
:::
The

:
parameters α

::::::::::
(parameter

::
of

:::
τ)

:
and θ such184

that the likelihood of observing the whole data set is maximized. A general method for this task is185

to use Expectation Maximization
::
are

::::::::::
estimated

::
in

:::::::
MMNB

:::
by

::::::
using

:::::::::::
expectation

:::::::::::::
maximization (EM)186

algorithms with the following two steps alternating:187

a) E step:188

For each data point vi, find the optimal parameters

[γ
(t)
i , φ

(t)
i ] = arg max

γi ,φi
L(γi, φi; θ

(t−1)
jc , α(t−1), vi) (3)

γi is a Dirichlet distribution parameterover τ ,
:
and φi is the

:
a
:
parameter for discrete distributions189

over
::
of

:
the latent components ρ.190

b) M step:191

The model parameters could be estimated
::
θjc::::

and
::
α

:::
can

:::
be

::::::::
updated as follows:

[θ
(t)
jc , α(t)] = arg max

θjc ,α
L(θjc, α; γ

(t)
i , φ

(t)
i , vi) (4)

Especially, θjc = (µjc, δjc) 
µjc =

∑N×L
i=1 φijcvij

∑N×L
i=1 φijc

δ2
jc =

∑N×L
i=1 φijc(vij − ujc)

2

∑N×L
i=1 φijc

3) Dictionary learning via BPFA192

Small clusters are merged into other clusters to keep the number of training data not too small193

::::
large

::::::::
enough for dictionary learning. The following cluster merging algorithm is used (Algorithm 1).194

Algorithm 1: Cluster Merging
:::::::
merging

Input: φi (computed by Equation 3), J (the required minimum number of segments for each cluster), V
(the initial number of clusters), N × L (the number of segments), Nk = 0, Ω = ∅

for i← 1 to N × L do
cluster the ith segment into cluster Ci by Ci = maxj(φij); ::::::::::::

Ci = maxj(φij);
φij represents the jth element of the column vector φi. :

;
end
while Nk < J do

for c← 1 to V do
find the smallest cluster k, the number of segments in which is Nk(Nk 6= 0);
Ω , Ω ∪ k;

end
for i← 1 to N × L do

if Ci == k then
merge the segments of cluster k into new cluster by Ci = maxj(φij), j 6∈ Ω.

end
end

end
Output: Ci

195

Yc = [yc1, . . . , ycH ] represents the segments in cluster c, which are clustered from
−→
X . The

number of cluster
:::::::
clusters

:
(denoted as Nm) could

:::
can be smaller than V. For each cluster, BPFA is
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an efficient method to learn a dictionary, which naturally infers a suitable dictionary size. It could
:::
can

be described as
yi = Dwi + εi, wi = zi � si

dk ∼ N (0, P−1IP), si ∼ N (0, γ−1
s IK)

εi ∼ N (0, γ−1
ε IP), πk ∼ Beta(

a0

K
,

b0(K− 1)
K

)

γs ∼ Gamma(c0, d0), γε ∼ Gamma(e0, f0)

zi ∼
K

∏
k=1

Bernoulli(πk), π ∼
K

∏
k=1

Beta(a0/K, b0(K− 1)/K)

(5)

The vector wi is always sparse, which is enforced by placing a Beta-Bernoulli prior on wi. In196

Equation (5), variables zi ∼ ∏K
k=1Bernoulli(πk) and π ∼ ∏K

k=1 Beta(a0/K, b0(K− 1)/K), where πk is197

the kth component of π. dk represents the kth column(atom) of D, and
::
wi::

is
::
a

::::::
sparse

::::::
vector,

::
a� is the198

elementwise or Hadamard vector product. IP and
:::
dot

::::::::
product,

:::
and

:::
IP(IKrepresents a P× P or K× K199

:
)
::
is

::
an

:
identity matrix. The constants a0, b0, c0, d0, e0:, and f0 are called hyperparameters. Consecutive200

elements
:::::::::::::::
hyperparameters.

::::
As

:::
the

:::::::::
variables in the above hierarchical model are in

::::::
model

:::
are

:::::
from201

the conjugate exponential family, and the inference could be implemented by
::::::::
function,

:
a variational202

Bayesian or Markov chain Monte Carlo methods
:
[20] like Gibbs sampling

:::::
could

::
be

:::::
used

:::
for

::::::::
inference.203

Online
:::
The

::::::
online

:
training algorithm based on MMNB and BPFA is described as Algorithm 2.204

Algorithm 2: Online Training Algorithm
:::::::
training

::::::::::
algorithm based on MMNB and BPFA

Input: −→x i (input seismic signals), Nm (the number of clusters), N × L (the number of segments), I (the
number of iterations), a0, b0, c0, d0, e0, f0, α(0), θ(0)

Initialization: : Choose τ ∼ Dirichlet(α)
Choose a component ρ ∼ Discrete(π)

Construct a set of dictionaries as
D(0)

c = [d(0)
c1 , . . . , d(0)

ci , . . . , d(0)
ck ]: d(0)

ci ∼ N (0, P−1IP), c ∈ [1, Nm]

Draw the following values: s(0)ci , ε
(0)
ci , π

(0)
ck , γ

(0)
cs , γ

(0)
cε , z(0)ci as Equation (5)

for i← 1 to N × L do
Compute vi from −→x i;

end
for t← 1 to I do

for i← 1 to N × L do

Compute γ
(t)
i and φ

(t)
i based on Equation (3);

Compute θ
(t)
ic and α(t) based on Equation (4);

end
end
Generate Yc based on Algorithm 1;
for c← 1 to Nm do

for t← 1 to I do

Generate the dictionary D(t)
c using the BPFA with Gibbs sampling based on Equation (5);

end
end

Output: Dc = D(I)
c (c ∈ [1, Nm]), α = α(I), θ = θ(I)

205

3.2. Online testing
::::::
Testing206

1) Online clustering and sparse representation207

Online clustering for the seismic signals of
:::
the current patch XP could be seemed

::::
seen

:
as the E208

step (Equation
:
3) with the parameters α and θ generated by Algorithm 2. Sparse representation for209
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the segments of each cluster could also be solved from Equation (5) when the cluster’s dictionary D210

is given. In this way, Gibbs sampling could
:::
can be used for sparse representation.211

2) Quantization and entropy coding212

To transmit the sparse coefficients, a uniform quantizer is applied with a fixed quantization213

step ∆. Moreover, an adaptive arithmetic coding algorithm
:

[21] for mixture models is214

used to code the quantized coefficients. Let [WP−L, , WP−1] = [W1, . . . , Wc, . . . , WNm ] be215

the quantized coefficients of
:::
the

:
previous L patches, which are separately

:::::::
separate

:
from Nm216

clusters. We suppose
:::
that

:
each nonzero coefficient take a value from

:::::::
belongs

:::
to

:
an alphabet217

A ∈ [−2Num−1, . . . ,−1, 1, . . . , 2Num−1]composed of 2Num symbols. A mixture of Nm probability218

distributions { fWc}Nm
c=1 could be seemed

::::
seen as a combination of Nm probability density function219

fWc . Therefore, the probability of the quantized coefficients with the value k could
:::
can be written as220

follows:221

fW(k) =
Nm

∑
c=1

p(æ = c) fWc(k) (6)

where fWc(k) = βcqc(k)+1
βch+2Num . qc(·) is the frequency count table of the cluster c

:
, and h is the number222

of nonzero coefficients. βc is a positive integer, which could
:::
can

:
be optimized by a

::
an

:
EM algorithm.223

Hence, the
:::
The

:
quantized coefficients WP of current patch could

:::
the

:::::::
current

:::::
patch

::::
can be coded with224

the adaptive arithmetic coding algorithm based on the probability (Equation
:
6) existing in the coder225

and decoder. We also send the nonzero coefficients’ positions and their cluster number,
:::::
which

::::
are226

coded by an arithmetic coding algorithm.227

Online testing algorithm could
:::
The

::::::
online

:::::::
testing

:::::::::
algorithm

::::
can be summarized as Algorithm 3.228

Algorithm 3: Online Testing Algorithm
::::::
testing

:::::::::
algorithm

:
based on MMNB and BPFA

Input: XP = [x1, . . . , xN ], I (iteration number), Dc(c ∈ [1, Nm]), α, θ

Initialization: : Draw the following values: s(0)ci , ε
(0)
ci , π

(0)
ck , γ

(0)
cs , γ

(0)
cε , z(0)ci as Equation (5)

for i← 1 to N do
Compute vi from xi;
Compute γi and φi using Equation (3);

end
Generate Yc based on Algorithm 1;
for c← 1 to Nm do

for t← 1 to I do

Compute z(t)ci and s(t)ci with the give
::::

given dictionary Dc based on Equation (5);

Compute w(t)
ci = z(t)ci � s(t)ci ;

end
end

Quantize w(I)
ci and use the probability model (Equation

:
6) to code it, generate the code A.

Output: A

229

3.3. Performance Analysis230

In our algorithm, , the coded information includes the value of nonzero coefficients, their
position information

:
,
:
and their cluster information. The position information is a binary sequence

where 0 indicates a zero and 1 denotes a nonzero value. This binary sequence could
:::
can

:
be encoded

using an adaptive arithmetic coder. We suppose the input data is XP ∈ RM×N from patch P, including
Nm clusters. The corresponding dictionary of cluster c is denoted as Dc. By using BPFA, the dictionary
size of different cluster could be distrinct

::::::
clusters

::::
can

::
be

:::::::
distinct, denoted as Dc ∈ RM×Ic

. The number
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of nonzero elements in cluster c is expressed as Ec. The total rate R could
:::
can

:
be approximately

computed as:

R =

N × log2 (Nm) +
Nm
∑

c=1
gc + Sum× ρ

M× N
(7)

where Sum =
Nm
∑

c=1
Ec, and gc = N × Ic × f ( Ec

N×Ic ) is the entropy of coefficients’ positions. ρ is the231

entropy of nonzero coefficients. Multiple segments could
::::
can be combined together, sharing the same232

cluster information for the reduction of rate.233

The reconstruction quality is evaluated by SNR as follows:

SNR = 10 log10

ε2
signal

ε2
noise

(8)

where εsignal and εnoise are the variances of the signal and the noise, respectively.234

4. Experimental Results235

The seismic data
::::
[22] is adopted to validate the performance of proposed method[22]. It includes236

:
.
::::
The

:::::
Bison

:::::::::::::
120-Channels

::::::
sensor

::
is

:::::
used

:::
for

:::::::
seismic

:::::
data

:::::::::
collection.

:::::
The

::::::
length

::
of

::::
the

:::
test

:::::
area

::::
was237

::::::
around

::::
300

:::
m,

::::
and

:::
the

::::::::
receiver

::::::::
interval

::::
was

:
1
:::

m.
:::

It
::::::::
included

:
72 sensors, and each sensor includes238

::::::::
included 135 traces. For each trace, 1600 time samples are

::::
were

:
used in our experiments. The seismic239

signals are
::::
were

:
divided into small segments for dictionary learning and sparse representation. The240

dimension of each segment is
::::
was 16× 1. Some test samples (50 traces from one sensor) are shown in241

Figure 4
:
4.242
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Figure 4.
:::::
Some

:::
test

:::::::
samples.

4.1. Experiment of Clustering
:::::::::
Experiment243

Firstly, we carry
:::::::
carried out the experiment of clustering based on MMNB for seismic signals.244

A clustering algorithm based on the Naive
::::
naive

:
Bayes (NB) model[23] is

::::::::
[23] was

:
adopted for245

comparison. We use
:::::
used perplexity

:
[24] as the measurement, which could

:::
can be given by246
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perplexity = exp{−∑n
i=1 log p(xi)

∑n
i=1 mi

}, (9)

A log-likelihood log p(xi) is assigned to each segment xi. mi is the number of features extracted247

from xi:,:and n is the number of segments. We use
::::
used

:
6 patches as the testing data and 6 previous248

patches as the training data. The experimental results are shown in Table 1 and Table 2. MMNB has249

:
1
::::
and

:::::
Table

::
2.

::::::::
MMNB

::::
had a lower (better) perplexity on most of the training and testing data when250

compared with NB.251

Table 1. Perplexity of
::::::::::::::::
mixed-membership

:::::
naive

::::::
Bayes

:::::
model

::
(MMNB)

:
and NB on the Training

Data
::::::
training

::::
data.

Training dataset
::::
data 1 2 3 4 5 6

NB 0.1982± 0.022
::::::::::
0.198± 0.022

:
0.1754± 0.023

::::::::::
0.175± 0.023

:
0.1435± 0.015

::::::::::
0.144± 0.015

:
0.1820± 0.016

::::::::::
0.182± 0.016

:
0.1960± 0.020

::::::::::
0.196± 0.020

:
0.2167± 0.023

::::::::::
0.217± 0.023

MMNB 0.1836± 0.019
::::::::::
0.184± 0.019

:
0.1667± 0.018

::::::::::
0.167± 0.018

:
0.1425± 0.014

::::::::::
0.143± 0.014

:
0.1850± 0.019

::::::::::
0.185± 0.019

:
0.1783± 0.018

::::::::::
0.178± 0.018

:
0.1950± 0.021

::::::::::
0.195± 0.021

:

Table 2. Perplexity of MMNB and NB on the Testing Data
::::::
testing

:::
data.

Training dataset
::::
data 1 2 3 4 5 6

NB 0.2574± 0.035
::::::::::
0.257± 0.035

:
0.2415± 0.032

::::::::::
0.242± 0.032

:
0.2201± 0.023

::::::::::
0.220± 0.023

:
0.2514± 0.027

::::::::::
0.251± 0.027

:
0.2678± 0.042

::::::::::
0.268± 0.042

:
0.3019± 0.061

::::::::::
0.302± 0.061

:

MMNB 0.2316± 0.031
::::::::::
0.232± 0.031

:
0.2301± 0.029

::::::::::
0.230± 0.029

:
0.2190± 0.021

::::::::::
0.219± 0.021

:
0.2512± 0.027

::::::::::
0.251± 0.027

:
0.2634± 0.041

::::::::::
0.263± 0.041

:
0.2919± 0.052

::::::::::
0.292± 0.052

:

Figure 5
:::::
Figure

::
5 shows the clustering results after cluster merging based on Algorithm 1. The252 dimension of data points (feature of segments) is reduced for demonstration, where the data points253

with the same color belong to the same cluster. Two training and testing data are shown here for254

demonstration. The initial number of clustering is 8. After merging of
:::
the

:
cluster, the actual number255

of clusters for data 1 (both testing and training) and data 2 are separately 6 and 5.256

Figure 5.
::::::::
Clustering

::::::
Results

:
(
:
a
:::::::
)Training

:::::
Data

:
1
:
(
:
b
:::::::
)Testing

::::
Data

:
1
:
(
:
c
:::::::
)Training

::::
Data

::
2
:
(
:
d
::::::
)Testing

::::
Data

::
2.
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4.2.
::::::::
Dictionary

::::::::
Learning

::::::::::
Experiment257

4.3. Experiment of Dictionary Learning258

Secondly, we want
:::::::
wanted

:
to validate the efficiency of Non-parametric Bayesian Dictionary259

Learning based on Clustering
::::::::::::::
non-parametric

:::::::::
Bayesian

::::::::::
dictionary

::::::::
learning

:::::::
based

:::
on

::::::::::
clustering260

(NBDLC). Different dictionary learning and sparse representation methods
:
, including K-SVD+OMP,261

K-SVD+ORMP, K-SVD+PS and TSITD,
:

are compared. The initial dictionary size is
:::
was

:
16 × 128262

and the size of
:::
the

:
test seismic signals in this experiment is

:::
was

:
16 × 1000. In K-SVD+OMP,263

K-SVD+ORMP, K-SVD+PS, TSITD
:
, and NBDLC, the number of nonzero coefficients is separately264

controlled by the sparsity and the sparsity prior parameters (a0 and b0). The experimental result is265

shown in Figure 6
:
6. From Figure 6

:
6, NBDLC could have the best reconstruction quality with the266

:
a
:
similar number of nonzero coefficients while compared with other dictionary learning methods.267

Furthermore, the dictionary sizes are inferred from the seismic signals of each cluster in NBDLC. For268

example, in our experiments, the minimum dictionary size of NBDLC is
::::
was 16× 83. This is beneficial269

in reducing the rate of coding for nonzero coefficients’ position.270
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Figure 6.
:::::::::::
Experimental

:::::
result

::
of

::::::::
dictionary

::::::::
learning.

4.3. Comparison of Compression Performance271

Finally, we carry
::::::
carried

:
out a qualitative comparison of seismic signal compression methods272

based on DCT, Curvelet, OffDL, DLOD and
:::
the

:
proposed method on four test data from different273

sensors. In OffDL, an offline data (different from
::
the

:
above four data) is adopted to train the274

dictionary. K-SVD and PS are
:::::
were used as the dictionary learning and sparse representation method.275

Pseudo random algorithm is
::::::::
methods.

:::
A

:::::::::::::::
pseudo-random

:::::::::
algorithm

::::
was

:
used to generate the same276

random variables in the coder and decoder for the bayesian
::::::::
Bayesian

:
dictionary learning process.277

In DCT and Curvelet, a desired sparsity can be obtained by only maintaining some significant278

coefficients. For compression, the nonzero coefficients are quantized and coded with an adaptive279

arithmetic coding algorithm. The quantization step in this experiment is 1024. The experimental280

results are shown in Figure 7. Curvelet performs better than DCT in most situations, especially281

:::::::::::::::::::
situations—especially

:
in higher rates. OffDL, OLOD and proposed method outperform

::::::
DLOD

::::
and282

:::
the

:::::::::
proposed

::::::::
method

:::::::::::::
outperformed

:
DCT and Curvelet. The compression performance of OffDL283

highly depends on the correlation between the training data and the testing data. For example, for284

sensor 3, its performance could be close to DLOD, yet its performance descends
::::::::::
deteriorated

:
for285

sensor 1. The performance of
:::
the proposed method is

:::::
made better than OffDL and OLOD by using286

:::
the

:::
use

::
of

:
clustering. Although the rate will increase by transmission for the information of clustering,287

the distortion could be efficiently reduced, especially
::::::::::::::::::
reduced—especially

:
when the rate is high. For288
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example, the rate gain of
:::
the

:
proposed method could be approximately 22.4% and 77.8% when SNR289

is about 28 dB for the seismic signals of sensor 1. Then,
:
we could conclude

:::
that

:
the proposed method290

is an efficient method for seismic signal compression.291
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Figure 7.
:::::::::::
Compression

::::::::::
performance

::::::::::
comparison

::
of

::::::
seismic

::::::
signals

:::::
from

:::::::
different

:::::::
sensors.

5. Conclusion292

In this paper, we have shown how to compress seismic signal
::::::
signals

:
efficiently by using293

a clustered based nonparametric bayesian
::::::::::::::
clustering-based

:::::::::::::::
nonparametric

:::::::::
Bayesian

:
dictionary294

learning method. The previous transmitted data both existing in the coder and decoder, is used295

to train the dictionary for sparse representation. After clustering by their structural similarities,296

each cluster could have its own dictionary. Then
:
, the seismic signals of each cluster could be well297

represented. Nonparametric bayesian
:
A
::::::::::::::
nonparametric

::::::::
Bayesian

:
dictionary learning method is used298

to train the dictionary, which infers an adaptive dictionary size. Experimental results demonstrate299

better rate-distortion performance over other seismic signal compression schemes, validating the300

effectiveness of the proposed method.301
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