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Abstract: The bilateral spot electricity market is very complicated because all generation units and
demands must strategically bid in this market. Considering renewable resource penetration, the high
variability and the non-dispatchable nature of these intermittent resources make it more difficult to
model and simulate the dynamic bidding process and the equilibrium in the bilateral spot electricity
market, which makes developing fast and reliable market modeling approaches a matter of urgency
nowadays. In this paper, a Gradient Descent Continuous Actor-Critic algorithm is proposed for
hour-ahead bilateral electricity market modeling in the presence of renewable resources because
this algorithm can solve electricity market modeling problems with continuous state and action
spaces without causing the “curse of dimensionality” and has low time complexity. In our simulation,
the proposed approach is implemented on an IEEE 30-bus test system. The adequate performance
of our proposed approach—such as reaching Nash Equilibrium results after enough iterations of
training are tested and verified, and some conclusions about the relationship between increasing the
renewable power output and participants’ bidding strategy, locational marginal prices, and social
welfare—is also evaluated. Moreover, the comparison of our proposed approach with the fuzzy
Q-learning-based electricity market approach implemented in this paper confirms the superiority of
our proposed approach in terms of participants’ profits, social welfare, average locational marginal
prices, etc.

Keywords: bidding strategy; bilateral spot electricity market; renewable resources; Gradient Descent
Continuous Actor-Critic (GDCAC) algorithm; reinforcement learning

1. Introduction

In order to further enhance competitiveness, in recent years the bilateral spot electricity market
(EM) has been introduced and utilized to improve restructuring in the power industry of many
countries [1]. Moreover, increasingly prominent global environment and energy issues make the
development of renewable energy resources highly valued by governments of many countries
alongside the reform of the power industry [2,3]. Considering renewable resource penetration, these
highly random, intermittent, and non-dispatchable power resources make it more difficult to develop
a proper EM modeling approach, which is a necessary tool for decision-making analysis, market
simulation, relevant policy design analysis, etc. [4–6].
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In a bilateral spot EM with renewable power penetration, non-renewable power generation
companies (NRGenCOs) and distribution companies (or retailers or large consumers; for the sake of
convenience, we call all of them DisCOs) must bid in this stochastically fluctuating environment of
renewable power generation in order to improve their own profits. The independent system operator
(ISO) must clear the market, which means to decide the scheduled power result of every NRGenCO,
RPGenCO (renewable power generation company), DisCO and the marginal price of every node
under constraints of system balance, congestion, generating limitation, etc. in order to improve social
welfare (SW). The aim of this paper is to apply the Gradient Descent Continuous Actor-Critic (GDCAC)
algorithm for solving bilateral spot EM modeling problems considering renewable power penetration.

Generally speaking, EM modeling approaches can be divided into two categories: game-based
models and agent-based models. In terms of game-based models, [7–9] have established EM models
based on SFE (supply function equilibrium, [7]), multi-level parametric linear programming ( [8]), and
static game model ([9], respectively) to find the Nash Equilibrium (NE) points in EM bidding. Similar
studies using game-based models can also be seen in [10–15]. However, game-based EM models have
the following shortcomings [2,16]: (1) the mathematical forms of some game-based EM modeling
approaches are sets of nonlinear equations that are difficult to solve or have no solution; (2) there are
many participants bidding in EM; some game-based EM modeling approaches result in repeatedly
solving a multi-level mathematical programming model for every participant, the computational
complexity of which limits the application in more realistic situations; and (3) participants or players
in many game-based EM modeling approaches need common knowledge about other players’ costs or
revenue functions, etc., which are hard to obtain in reality.

In order to overcome the deficiencies mentioned above and make EM modeling approaches more
applicable in practice, some agent-based EM modeling approaches have been proposed. In a spot
EM, the agent can be referred to market participants with adaptive learning ability (e.g., generation
companies (GenCOs) in unilateral EM; GenCOs and DisCOs in bilateral EM). EM modeling approaches
based on the concept of agent are called agent-based EM modeling approaches, in which the agent
can adjust the bidding strategy dynamically in the interaction with the market environment according
to its accumulated experience, in order to maximize profit. Common agent-based EM models are:
the Q-learning-based EM model proposed in [16], the simulated annealing Q-learning-based EM
model proposed in [17], the Roth–Erev reinforcement learning-based EM test bed (called MASCEM:
Multi-Agent Simulator of Competitive Electricity Markets) proposed in [18], etc. Similar studies
on agent-based EM modeling approaches can also be seen in [19–23]. It can be seen from [16–23]
that: (1) most agent-based EM modeling approaches do not need to set up nonlinear equations and
repeatedly solve multi-level mathematical programming model for every agent, so the computational
complexity of these models is significantly lower than that of game-based EM models; (2) the agent in
EM needs no common knowledge about other agents’ costs or revenue functions, etc. when adjusting
bidding strategies to improve profit. However, in [16–23], both the EM environment state and agent’s
action (bidding strategy) spaces are assumed as discrete, which means the agent can hardly obtain the
globally optimal bidding strategy to maximize profit [24]. In the study of Lau et al. [25], a modified
Roth–Erev reinforcement learning algorithm was proposed to model GenCOs’ strategic bidding
behaviors in continuous state and action spaces, where the superiority of the proposed spot EM
model comparing to simulated annealing Q-learning and variant Roth–Erev reinforcement learning
EM models was proven, but the proposed EM model in [25] has not taken the renewable power
penetration and bilateral bidding environment into consideration.

Recently, studies have taken renewable power penetration into account. Sharma et al. [26] and
Vilim et al [27] point out that RPGenCOs (such as wind and solar photovoltaic) often participate
in the spot EM as “price takers”, so the production level is therefore the only bidding parameter.
Kang et al. [28] hold that with renewable power penetration, other dispatchable EM participants’ (e.g.,
NRGenCOs) strategic behaviors are significantly affected by these highly random, intermittent, and
non-dispatchable power resources, which in turn changes the market clearing price and scheduled
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power results. Dallinger et al. [29], by combining the agent-based EM model with a stochastic model,
have studied the impact of a kind of load with demand-price elasticity but no strategic bidding ability
on market price in spot EM with renewable power penetration, which actually is still within the
range of unilateral EM because the demands in [29] cannot be considered strategic agents. In the
study of Miadreza et al. [30], a heuristic dynamic game-based EM model considering renewable
power penetration is proposed to study the market power of NRGenCOs. Reeg et al. [31] studied
the policy design problem to foster the integration of renewable energy sources into EM by using an
agent-based approach. Haring et al. [32] proposed a multi-agent Q-learning approach to study the
effects of renewable power penetration and demand side participation on spot EM. Gabriel et al. [33]
modified the MASCEM test bed by considering renewable power penetration. Abrell et al. [34] used
the stochastic optimization model to study the effect of the random renewable power output on Nash
Equilibrium (NE) in unilateral hour-ahead EM. Zhao et al. [35] estimated the strategic behaviors of
NRGenCOs in unilateral hour-ahead EM with renewable power penetration by using a stochastic
optimization model. Zou et al. [36] compared different NEs obtained in a unilateral EM game under
different proportions in the power structure. Similar studies considering renewable power penetration
in EM modeling can also be seen in [2,37–39]. However, those non-agent-based EM models considering
renewable power penetration mentioned above [30,34–36], etc. more or less have the same limits
as game-based EM models. Moreover, those agent-based EM models considering renewable power
penetration mentioned above [29,31–33,37–39] cannot solve the contradiction between the reality of
continuous state and action spaces in EM and the “curse of dimensionality”.

Mohammal et al. [2] point out that in a spot EM with renewable penetration, when every agent
(in [2], NRGenCOs are considered as agents) bids in EM in order to maximize profit, we ought to
consider the predicted power output of every RPGenCO, which is a continuous random variable.
Hence, in [2], the fuzzy Q-learning algorithm was applied for solving the unilateral hour-ahead EM
modeling, in which the EM state space is made continuous but the action set of every NRGenCO is
still assumed to be a discrete, scalar one. Moreover, it was verified in [2] that the fuzzy Q-learning
approach is more applicable in EM modeling in terms of improving an agent’s obtained profit and the
overall SW, etc., compared with other agent-based approaches such as Q-learning.

This paper pays attention to the problem of bilateral hour-ahead EM modeling considering
renewable power penetration, and the Gradient Descent Continuous Actor-Critic (GDCAC)
algorithm [40] instead of the fuzzy Q-learning approach applied in [2] is adopted in our paper. The
GDCAC algorithm is a modified reinforcement learning algorithm (proposed in [40]) that can solve
Markov decision-making problems with continuous state and action spaces. Hence, in this paper we
propose a GDCAC-based bilateral hour-ahead EM model considering renewable power penetration,
by which the impact of renewable power output on hourly equilibrium results will be examined. In
addition, the comparison of our proposed model with that proposed in [2] will be implemented under
the same conditions in the simulation section of this paper.

The rest of this paper is organized as follows: In Section 2 the multi-agent bilateral hour-ahead
EM model considering renewable power penetration is explained. Sections 3 and 4 describe the
detailed procedures for applying the GDCAC approach for EM modeling. Section 5 evaluates and
explores the performance of our proposed method and the impact of renewable power output on
hourly equilibrium results, based on a case study. Section 6 concludes the paper.

2. Multi-Agent Hour-Ahead EM Modeling

In this paper, we take the bilateral hour-ahead EM into consideration. In our proposed EM, for
the sake of simplicity, some assumptions and descriptions are listed as follows:

(1) Every GenCO (NRGenCO and RPGenCO) has only one generation unit;
(2) Similar to [2], the considered hour-ahead EM is a single period EM, hence each hour every

NRGenCO and DisCO sends its bid curve for the next hour to the ISO. However, the
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proposed single-period EM modeling approach can be extended to a multi-period one such
as a day-ahead EM;

(3) Each hour, every RPGenCO submits only its own predicted production with bidding price
0 ($/MW) for the next hour to ISO because of its low marginal cost and the role of “price
taker” [2,33,35], and the only strategic players are NRGenCOs [2] and DisCOs. Therefore, each
NRGenCO and DisCO can be considered an agent that adaptively adjusts the bidding strategy in
order to maximize profit.

After receiving all agents’ supply and demand bid curves and all RPGenCOs’ predicted
production submission in each hour, ISO performs the process of congestion management and sends the
market clearing results, including power schedules and prices, to all market participants (NRGenCOs,
RPGenCOs, and DisCOs). The pricing mechanism in the market clearing model is locational marginal
price (LMP), which is popular in most developed countries.

A flowchart for describing how the considered bilateral hour-ahead EM works is shown in
Figure 1:
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For the next hour t, the supply bid curve submitted by NRGenCO i (i = 1, 2, . . . , Ng1) to ISO in
hour t-1 can be formulated as [13]:

SFi,t(Pgi,t, kgi,t) = kgi,t(aiPgi,t + bi), Pgi,t ∈ [Pgi,min, Pgi,max] , (1)

where, Pgi,t, kgi,t is the power production (MW) and bidding strategy ratio of NRGenCO i for the next
hour t, respectively. NRGenCO i can change its bid curve by adjusting its parameter kgi,t.

The marginal cost function of NRGenCO i is:

MCi(Pgi,t) = aiPgi,t + bi, (2)

where, ai, bi represent the slope and intercept parameters, respectively.
For the next hour t, the demand bid curve submitted by DisCO j (j = 1, 2, . . . , Nd) to ISO in hour

t-1 can be formulated as [13]:

DFj,t(Pdj,t, kdj,t) = kdj,t(−cjPdj,t + dj), Pdj,t ∈ [Pdj,min, Pdj,max] , (3)

where, Pdj,t, kdj,t is the power demand (MW) and bidding strategy ratio of DisCO j for the next hour t,
respectively. DisCO j can change its bid curve by adjusting its parameter kdj,t.

The marginal revenue function of DisCO j is:

MDj(Pdj,t) = −cjPdj,t + dj, (4)

where −cj and dj represent the slope and intercept parameters, respectively.
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In order to generate the LMPs of all nodes as well as the corresponding supply and demand
power schedules for the next hour t, ISO must solve the congestion management model as follows [41]:

MaxPgi,t ,∀i,Pdj,t ,∀j

Nd

∑
j=1

[kdj,t(−
1
2

cjPdj,t
2 + diPdj,t)]−

Ng1

∑
i=1

[kgi,t(
1
2

aiPgi,t
2 + biPgi,t)] (5)

s.t.
Ng1

∑
i=1

Pgi,t +

Ng2

∑
v=1

Prv,t −
Nd

∑
j=1

Pdj,t = 0 (6)

Pmin
l ≤

Z

∑
z=1

PGz,t × s fl,Gz −
Z

∑
z=1

PDz,t × s fl,Dz ≤ Pmax
l , ∀l (7)

PGz,t = ∑
i∈Gz

Pgi,t + ∑
v∈Gz

Prv,t (8)

PDz,t = ∑
j∈Dz

Pdj,t (9)

Pdj,t ∈ [Pdj,min, Pdj,max], ∀j (10)

Pgi,t ∈ [Pgi,min, Pgi,max], ∀i, (11)

where Ng1 is the number of NRGenCOs, Ng2 is the number of RPGenCOs, and Nd is the number of
DisCOs. Equation (5) shows that the objective of ISO is to pursue the maximization of social welfare.
Equation (6) represents the power balance constraint of the whole system; Equations (7)–(9) represent
the power flow constraints in each transmission line l [41]. In this paper, it is assumed that the power
production of RPGenCO v (v = 1, 2, . . . , Ng2) for hour t, which is represented as Prv,t, is an exogenous
stochastic parameter in our proposed congestion management model.

3. Definitions

In our proposed EM, an agent, by using GDCAC algorithm, can adaptively adjust its bidding
strategy (action) during repeated interactions with other participants until it obtains its maximum
profit (under any EM environment state). In order to apply the GDCAC algorithm for bilateral spot
EM modeling considering renewable power penetration, we use definitions similar to those in [2],
organized as follows:

(1) Iteration: since the market is assumed to be cleared on an hour-ahead basis, we consider
each hour as an iteration [2]. Moreover, just like in [2], time differences between hours
such as demand preference, generation ramping constraints, number of participants, etc. are
neglected. The purpose of doing this is to test whether the proposed modeling approach can
automatically converge to the Nash equilibrium (NE) or not under the condition of no other
external interference.

(2) State variable: in iteration t, the predicted power production of each RPGenCO can be defined as
one state variable of the EM environment [2]. Due to the intermittent and random nature of the
renewable power production, the vth state variable, representing the predicted power production
of RPGenCO v, is a random variable, and can be represent as:

xv,t = Prv,t v = 1, 2, . . . , Ng2, (12)

where xv,t randomly changes within a continuous interval of scalar values over time [2]:

xv,t ∈ [Prv,min, Prv,max] v = 1, 2, . . . , Ng2. (13)
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Hence, in iteration t, all state variables together constitute a state vector:

xt = (x1,t, x2,t, . . . , xv,t, . . . , xNg2,t) ∈ X, (14)

where X ⊂ RNg2 represents the continuous state space of the EM environment.

(3) Action variable: the bidding strategy of every NRGenCO and DisCO is defined as one action
variable of an agent. The ith action variable, representing the bidding strategy of NRGenCO i, in
iteration t is:

ugi,t = kgi,t i = 1, 2, . . . , Ng1. (15)

The jth action variable, representing the bidding strategy of DisCO j, in iteration t is:

udj,t = kdj,t j = 1, 2, . . . , Nd. (16)

All ugi,ts and udj,ts can be adjusted, by the corresponding agent, within continuous intervals
of scalar values over time, because an agent may not be able to achieve its maximum profit when
selecting bidding strategies within a discrete action set.

ugi,t ∈ [kgi,min, kgi,max] i = 1, 2, . . . , Ng1 (17)

udj,t ∈ [kdj,min, kdj,max] j = 1, 2, . . . , Nd (18)

(4) Reward: In iteration t, NRGenCO i’s (i = 1, 2, . . . ,Ng1) reward is:

rgi,t = LMPgi,tPgi,t − (
1
2

aiPgi,t
2 + biPgi,t). (19)

DisCO j’s (j = 1, 2, . . . , Nd ) reward in iteration t is:

rdj,t = (−1
2

cjPdj,t
2 + diPdj,t)− LMPdj,tPdj,t, (20)

where LMPgi,t(LMPdj,t) is the LMP of the bus connecting NRGenCOi (DisCOj), and 1
2 aiPgi,t

2 + biPgi,t
(− 1

2 cjPdj,t
2 + diPdj,t) is the cost (revenue) of NRGenCO i (DisCO j) when its dispatched power

production (power demand) is Pgi,t (Pdj,t).
Based on experiencing these received rewards over enough iterations, an agent in EM can

gradually adjust its actions until it obtains the corresponding optimal action:

u(optimal)
gi,t ∈ [kgi,min, kgi,max] i = 1, 2, . . . , Ng1 or u(optimal)

dj,t ∈ [kdj,min, kdj,max] j = 1, 2, . . . , Nd,

which brings the most profit under any state (xt ∈ X) of the EM environment. Hence, ugi,t, udj,t (i = 1,
2, . . . , Ng1; j = 1, 2, . . . , Nd) and LMPs are changing dynamically over iterations, which may or may
not be constant under the same values of the state vector xt after enough iterations.

4. Applying the GDCAC Algorithm for EM Modeling Considering Renewable Power Penetration

As mentioned in Section 3, both of the state and action spaces in EM with renewable power
penetration are continuous, which means it is not suitable for applying table-based reinforcement
learning algorithms (TBRLAs) (e.g., SARSA, Q-learning, Roth–Erev reinforcement learning, etc.) in
EM modeling. That is because TBRLA can only deal with the Markov decision-making problem with
both discrete state and action spaces; otherwise, a problem called “curse of dimensionality” [2] would
be caused.
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In [2], a fuzzy Q-learning algorithm was proposed to model the unilateral hour-ahead EM
considering renewable power penetration. Although the approach proposed in [2] can effectively
make the EM state space continuous, the action space of every NRGenCO is still assumed to be
a discrete scalar set. Therefore, in this paper, a modified reinforcement learning algorithm called
a GDCAC algorithm [40] is applied for bilateral hour-ahead EM modeling considering renewable
power penetration.

4.1. Introduction of Gradient Descent Continuous Actor-Critic Algorithm

The GDCAC algorithm is a modified policy search actor-critic-based reinforcement learning
method that can rapidly solve Markov decision-making problems with continuous state and action
spaces. Based on the actor-critic structure [40], state and action spaces can be made continuous by
using a linear combination of many basis functions. The detailed mathematical principle of GDCAC
algorithm can be described as follows:

By using a linear function [40], we estimate and repeatedly update in an agent’s critic part a value
function defined by the continuous state spaceX:

V̂(x) =
n

∑
h=1

φh(x)θh = φ(x)Tθx ∈ X, (21)

where φh : X→ R(h = 1, 2, . . . , n) represents the hth basis function of state x ∈ X. Then, the fixed
basis function vector of state x ∈ X can be described as: φ(x) = (φ1(x), φ2(x), . . . , φn(x))

T ∈ Rn. The
linear parameter vector θ can be described as: θ = (θ1, θ2, . . . , θn)

T ∈ Rn.
By using a linear function [40], we estimate and repeatedly update in an agent’s actor part an

optimal policy function Â : X→ U defined by the continuous state space X:

ux
(optimal) = Â(x) = φ(x)Tω x ∈ X, (22)

where U represents the continuous action space of an agent, ux
(optimal) ∈ U represents the optimal

action in face of state x. The linear parameter vector ω can be described as:

ω = (ω1, ω2, . . . , ωn)
T ∈ Rn.

An agent must generate a corresponding action u ∈ U in the face of any state x ∈ X based on
the policy maintained and repeatedly updated by its actor part. During the reinforcement learning
process, in order to balance the exploration and exploitation [2,16,18,20,21,25,40], the policy must be
established as an action-generating model that has the ability to explore. That is to say, the probabilities
of selecting sub-optimal actions in the face of any state x ∈ X are non-zero. This paper employs a
Gaussian distribution function as the policy corresponding to the actor part:

ρ(x, u) =
1√
2πσ

exp
{
− 1

2σ2 (u−φ(x)Tω)
2
}

, (23)

where σ > 0 is a standard deviation parameter that represents the exploring ability of the algorithm.
In order to determine the linear parameter vector θ, the Mean-Squared Error (MSE) function of θ

is defined as [40]:

MSE(θ) =
1
2

∫
x∈X

P(ρ)(x)[V(ρ)(x)−φ(x)Tθ]
2
dx, (24)

where P(ρ)(x) is the probability density function of the state under policy ρ. Hence, the global optimal
value of θ defined as θ∗ must satisfy [40]:

MSE(θ∗) ≤ MSE(θ). (25)
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Because there is no a priori knowledge about V(ρ)(x), minimizing MSE(θ) directly is impossible.
However, we can calculate the approximate formation of the gradient of MSE(θ) as follows:

grad(MSE(θ)) = −
∫

x∈X

P(ρ)(x)[V(ρ)(x)−φ(x)Tθ]φ(x)dx. (26)

Since there is no a priori knowledge of P(ρ)(x)[V(ρ)(x) − φ(x)Tθ], we use the TD(0) error to
approximately replace [V(ρ)(x)−φ(x)Tθ] [40].

At iteration t, the agent implements action ut in interacting with environment xt and receives the
immediate reward rt, then the state of the environment shifts to xt+1. The TD(0) error at iteration t can
be defined as:

δt = rt + γφ(xt+1)
Tθt −φ(xt)

Tθt, (27)

where 0 ≤ γ ≤ 1 is a discount factor, θt is the estimated value of the linear parameter vector θ at
iteration t. Based on the gradient descent method, the updated formula of parameter vector θ is:

θt+1 = θt + αtδtφ(xt) = θt + αt[rt + γφ(xt+1)
Tθt − φ(xt)

Tθt]φ(xt), (28)

where αt > 0 is the step length parameter that satisfies the mathematical conditions as follows:

∞

∑
t=1

αt = ∞ and
∞

∑
t=1

(αt)
2 < ∞. (29)

Similar to the updating method of value function parameter θ, the MSE function of ω is defined
as [40]:

MSE(ω) =
1
2

∫
x∈X

P(ρ)(x)
∫

u∈U

sig[δ(x, u)][φ(x)Tω− u]
2
dudx, (30)

where sig[δ(x, u)] is the sigmoid function of δ(x, u), which means the TD(0) error of selecting action u
in the face of state x. Its formulation is as follows:

sig[δ(x, u)] =
1

1 + e−mδ(x,u) m > 0 . (31)

We can calculate the approximate formation of the gradient of MSE(ω) as follows:

grad[MSE(ω)] =
∫

x∈X

P(ρ)(x)
∫

u∈U

1
1 + e−mδ(x,u)

[φ(x)Tω− u]φ(x)dudx. (32)

In iteration t, using δt to replace δ(xt, ut) [40], and based on the gradient descent method,
the updated formula for parameter vector ω is:

ωt+1 = ωt + βt
1

1 + e−mδt
(ut −φ(xt)

Tωt)φ(xt), (33)

where βt > 0 is the step length parameter that satisfies the mathematical conditions as follows:

∞

∑
t=1

βt = ∞, and
∞

∑
t=1

(βt)
2 < ∞. (34)

4.2. The Proposed GDCAC-Based EM Procedure Considering Renewable Power Penetration

According to the mathematical principle of GDCAC algorithm introduced in Section 4.1,
the step-by-step procedure of implementing the GDCAC algorithm for bilateral hour-ahead EM
modeling considering renewable power penetration is described as follows:
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(1) Input: for NRGenCOi (i = 1, 2, . . . , Ng1) φg: X→ Rn , step length parameter series
{

αt
(g)
}∞

t=1

and
{

βt
(g)
}∞

t=1
; for DisCOj (j = 1, 2, . . . , Nd) φd: X→ Rn , step length parameter series{

αt
(d)
}∞

t=1
and

{
βt

(d)
}∞

t=1
; and parameters σ, m for every NRGenCO and DisCO.

(2) T = 1.

(3) Initialize the linear parameter vectors θ1
(gi) and ω1

(gi) for NRGenCOi (i = 1, 2, . . . , Ng1), linear
parameter vectors θ0

(dj) and ω0
(dj) for DisCOj (j = 1, 2, . . . , Nd).

(4) Random state generation: in iteration t, a random point, xt = (x1,t, x2,t, . . . , xv,t, . . . , xNg2,t), is
generated in the continuous state space X, which represents the continuous state space of power
productions by all RPGenCOs.

(5) In iteration t, NRGenCOi (i = 1, 2, . . . , Ng1) chooses and implements an action
ugi,t ∼ N(φg(xt)

Tωt
(gi), σ2) (ugi,t ∈ [kgi,min, kgi,max]) from state xt, DisCOj (j = 1, 2, . . . , Nd)

chooses and implements an action udj,t ∼ N(φd(xt)
Tωt

(dj), σ2) (udj,t ∈ [kdj,min, kdj,max]) from
state xt, and then ISO implements the congestion management model considering renewable
power penetration represented by Equations (5)–(11).

(6) NRGenCOi (i = 1, 2, . . . , Ng1) observes the immediate reword rgi,t using Equation (19) and DisCOj
(j = 1, 2, . . . , Nd) observes the immediate reward rdj,t using Equation (20).

(7) Discount factor setting: because xt is a stochastic variable independent from ugi,t (i = 1, 2, . . . , Ng1)
and udj,t (j = 1, 2, . . . , Nd), every NRGenCO and DisCO has no idea what the true value of xt+1

while in iteration t. Therefore, similar to [2], we assume that the discount factor γt for every
NRGenCO and DisCO in iteration t equals 0.

(8) Learning: in this step, θt
(gi) and ωt

(gi) for NRGenCOi (i = 1, 2, . . . , Ng1) as well as θ0
(dj) and ω0

(dj)

for DisCOj (j = 1, 2, . . . , Nd) are updated using TD(0) error and the gradient descent method:

NRGenCOi:
δgi,t = rgi,t + γtφg(xt+1)

Tθt
(gi) −φg(xt)

Tθt
(gi) (35)

θt+1
(gi) = θt

(gi) + αt
(g)δgi,tφg(xt) (36)

ωt+1
(gi) = ωt

(gi) + βt
(g) 1

1 + e−mδgi,t
(ugi,t −φg(xt)

Tωt
(gi))φg(xt). (37)

DisCO j:
δdj,t = rdj,t + γtφd(xt+1)

Tθt
(dj) −φd(xt)

Tθt
(dj) (38)

θt+1
(dj) = θt

(dj) + αt
(d)δdj,tφd(xt) (39)

ωt+1
(dj) = ωt

(dj) + βt
(d) 1

1 + e−mδdj,t
(udj,t −φd(xt)

Tωt
(dj))φd(xt). (40)

(9) T = t + 1.
(10) If t ≤ T, return to (4). T is the terminal number of iterations.

(11) Output: for NRGenCO i: θgi
∗ = θT+1

(gi), ωgi
∗ = ωT+1

(gi) and Vgi
*(x), Agi

*(x); for GenCO i:
θdj
∗ = θT+1

(dj), ωdj
∗ = ωT+1

(dj) and Vdj
*(x), Adj

*(x).

According to [40], we choose Gaussian radial basis function as φg(x) and φd(x).

5. Discussion of Simulations and Results

5.1. Data and Assumptions

In this Section, by using Matlab R2014a software, our proposed approach is implemented on
IEEE 30-bus test system [2, 6] with six NRGenCOs and 20 DisCOs. There are two additional wind
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farms connected to buses 7 and 10 [2], and the output power of the wind farms connected to bus 7
and 10 lies within the range of [0, 20] MW and [0, 30] MW, respectively. Figure 2 shows the schematic
structure of the test system. Parameters of NRGenCOs’ and DisCOs’ bid functions are shown in
Tables 1 and 2 [2], respectively.

In order to verify the superiority of our proposed method, the GDCAC-based method and the
fuzzy Q-learning-based method [2] are implemented on this test system. There are three scenarios set
in this paper for simulation and comparison.

In Scenario 1, every NRGenCO and DisCO searches for its optimal bidding strategy by using
the GDCAC algorithm. In Scenario 2, NRGenCO1 searches for its optimal bidding strategy by using
the fuzzy Q-learning algorithm, and other NRGenCOs and DisCOs using the GDCAC algorithm. In
Scenario 3, every NRGenCO and DisCO searches for its optimal bidding strategy by using the fuzzy
Q-learning algorithm.
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Figure 2. Diagram of the test system. Note: For the sake of simplicity, here it is assumed that the
maximum congestion constraint in all transmission lines is 25 MW.

Table 1. Parameters of NRGenCOs’ bid functions.

Bus NRGenCO ai (103 $/MW2h) bi (103 $/MWh) Pgi,min (MW) Pgi,max (MW)

1 NRGenCO1 0.2 20 0 80
2 NRGenCO2 0.175 17.5 0 80
13 NRGenCO3 0.625 10 0 50
22 NRGenCO4 0.0834 32.5 0 55
23 NRGenCO5 0.25 30 0 30
27 NRGenCO6 0.25 30 0 30
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Table 2. Parameters of DisCOs’ bid functions.

Bus DisCO cj (103 $ /MW2h) dj (103 $ /MWh) Pdj,min (MW) Pdj,max (MW)

2 DisCO1 −0.5 50 16.7 26.7
3 DisCO2 −0.5 45 0 7.4
4 DisCO3 −0.5 48 2.6 12.6
7 DisCO4 −0.5 55 17.8 27.8
8 DisCO5 −0.5 45* 25 35

10 DisCO6 −0.5 45 0.8 10.8
12 DisCO7 −0.5 60 6.2 16.2
14 DisCO8 −0.5 50 1.2 11.2
15 DisCO9 −0.5 52 3.2 13.2
16 DisCO10 −0.5 40 0 8.5
17 DisCO11 −0.5 53 4 14
18 DisCO12 −0.5 45 0 8.2
19 DisCO13 −0.5 44 4.5 14.5
20 DisCO14 −0.5 60 0 7.2
21 DisCO15 −0.5 45 12.5 22.5
23 DisCO16 −0.5 45* 0 8.2
24 DisCO17 −0.5 42 3.7 13.7
26 DisCO18 −0.5 57 0 8.5
29 DisCO19 −0.5 44 0 7.4
30 DisCO20 −0.5 50 5.6 15.6

Note: In the 4th column, parameter labeled by “*” are slightly adjusted from [2] in order to ensure that all DisCOs
do not lose in competition because of their obvious differencein revenue parameters from other DisCOs.

In our simulation, the output powers of the two wind farms together constitute the 2-dimensional
state vector. Each fuzzy Q-learning-based agent (whose step-by-step learning procedure and method
for fuzzy set definition can be found in [2]) defines three triangular fuzzy sets for the state variable 1,
and 4 triangular fuzzy sets for state variable 2, as shown in Figures 3 and 4. Table 3 presents the state
and action sets of every NRGenCO and DisCO while taking Scenarios 1, 2, and 3 into consideration.
The related parameters of the GDCAC algorithm and fuzzy Q-learning algorithm [2], which use the
ε− greedy method to balance exploration and exploitation, are also listed in Table 3.

In the Gauss radial basis function, we set the central point parameter matrix corresponding to
state variable 1 and 2, which is expressed as follows:

Cp =


(0, 0) (0, 6) . . . (0, 30)
(4, 0) (4, 6) . . . (4, 30)

. . . . . . . . . . . .
(20, 0) (20, 6) . . . (20, 30)

. (41)
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Table 3. Related information about the three scenarios.

Scenarios Participants EM State Set
(MW) Action Set ” fl ff fi œ1 œ2 m

Scenario 1
All NRGenCOs [0, 20] and [0, 30] [1, 3] - 0.5 0.1 0.1 4 6 1

All DisCOs (0, 1] - 0.5 0.1 0.1 4 6 1

Scenario 2
NRGen1

[0, 20] and [0, 30]
{Ug1, Ug2, . . . , Ug100} 0.1 0.5

Other NRGenCOs [1, 3] - 0.5 0.1 0.1 4 6 1
All DisCOs (0, 1] - 0.5 0.1 0.1 4 6 1

Scenario 3
All NRGenCOs [0, 20] and [0, 30] {Ug1, Ug2, . . . , Ug100} 0.1 0.5 - - - - -

All DisCOs {Ud1, Ud2, . . . , Ud100} 0.1 0.5 - - - - -

Note: Ug1 represents the median of interval [1, 1.02), Ug2 represents the median of interval [1.02, 1.04), Ug100
represents the median of interval [2.98, 3]; Ud1 represents the median of interval (0, 0.01), Ud2 represents the median
of interval [0.01, 0.02), Ud100 represents the median of interval [0.99, 1]. Other parameters of fuzzy Q-learning
algorithm can be found in [2].

5.2. Implementing a GDCAC-Based Approach on the Test System

In this section, the feasibility of the GDCAC-based EM approach is studied by using Scenario 1, as
proposed in Section 5.1. In our simulation in Scenario 1, 20,000 iterations are set for every NRGenCO
and DisCO to bid in EM. Among the 20,000 iterations, the first 15,000 iterations (training iterations) are
used to train every NRGenCO and DisCO to perceive the ability of distinguishing optimal bidding
strategies under the exploration and exploitation policy; the last 5000 iterations (decision-making
iterations) are used to help every NRGenCO and DisCO with decision-making under the greedy policy.

After 20,000 iterations of the bidding process, a Nash index is adopted in this paper to test
whether the obtained bidding strategies of all NRGenCOs and DisCOs under any EM state reach Nash
Equilibrium (NE) or not. Similar to the NE testing method in [2], the Nash index is equal to 1 when the
NE under an EM state is reached and otherwise is equal to 0.

Because the EM state space is continuous, we cannot display the process of reaching NE under
every given EM state in this paper. Figure 5 demonstrates the Nash indices obtained after each iteration
in a case in which the state variables 1 and 2 are equal to 20 and 30 MW, respectively. From Figure 5, it
can be seen that occurrences of NE during the first 15,000 iterations are very sparse, and the EM can
reach NE during the last 5000 iterations. The reasons for this phenomenon are: (1) every NRGenCO
and DisCO has not yet accumulated enough experience to make the optimal bidding decision during
the first 15,000 iterations; (2) the exploration and exploitation policy may make every NRGenCO and
DisCO choose sub-optimal bids during the first 15,000 iterations; (3) 15,000 iterations of the training
process are enough for every NRGenCO and DisCO to perceive the ability of distinguishing optimal
bidding strategies and to make the optimal bidding decision under greedy policy during the last
5000 iterations.
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Figure 5. Nash index during the learning iterations of the proposed GDCAC method when the state
vector is (20, 30) MW.

When we make state variable 1 and 2 change randomly within interval [0, 20] MW and [0, 30]
MW, respectively, in each iteration, the Nash indices obtained after 20000 iterations in 10 state samples
are listed in Table 4.

Table 4. Nash indices in 10 random state samples after 20,000 iterations.

State Sample (12, 24) (18, 27) (10, 30) (11, 22) (6, 24)

Nash index 1 1 1 1 1
State sample (4, 11) (8, 23) (19, 27) (18, 16) (20, 20)
Nash index 1 1 1 1 1

From Table 4 it can be verified, to a certain extent, that the generalization ability of our proposed
GDCAC-based EM approach can make the obtained strategies of all participants in face of any state
point within the continuous space {(x1, x2)|x1 ∈ [0, 20], x2 ∈ [0, 30]} reach NE based on those finite
and discrete sample state points occurred during the 20,000 iterations.

Figure 6 shows NRGenCO 2’s bidding strategy (kg2) in the face of any state point within
{(x1, x2)|x1 ∈ [0, 20], x2 ∈ [0, 30]} after 20,000 iterations.

From Figure 6, we can see that after 20,000 iterations, no matter the increase in the power output
level of any one of the two wind farms, the value of NRGenCO2’s bidding strategy will increase
accordingly. That is because increasing the power output levels of the two wind farms could cause
congestion in the transmission lines connecting bus 1 to 2 and connecting bus 12 to 13, which limits
the increase in NRGenCO2’s dispatched power output. Gradually, NRGenCO2, through repeatedly
interacting with the EM environment over 20,000 iterations, learns that by increasing the value of its
bidding strategy so as to maintain or increase the LMP level in bus 2, it could make comparatively
more profit. Therefore, taking transmission congestion into account, some NRGenCOs’ market powers
could be enhanced while increasing the wind power output.
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Figure 6. Bidding strategy of NRGenCO2 corresponding to the state space after 15,000 training and
5000 decision-making iterations (considering transmission line congestion constraint).

Figure 7 shows the NRGenCO2’s bidding strategy (kg2) corresponding to the state space after
20,000 iterations in the case of ignoring all transmission lines’ congestions in this test system. From
Figure 7, we see that after 20,000 iterations, no matter the increase in the power output level of any
one of the two wind farms, the value of NRGenCO2’s bidding strategy will decrease accordingly. In
fact, other NRGenCOs’ bidding strategies are also subject to a similarly changing law. Therefore, if we
ignore the transmission congestion in the test system, NRGenCOs’ market powers would be weakened
while increasing the wind power output.Algorithms 2017, 10, 53 15 of 22 
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Figure 7. Bidding strategy of NRGenCO2 corresponding to the state space after 15,000 training and
5000 decision-making iterations (ignoring transmission line congestion constraint).

Figure 8 shows the average LMP of 30 buses (AVLMP) corresponding to the state space after
20,000 iterations.
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Figure 8. AVLMP corresponding to the state space after 15,000 training and 5000
decision-making iterations.

Figure 8 reveals that, although the market power of some NRGenCOs could be enhanced if
the transmission capacities in some transmission lines were insufficient, the obtained AVLMP after
20,000 iterations decreases while increasing the wind power output level. We think there may be two
main reasons for the phenomenon in Figure 8 that need to be further verified: (1) the marginal cost of
the wind farm is significantly lower than that of all NRGenCOs (so we assume it is zero), which in
turn pulls down the overall LMP level; (2) the increase in wind power output can reduce most agents’
market power and increase the degree of competition in the whole EM.

Figure 9 demonstrates the social welfare (SW) corresponding to the state space after
20,000 iterations. It is concluded from Figure 9 that increasing the wind power output level can
not only pull down the overall LMP level, but also increase the overall SW.
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The computational formula of SW is as follows:
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5.3. Comparative Study

From the perspective of economics, an effective EM modeling approach has two functions: to
provide a bidding decision-making tool for every EM participant so as to increase its own profit in
EM competition; and to enhance the economic efficiency of the whole market, e.g., by improving
SW and reducing AVLMP. If we compare our proposed GDCAC-based EM approach with other
approaches, the superiority of our proposed approach can be verified in two ways. When approaches
adopted by other participants for bidding decision-making are fixed, a specific participant can get more
profit with our proposed approach in market competition than with other approaches. In addition,
with the increase in the number of participants applying our proposed approach as their bidding
decision-making tool, SW in the market increases and AVLMP in the market decreases.

In [2], considering wind power penetration, it was verified that the fuzzy Q-learning-based
hour-ahead EM modeling approach is superior to other approaches such as Q-learning, etc. in terms of
improving SW and reducing AVLMP, etc.

In this section, a comparison between our proposed approach and the fuzzy Q-learning approach
is carried out by implementing simulations on Scenarios 1, 2, and 3, respectively. The obtained
simulation results of three scenarios after 20,000 iterations are studied and compared, which mainly
contain all agents’ final profits, SWs and AVLMPs in those three scenarios (the ability to reach NE
after enough iterations by applying the fuzzy Q-learning algorithm in EM modeling has been verified
by [2]). In simulations on Scenarios 1, 2, and 3, we also make state variable 1 and 2 change randomly
within interval [0 20] MW and [0 30] MW, respectively, in each iteration. Tables 5–7 demonstrate
the obtained profit of every agent and the SW results of the three scenarios after 20,000 iterations in
sample state (20, 30) MW, (10, 15) MW, and (4, 6) MW, respectively. The average AVLMP and SW of
21× 31 sample states in three scenarios after 20,000 iterations are demonstrated in Table 8, in which
21× 31 sample states constitute a discrete set as follows:

Sap = {(x1, x2)|x1 ∈ AA , x1 ∈ BB}, (43)

where AA = {0, 1, 2, . . . , 20} (MW), BB = {0, 1, 2, . . . , 30} (MW).

Table 5. Profit of every agent and SW results of three scenarios in sample state (20, 30) MW.

Agent
Scenario 1 Scenario 2 Scenario 3

Profit ($/h) Social Welfare ($/h) Profit ($/h) Social Welfare ($/h) Profit ($/h) Social Welfare ($/h)

NRGenCO1 369.5193 6177.1 296.7915 6108.2 361.2393 6063.4
NRGenCO2 841.6313 868.3494 920.5097
NRGenCO3 626.2233 461.6129 486.9912
NRGenCO4 73.2015 84.9919 112.3744
NRGenCO5 69.5934 76.1924 90.1917
NRGenCO6 71.6746 78.3050 96.3077

DisCO1 163.9633 159.4513 142.4986
DisCO2 52.8594 50.8601 43.3481
DisCO3 111.4239 108.0196 95.2289
DisCO4 334.7999 326.6585 264.0521
DisCO5 68.5791 61.8246 36.4463
DisCO6 67.9662 65.0482 52.5140
DisCO7 323.0792 318.7023 302.2572
DisCO8 125.3634 122.3374 110.9679
DisCO9 167.5498 163.9834 150.5836
DisCO10 58.3794 56.0829 44.1827
DisCO11 188.9043 185.1218 170.9099
DisCO12 56.9339 54.7185 46.3944
DisCO13 63.3384 59.2258 39.8145
DisCO14 159.7908 157.8455 150.5365
DisCO15 73.3520 69.9748 57.2856
DisCO16 97.9339 95.7185 87.3944
DisCO17 18.7522 17.7525 13.9965
DisCO18 160.3794 158.0829 149.4542
DisCO19 45.4594 43.4601 35.9481
DisCO20 157.4533 153.2385 137.4025
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Table 6. Profit of every agent and SW results of three scenarios in sample state (10, 15) MW.

Agent
Scenario 1 Scenario 2 Scenario 3

Profit Social Welfare Profit Social Welfare Profit Social Welfare

NRGenCO1 484.2735 5172.2 408.0777 5123.6 465.3822 5102.5
NRGenCO2 771.1077 895.7815 927.0036
NRGenCO3 716.2319 494.1197 520.4793
NRGenCO4 118.5687 139.4572 188.8447
NRGenCO5 87.5541 114.0872 138.0355
NRGenCO6 77.6412 104.6911 117.8824

DisCO1 156.9877 137.7368 120.1286
DisCO2 49.7564 41.2381 33.4356
DisCO3 106.1371 91.6362 78.3510
DisCO4 251.4634 230.9143 212.1463
DisCO5 58.1042 29.3178 12.9582
DisCO6 64.6293 51.0053 35.1755
DisCO7 315.8062 297.6379 280.5569
DisCO8 120.0745 107.7744 95.9653
DisCO9 161.0768 146.8198 132.9019

DisCO10 55.0596 45.0306 34.4523
DisCO11 184.2311 166.9180 152.1566
DisCO12 53.4331 44.0562 35.4103
DisCO13 29.1544 23.8397 19.0950
DisCO14 157.1292 148.4835 140.8920
DisCO15 74.9662 53.7214 40.5416
DisCO16 92.7551 85.0562 76.4103
DisCO17 15.7171 12.9415 10.0403
DisCO18 154.5603 147.0306 138.0683
DisCO19 41.0299 33.8381 24.8451
DisCO20 148.1155 132.9543 116.5059

Table 7. Profit of every agent and SW results of three scenarios in sample state (4, 6) MW.

Agent
Scenario 1 Scenario 2 Scenario 3

Profit Social Welfare Profit Social Welfare Profit Social Welfare

NRGenCO1 326.8942 4639.1 304.4191 4610.7 388.4828 4562.7
NRGenCO2 743.4178 888.2880 1005.7694
NRGenCO3 810.7907 517.9187 523.6115
NRGenCO4 286.2695 188.4972 199.8730
NRGenCO5 137.7734 135.8852 120.2483
NRGenCO6 146.1923 147.0384 125.5433

DisCO1 195.2403 166.0144 135.6917
DisCO2 48.5420 39.9934 26.2108
DisCO3 99.2394 83.8855 78.4685
DisCO4 237.9733 216.6610 210.9919
DisCO5 18.9294 14.9156 7.1436
DisCO6 43.5275 30.8638 28.4429
DisCO7 297.9858 282.2162 278.5272
DisCO8 105.9517 96.6536 94.3787
DisCO9 142.7742 133.2911 130.8633

DisCO10 43.4.56 33.1210 26.7329
DisCO11 172.4945 150.3188 149.0950
DisCO12 43.7976 35.0465 30.7810
DisCO13 24.4293 18.6988 18.1886
DisCO14 150.0430 140.0926 139.3757
DisCO15 91.3468 38.3446 37.5857
DisCO16 75.1005 76.0202 74.8914
DisCO17 12.9606 8.4832 8.2026
DisCO18 132.1807 136.0861 138.8632
DisCO19 24.1012 23.9223 19.9277
DisCO20 112.4279 112.0508 108.8084

Table 8. Average AVLMP and SW results of 21× 31 sample states in the three scenarios.

Scenarios Scenario 1 Scenario 2 Scenario 3

Average AVLMP 37.0352 37.4531 38.2237
Average SW 5329.5 5280.8 5242.9

From Tables 5–7, it can be seen that:

(1) No matter which of the three sample states, in Table 5, NRGenCO1’s final profit in Scenario 1 is
369.5193 ($/h), which is more than that in Scenario 2 (296.7915 ($/h)). In Table 6, NRGenCO1’s
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final profit in Scenario 1 is 484.2735 ($/h), which is more than that in Scenario 2 (408.0777 ($/h)).
In Table 7, NRGenCO1’s final profit in Scenario 1 is 326.8942 ($/h), which is more than that in
Scenario 2 (304.4191 ($/h)). Moreover, although we cannot compare NRGenCO1’s final profits in
Scenarios 1 and 2 under every state point due to the continuous state space, the phenomenon
that NRGenCO1’s final profit in Scenario 1 is more than its final profit in Scenario 2 can actually
be found under every state point of the 21× 31 sample states in Sap. As mentioned in Section 5.1,
there is only one difference between Scenarios 1 and 2, which is that NRGenCO1 in Scenario 1
is a GDCAC-based agent that makes its bidding decisions based on our proposed GDCAC
approach, while NRGenCO1 in Scenario 2 is a fuzzy Q-learning-based agent that makes its
bidding decisions based on the fuzzy Q-learning approach. Therefore, it can, to some extent, be
verified that a specific participant can get more profit with our proposed GDCAC approach in
market competition than with the fuzzy Q-learning one proposed in [2].

(2) No matter which of the three sample states, in Table 5, the order of final SWs in the three
scenarios from high to low is Scenario 1 (6177.1 ($/h)), Scenario 2 (6108.2 ($/h)), and Scenario
3 (6063.4 ($/h)). In Table 6, the order of final SWs in the three scenarios from high to low is:
Scenario 1 (5172.2 ($/h)), Scenario 2 (5123.6 ($/h)), and Scenario 3 (5102.5 ($/h)). In Table 7,
the order of the final SWs in the three scenarios from high to low is: Scenario 1 (4639.1 ($/h)),
Scenario 2 (4610.7 ($/h)), and Scenario 3 (4562.7 ($/h)). Moreover, although we cannot compare
final SWs in Scenarios 1, 2 and 3 for every state point due to the continuous state space,
the phenomenon that the order of the final SWs in the three scenarios from high to low are
Scenario 1, Scenario 2, and Scenario 3 can actually be found under every state point of the
21× 31 sample states in Sap. As mentioned in Section 5.1, every participant in Scenario 3 is
a fuzzy Q-learning-based agent; NRGenCO1 in Scenario 2 is a fuzzy Q-learning-based agent
while all the other participants in Scenario 2 are our proposed GDCAC-based ones, and every
participant in Scenario 1 is our proposed GDCAC-based agent. Therefore, it can, to some extent,
be verified that with the increase in the number of participants applying our proposed approach
as their bidding decision-making tool, SW in the market increases.

From Table 8, it can be seen that:

(1) The order of final average AVLMPs of 21× 31 sample states in the three scenarios, from low
to high, is: Scenario 1 (37.0352 ($/MWh)), Scenario 2 (37.4531 ($/MWh)), and Scenario 3
(38.2237 ($/MWh)), which, to some extent, verifies the renewable power penetration in EM.
The final average AVLMP of the 21× 31 sample states will be lowered by increasing the number
of GDCAC-based agents.

(2) The order of final average SWs of 21× 31 sample states in the three scenarios from high to low is:
Scenario 1 (5329.5 ($/h)), Scenario 2 (5280.8 ($/h)), and Scenario 3 (5242.9 ($/h)), which, to some
extent, verifies the renewable power penetration in EM. The final average SW of 21× 31 sample
states will be increased by increasing the number of GDCAC-based agents.

(3) Increasing SW as well as lowering clearing prices (represented by average AVLMPs) stands for
the economic efficiency improvement in the whole market, which is proven, to some extent and
through this comparative study, to be attributable to our proposed GDCAC approach.

Therefore, from the abovementioned analysis of Tables 5–8, it is concluded that in bilateral
hour-ahead EM with renewable power penetration, our proposed GDCAC approach is superior to
the fuzzy Q-learning one from the perspective of economics. That is mainly because: (1) although
both state spaces in the two EM modeling approaches are continuous, the action set of every agent in
fuzzy Q-learning approach must be discrete, which is not the same as all continuous action spaces in
the GDCAC approach; and (2) the phenomenon of discrete action sets makes it harder for an agent to
obtain globally optimal actions.

Moreover, although it was verified in [2] that the fuzzy Q-learning approach is superior to the
Q-learning one in EM modeling considering renewable power penetration, Table 9 still lists some
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simulation results obtained - from the GDCAC, fuzzy Q-learning, and Q-learning approaches after
20,000 iterations, respectively. In Table 9, simulation with the GDCAC approach is equivalent to
simulation with Scenario 1, simulation with the fuzzy Q-learning approach is equivalent to simulation
with Scenario 3, and simulation with Q-learning approach assumes every strategic participant in EM is
the Q-learning-based agent with the same discrete action sets and relevant parameters as the fuzzy
Q-learning approach (listed in Table 3) and with the same discrete state set as Sap for the purpose
of comparison.

Table 9. The simulation results of the three approaches.

Scenarios GDCAC Approach Fuzzy Q-Learning Approach Q-Learning Approach

Average AVLMP 37.0352 38.2237 42.8395
Average SW 5329.5 5242.9 4617.1

Computational time 3.21 m 3.16 m 3.12 m

From Table 9, it can be seen that, from the perspective of economics, our proposed GDCAC
approach is the most promising approach for EM modeling considering the renewable power
penetration among the three approaches. The reason for low performance when applying Q-learning
approach is due to both the discrete action and state sets within it. In addition, simulation with the
Q-learning approach takes only about 3.1 min to reach a final result, which is the lowest among the
three approaches. However, the time complexity of our proposed GDCAC approach (about 3.2 min) is
also acceptable for hour-ahead EM modeling so that we can extend it to the modeling and simulation
of more realistic and complex EM systems.

6. Conclusions

Bilateral spot EM is a more complicated type of EM in many countries in the world, where
every player (GenCO and DisCO) chooses its bidding strategy within a continuous interval of values
simultaneously in order to make more profit. Considering renewable resource penetration, the random
fluctuation and continuous variation of renewable resource power generation make it more difficult to
model the dynamic bidding process and the equilibrium in the bilateral spot EM. Since the GDCAC
algorithm has been demonstrated to be an effective method in dealing with continuous state and
action variables, in this paper we have proposed the application of a GDCAC algorithm for bilateral
hour-ahead EM modeling considering renewable power penetration. The simulation results have
verified the feasibility and scientific nature of our proposed approach, and some conclusions can be
drawn as follows:

(1) In our proposed GDCAC-based EM modeling approach, every agent needs no common
knowledge about other agents’ costs or revenue functions, etc. and can make the decision
to select an optimal bidding strategy within a continuous interval of values according to many
renewable power generations randomly changing within a continuous state space, which can
avoid the “Curse of Dimensionality”. The randomly fluctuating nature of renewable resource
output does not affect the proposed EM approach’s ability to reach NE after enough iterations;

(2) In our proposed GDCAC EM modeling approach, after enough iterations, although with the
increase of renewable resource output some agents may have their bidding functions deviate more
from their actual marginal cost or revenue functions because of congestions in some transmission
lines, the overall SW still increases, which is the same as the conclusions drawn in [2];

(3) Our proposed GDCAC EM modeling approach is superior to the fuzzy Q-learning approach
(mentioned in [2]) in terms of increasing the profit of a specific agent and the overall SW and
lowering the overall LMP level;

(4) According to [40], the time complexity of GDCAC is O(n) (the relevant mathematical proof is
proposed in [40]). However, when applying the GDCAC algorithm to EM modeling, because in
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every iteration we use the active set (AS) algorithm to solve the congestion management model
for ISO, which needs 500 extra iterations, the time complexity of our proposed GDCAC-based EM
modeling approach is O(500n). Nevertheless, our simulation with the proposed GDCAC-based
EM modeling approach takes only about 3.2 min to reach the final result. That is to say, the time
complexity of our GDCAC-based EM modeling approach is acceptable so that we can extend it
to the modeling and simulation of more realistic and complex EM systems.

Moreover, our proposed approach can provide a bidding decision-making tool for participants
to get more profit in EM with renewable power penetration. In addition, our proposed approach
can provide an economic analysis tool for governments to design proper policies to promote the
development of renewable resources.
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