

 Adaptive Mutation Dynamic Search Fireworks Algorithm

Adaptive Mutation Dynamic Search Fireworks Algorithm

Algorithms 2017, 10(2), 48; doi:10.3390/a10020048

Article

Adaptive Mutation Dynamic Search Fireworks Algorithm

Xi-Guang Li, Shou-Fei Han *, Liang Zhao, Chang-Qing Gong and Xiao-Jing Liu

School of Computer, Shenyang Aerospace University, Shenyang 110136, China

*

Correspondence: Tel.: +86-158-0405-7359

Academic Editor: Pierre Leone

Received: 23 February 2017 / Accepted: 25 April 2017 / Published: 28 April 2017

Abstract:

The Dynamic Search Fireworks Algorithm (dynFWA) is an effective algorithm for solving optimization problems. However, dynFWA easily falls into local optimal solutions prematurely and it also has a slow convergence rate. In order to improve these problems, an adaptive mutation dynamic search fireworks algorithm (AMdynFWA) is introduced in this paper. The proposed algorithm applies the Gaussian mutation or the Levy mutation for the core firework (CF) with mutation probability. Our simulation compares the proposed algorithm with the FWA-Based algorithms and other swarm intelligence algorithms. The results show that the proposed algorithm achieves better overall performance on the standard test functions.

Keywords:

dynamic search fireworks algorithm; Gaussian mutation; Levy mutation; mutation probability; standard test functions

1. Introduction

Fireworks Algorithm (FWA) [1] is a new group of intelligent algorithms developed in recent years based on the natural phenomenon of simulating fireworks sparking, and can solve some optimization problems effectively. Compared with other intelligent algorithms such as particle swarm optimization and genetic algorithms, the FWA adopts a new type of explosive search mechanism, to calculate the explosion amplitude and the number of explosive sparks through the interaction mechanism between fireworks.

However, many researchers quickly find that traditional FWA has some disadvantages in solving optimization problems; the main disadvantages include slow convergence speed and low accuracy, thus, many improved algorithms have been proposed. So far, research on the FWA has concentrated on improving the operators. One of the most important improvements of the FWA is the enhanced fireworks algorithm (EFWA) [2], where the operators of the conventional FWA were thoroughly analyzed and revised. Based on the EFWA, an adaptive fireworks algorithm (AFWA) [3] was proposed, which was the first attempt to control the explosion amplitude without preset parameters by detecting the results of the search process. In [4], a dynamic search fireworks algorithm (dynFWA) was proposed which divided the fireworks into core firework and non-core fireworks according to the fitness value and adaptive adjustment of the explosion amplitude for the core firework. Based on the analysis of each operator of the fireworks algorithm, an improvement of fireworks algorithm (IFWA) [5] was proposed. Since the FWA was proposed, it has been applied to many areas [6], including digital filter design [7], nonnegative matrix factorization [8], spam detection [9], image identification [10], mass minimization of trusses with dynamic constraints [11], clustering [12], power loss minimization and voltage profile enhancement [13], etc.

The aforementioned dynFWA variants can improve the performance of FWA to some extent. However, the inhibition of premature convergence and solution accuracy improvement are still challenging issues that require further research on dynFWA.

In this paper, an adaptive mutation dynamic search fireworks algorithm (AMdynFWA) is presented. In AMdynFWA, the core firework chooses either Gaussian mutation or Levy mutation based on the mutation probability. When it chooses the Gaussian mutation, the local search ability of the algorithm will be enhanced, and by choosing Levy mutation, the ability of the algorithm to jump out of local optimization will be enhanced.

The paper is organized as follows. In Section 2, the dynamic search fireworks algorithm is introduced. The AMdynFWA is presented in Section 3. The simulation experiments and analysis of the results are given in detail in Section 4. Finally, the conclusion is summarized in Section 5.

2. Dynamic Search Fireworks Algorithm

The AMdynFWA is based on the dynFWA because it is very simple and it works stably. In this section, we will briefly introduce the framework and the operators of the dynFWA for further discussion.

Without the loss of generality, consider the following minimization problem:

[image: there is no content]

(1)

The object is to find an optimal x with a minimal evaluation (fitness) value.

In dynFWA, there are two important components: the explosion operator (the sparks generated by the explosion) and the selection strategy.

2.1. Explosion Operator

Each firework explodes and generates a certain number of explosion sparks within a certain range (explosion amplitude). The numbers of explosion sparks (Equation (2)) are calculated according to the qualities of the fireworks.

For each firework Xi, its explosion sparks’ number is calculated as follows:

[image: there is no content]

(2)

where ymax = max (f(Xi)), m is a constant to control the number of explosion sparks, and ε is the machine epsilon to avoid Si equal to 0.

In order to limit the good fireworks that do not produce too many explosive sparks, while the poor fireworks do not produce enough sparks, its scope Si is defined as.

[image: there is no content]

(3)

where a and b are fixed constant parameters that confine the range of the population size.

In dynFWA, fireworks are divided into two types: non-core fireworks and core firework, and the core firework (CF) is the firework with the best fitness, and is calculated by Equation (4).

[image: there is no content]

(4)

The calculations of the amplitude of the non-core fireworks and the core firework are different. The non-core fireworks’ explosion amplitudes (except for CF) are calculated just as in the previous versions of FWA:

[image: there is no content]

(5)

where ymin = min f(Xi), A is a constant to control the explosion amplitude, and ε is the machine epsilon to avoid Ai equal to 0.

However, for the CF, its explosion amplitude is adjusted according to the search results in the last generation:

[image: there is no content]

(6)

where ACF(t) is the explosion amplitude of the CF in generation t. In the first generation, the CF is the best among all the randomly initialized fireworks, and its amplitude is preset to a constant number which is usually the diameter of the search space.

Algorithm 1 describes the process of the explosion operator in dynFWA.

	Algorithm 1. Generating Explosion Sparks

	Calculate the number of explosion sparks Si

	Calculate the non-core fireworks of explosion amplitude Ai

	Calculate the core firework of explosion amplitude ACF

	Set z = rand (1, d)

	For k = 1:d do

	 If k ∈ z then

	  If Xjk is core firework then

	   Xjk = Xjk + rand (0, ACF)

	  Else

	   Xjk = Xjk + rand (0, Ai)

	  If Xjk out of bounds

	   Xjk = Xmink + |Xjk| % (Xmaxk − Xmink)

	  End if

	 End if

	End for

Where the operator % refers to the modulo operation, and Xmink and Xmaxk refer to the lower and upper bounds of the search space in dimension k.

2.2. Selection Strategy

In dynFWA, a selection method is applied, which is referred to as the Elitism-Random Selection method. In this selection process, the optima of the set will be selected firstly. Then, the other individuals are selected randomly.

3. Adaptive Mutation Dynamic Search Fireworks Algorithm

The mutation operation is an important step in the swarm intelligence algorithm. Different mutation schemes have different search characteristics. Zhou pointed out that the Gaussian mutation has a strong local development ability [14]. Fei illustrated that the Levy mutation not only improves the global optimization ability of the algorithm, but also helps the algorithm jump out of the local optimal solution and keeps the diversity of the population [15]. Thus, combining the Gaussian mutation with the Levy mutation is an effective way to improve the exploitation and exploration of dynFWA.

For the core firework, for each iteration, two mutation schemes are alternatives to be conducted based on a probability p. The new mutation strategy is defined as:

[image: there is no content]

(7)

where p is a probability parameter, XCF is the core firework in the current population, and the symbol [image: there is no content] represents the dot product. Gaussian() is a random number generated by the normal distribution with mean parameter mu = 0 and standard deviation parameter sigma = 1, and Levy() is a random number generated by the Levy distribution, and it can be calculated with the parameter β = 1.5 [16]. The value of E varies dynamically with the evolution of the population, with reference to the annealing function of the simulated annealing algorithm, and the value of E is expected to change exponentially, and it is calculated as follows:

[image: there is no content]

(8)

where t is the current function evaluations, and Tmax is the maximum number of function evaluations.

To sum up, another type of sparks, the mutation sparks, are generated based on an adaptive mutation process (Algorithm 2). This algorithm is performed Nm times, each time with the core firework XCF (Nm is a constant to control the number of mutation sparks).

	Algorithm 2. Generating Mutation Sparks

	Set the value of mutation probability p

	Find out the core firework XCF in current population

	Calculate the value of E by Equation (8)

	Set z = rand (1, d)

	For k = 1:d do

	 If k ∈ z then

	  Produce mutation spark XCF’ by Equation (7)

	  If XCF’ out of bounds

	   XCF’ = Xmin + rand * (Xmax − Xmin)

	  End if

	 End if

	End for

Where d is the number of dimensions, Xmin is the lower bound, and Xmax is the upper bound.

As Figure 1 shows, the Levy mutation has a stronger perturbation effect than the Gaussian mutation. In the Levy mutation, the occasional larger values can effectively help jump out of the local optimum and keep the diversity of the population. On the contrary, the Gaussian mutation has better stability, which improves the local search ability.

Figure 1. The value produced by the Levy mutation and Gaussian mutation.

[image: Algorithms 10 00048 g001]

The flowchart of the adaptive mutation dynamic search fireworks algorithm (AMdynFWA) is shown in Figure 2.

Figure 2. The flowchart of AMdynFWA.

[image: Algorithms 10 00048 g002]

Algorithm 3 demonstrates the complete version of the AMdynFWA.

	Algorithm 3. Pseudo-Code of AMdynFWA

	Randomly choosing m fireworks

	Assess their fitness

	Repeat

	 Obtain Ai (except for ACF)

	 Obtain ACF by Equation (6)

	 Obtain Si

	 Produce explosion sparks

	 Produce mutation sparks

	 Assess all sparks’ fitness

	 Retain the best spark as a firework

	 Select other m−1 fireworks randomly

	 Until termination condition is satisfied

	Return the best fitness and a firework location

4. Simulation Results and Analysis

4.1. Simulation Settings

Similar to dynFWA, the number of fireworks in AMdynFWA is set to five, the number of mutation sparks is also set to five, and the maximum number of sparks in each generation is set to 150.

In the experiment, the function of each algorithm is repeated 51 times, and the final results after 300,000 function evaluations are presented. In order to verify the performance of the algorithm proposed in this paper, we use the CEC2013 test set [16], including 28 different types of test functions, which are listed in Table 1. All experimental test function dimensions are set to 30, d = 30.

Table 1. CEC2013 test set.

	
Function Type

	
Function Number

	
Function Name

	
Optimal Value

	
Unimodal Functions

	
1

	
Sphere function

	
−1400

	
2

	
Rotated high conditioned elliptic function

	
−1300

	
3

	
Rotated bent cigar function

	
−1200

	
4

	
Rotated discus function

	
−1100

	
5

	
Different powers function

	
−1000

	
Basic Multimodal Functions

	
6

	
Rotated rosenbrock’s function

	
−900

	
7

	
Rotated schaffers F7 function

	
−800

	
8

	
Rotated Ackley’s function

	
−700

	
9

	
Rotated weierstrass function

	
−600

	
10

	
Rotated griewank’s function

	
−500

	
11

	
Rastrigin’s function

	
−400

	
12

	
Rotated rastrigin’s function

	
−300

	
13

	
Non-continuous rotated rastrigin’s function

	
−200

	
14

	
Schewefel’s function

	
−100

	
15

	
Rotated schewefel’s function

	
100

	
16

	
Rotated katsuura function

	
200

	
17

	
Lunacek Bi_Rastrigin function

	
300

	
18

	
Rotated Lunacek Bi_Rastrigin function

	
400

	
19

	
Expanded griewank’s plus rosenbrock’s function

	
500

	
20

	
Expanded scaffer’s F6 function

	
600

	
Composition Functions

	
21

	
Composition function 1 (N = 5)

	
700

	
22

	
Composition function 2 (N = 3)

	
800

	
23

	
Composition function 3 (N = 3)

	
900

	
24

	
Composition function 4 (N = 3)

	
1000

	
25

	
Composition function 5 (N = 3)

	
1100

	
26

	
Composition function 6 (N = 5)

	
1200

	
27

	
Composition function 7 (N = 5)

	
1300

	
28

	
Composition function 8 (N = 5)

	
1400

Finally, we use the Matlab R2014a software on a PC with a 3.2 GHz CPU (Intel Core i5-3470), 4 GB RAM, and Windows 7 (64 bit).

4.2. Simulation Results and Analysis

4.2.1. Study on the Mutation Probability p

In AMdynFWA, the mutation probability p is introduced to control the probability of selecting the Gaussian and Levy mutations. To investigate the effects of the parameter, we compare the performance of AMdynFWA with different values of p. In this experiment, p is set to 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.

Table 2 gives the computational results of AMdynFWA with different values of p, where ‘Mean’ is the mean best fitness value. The best results among the comparisons are shown in bold. It can be seen that p = 0.5 is suitable for unimodal problems f1 − f5. For f6 − f20, p = 0.3 has a better performance than the others. When p is set as 0.1 or 0.9, the algorithm obtains better performance on f21 − f28.

Table 2. Mean value and average rankings achieved by AMdynFWA with different p, where the ‘mean’ indicates the mean best fitness value.

	
Functions

	
p = 0.1

	
p = 0.3

	
p = 0.5

	
p = 0.7

	
p = 0.9

	
Mean

	
Mean

	
Mean

	
Mean

	
Mean

	
f1

	
−1400

	
−1400

	
−1400

	
−1400

	
−1400

	
f2

	
3.76 × 105

	
3.84 × 105

	
4.56 × 105

	
3.96 × 105

	
4.13 × 105

	
f3

	
1.01 × 108

	
8.32 × 107

	
5.56 × 107

	
7.16 × 107

	
6.69 × 107

	
f4

	
−1099.9872

	
−1099.98

	
−1099.988

	
−1099.9870

	
−1099.984

	
f5

	
−1000

	
−1000

	
−1000

	
−1000

	
−1000

	
f6

	
−870.38

	
−876.05

	
−875.5

	
−875.29

	
−874.71

	
f7

	
−713.59

	
−711.45

	
−713.69

	
−712.66

	
−702.99

	
f8

	
−679.069

	
−679.057

	
−679.052

	
−679.063

	
−679.067

	
f9

	
−578.503

	
−577.189

	
−577.75

	
−577.436

	
−576.518

	
f10

	
−499.976

	
−499.968

	
−499.968

	
−499.972

	
−499.974

	
f11

	
−305.44

	
−302.436

	
−307.02

	
−311.215

	
−309.596

	
f12

	
−164.688

	
−174.843

	
−163.865

	
−173.722

	
−154.561

	
f13

	
−31.9988

	
−36.4318

	
−35.7453

	
−30.6652

	
−32.3421

	
f14

	
2616.647

	
2543.716

	
2676.641

	
2586.064

	
2704.535

	
f15

	
3664.113

	
3974.245

	
3888.197

	
3946.214

	
3723.16

	
f16

	
200.3942

	
200.3496

	
200.3884

	
200.3441

	
300.3698

	
f17

	
437.5601

	
425.8707

	
426.4633

	
424.32

	
428.1304

	
f18

	
583.18

	
577.8134

	
578.672

	
576.0805

	
573.5208

	
f19

	
506.931

	
506.5545

	
506.6363

	
507.0156

	
506.3289

	
f20

	
613.1458

	
613.154

	
613.113

	
613.594

	
613.423

	
f21

	
1047.089

	
1051.01

	
1016.475

	
1035.483

	
1049.556

	
f22

	
3871.804

	
3928.667

	
4109.614

	
4059.632

	
4032.769

	
f23

	
5402.42

	
5574.529

	
5524.135

	
5597.751

	
5338.983

	
f24

	
1264.25

	
1265.845

	
1265.61

	
1268.231

	
1264.214

	
f25

	
1390.105

	
1387.764

	
1387.808

	
1390.035

	
1391.654

	
f26

	
1408.752

	
1412.901

	
1424.752

	
1414.98

	
1412.238

	
f27

	
2203.579

	
2187.724

	
2192.054

	
2191.372

	
2181.232

	
f28

	
1812.154

	
1762.647

	
1707.262

	
1771.612

	
1830.575

	
Average Ranking

	

	
2.93

	
2.82

	
2.86

	
3.07

	
2.93

The above results demonstrate that the parameter p is problem-oriented. For different problems, different p may be required. In this paper, taking into account the average ranking, p = 0.3 is regarded as the relatively suitable value.

4.2.2. Comparison of AMdynFWA with FWA-Based Algorithms

To assess the performance of AMdynFWA, AMdynFWA is compared with enhanced fireworks algorithm (EFWA), dynamic search fireworks algorithms (dynFWA), and adaptive fireworks algorithm (AFWA), and the EFWA parameters are set in accordance with [2], the AFWA parameters are set in accordance with [3], and the dynFWA parameters are set in accordance with [4].

The probability p used in AMdynFWA is set to 0.3. For each test problem, each algorithm runs 51 times, all experimental test function dimensions are set as 30, and their mean errors and total number of rank 1 are reported in Table 3.

Table 3. Mean errors and total number of rank 1 achieved by EFWA, AFWA, dynFWA, and AMdynFWA.

	
Functions

	
EFWA

	
AFWA

	
dynFWA

	
AMdynFWA

	
Mean Error

	
Mean Error

	
Mean Error

	
Mean Error

	
f1

	
7.82 × 10−2

	
0

	
0

	
0

	
f2

	
5.43 × 105

	
8.93 × 105

	
7.87 × 105

	
3.84 × 105

	
f3

	
1.26 × 108

	
1.26 × 108

	
1.57 × 108

	
8.32 × 107

	
f4

	
1.09

	
11.5

	
12.8

	
2.02 × 10−2

	
f5

	
7.9 × 10−2

	
6.04 × 10−4

	
5.42 × 10−4

	
1.86 × 10−4

	
f6

	
34.9

	
29.9

	
31.5

	
23.9

	
f7

	
1.33 × 102

	
9.19 × 101

	
1.03 × 102

	
8.85 × 101

	
f8

	
2.10 × 101

	
2.09 × 101

	
2.09 × 101

	
2.09 × 101

	
f9

	
3.19 × 101

	
2.48 × 101

	
2.56 × 101

	
2.28 × 101

	
f10

	
8.29 × 10−1

	
4.73 × 10−2

	
4.20 × 10−2

	
3.18 × 10−2

	
f11

	
4.22×102

	
1.05 × 102

	
1.07 × 102

	
9.75 × 101

	
f12

	
6.33 × 102

	
1.52 × 102

	
1.56 × 102

	
1.25 × 102

	
f13

	
4.51 × 102

	
2.36 × 102

	
2.44 × 102

	
1.63 × 102

	
f14

	
4.16 × 103

	
2.97 × 103

	
2.95 × 103

	
2.64 × 103

	
f15

	
4.13 × 103

	
3.81 × 103

	
3.71 × 103

	
3.87 × 103

	
f16

	
5.92 × 10−1

	
4.97 × 10−1

	
4.77 × 10−1

	
3.4 × 10−1

	
f17

	
3.10 × 102

	
1.45 × 102

	
1.48 × 102

	
1.25 × 102

	
f18

	
1.75 × 102

	
1.75 × 102

	
1.89 × 102

	
1.77 × 102

	
f19

	
12.3

	
6.92

	
6.87

	
6.55

	
f20

	
14.6

	
13

	
13

	
13

	
f21

	
3.24 × 102

	
3.16 × 102

	
2.92 × 102

	
3.51 × 102

	
f22

	
5.75 × 103

	
3.45 × 103

	
3.41 × 103

	
3.12 × 103

	
f23

	
5.74 × 103

	
4.70 × 103

	
4.55 × 103

	
4.67 × 103

	
f24

	
3.37 × 102

	
2.70 × 102

	
2.72 × 102

	
2.65 × 102

	
f25

	
3.56 × 102

	
2.99 × 102

	
2.97 × 102

	
2.87 × 102

	
f26

	
3.21 × 102

	
2.73 × 102

	
2.62 × 102

	
2.12 × 102

	
f27

	
1.28 × 103

	
9.72 × 102

	
9.92 × 102

	
8.87 × 102

	
f28

	
4.34 × 102

	
4.37 × 102

	
3.40 × 102

	
3.62 × 102

	
total number of rank 1

	

	
1

	
4

	
7

	
23

The results from Table 3 indicate that the total number of rank 1 of AMdynFWA (23) is the best of the four algorithms.

Figure 3 shows a comparison of the average run-time cost in the 28 functions for AFWA, EFWA, dynFWA, and AMdynFWA.

Figure 3. The EFWA, AFWA, dynFWA, and AMdynFWA run-time cost.

[image: Algorithms 10 00048 g003]

The results from Figure 3 indicate that the average run-time cost of EFWA is the most expensive among the four algorithms. The time cost of AFWA is the least, but the run-time cost of AMdynFWA is almost the same compared with AFWA. The run-time cost of AMdynFWA is less than that of dynFWA. Taking into account the results from Table 3, AMdynFWA performs significantly better than the other three algorithms.

To evaluate whether the AMdynFWA results were significantly different from those of the EFWA, AFWA, and dynFWA, the AMdynFWA mean results during the iteration for each test function were compared with those of the EFWA, AFWA, and dynFWA. The T test [17], which is safe and robust, was utilized at the 5% level to detect significant differences between these pairwise samples for each test function.

The ttest2 function in Matlab R2014a was used to run the T test, as shown in Table 4. The null hypothesis is that the results of EFWA, AFWA, and dynFWA are derived from distributions of equal mean, and in order to avoid increases of type I errors, we correct the p-values using the Holm’s method, and order the p-values for the three hypotheses being tested from smallest to largest, and we then have three T tests. Thus, the p-value 0.05 is changed to 0.0167, 0.025, and 0.05, and then the corrected p-values were used to compare with the calculated p-values, respectively.

Table 4. T test results of AMdynFWA compared with EFWA, AFWA and dynFWA.

	
Functions

	
p/Significance

	
EFWA

	
AFWA

	
dynFWA

	
f1

	
p-value

	
0

	
NaN

	
NaN

	
significance

	
+

	
-

	
-

	
f2

	
p-value

	
1.5080 × 10−32

	
5.1525 × 10−50

	
2.6725 × 10−49

	
significance

	
+

	
+

	
+

	
f3

	
p-value

	
0.8004

	
0.4302

	
0.0778

	
significance

	
-

	
-

	
-

	
f4

	
p-value

	
1.5546 × 10−136

	
1.8922 × 10−246

	
8.8572 × 10−235

	
significance

	
+

	
+

	
+

	
f5

	
p-value

	
0

	
NaN

	
NaN

	
significance

	
+

	
-

	
-

	
f6

	
p-value

	
1.5957 × 10−14

	
0.7108

	
0.0139

	
significance

	
+

	
-

	
+

	
f7

	
p-value

	
1.8067 × 10−36

	
0.5665

	
0.0084

	
significance

	
+

	
-

	
+

	
f8

	
p-value

	
0.1562

	
0.0137

	
9.2522 × 10−6

	
significance

	
-

	
+

	
+

	
f9

	
p-value

	
7.0132 × 10−27

	
0.0278

	
6.6090 × 10−8

	
significance

	
+

	
+

	
+

	
f10

	
p-value

	
2.7171 × 10−134

	
7.3507 × 10−6

	
0.0364

	
significance

	
+

	
+

	
+

	
f11

	
p-value

	
2.2083 × 10−100

	
3.0290 × 10−10

	
0.0437

	
significance

	
+

	
+

	
+

	
f12

	
p-value

	
1.7319 × 10−101

	
1.3158 × 10−11

	
1.8212 × 10−7

	
significance

	
+

	
+

	
+

	
f13

	
p-value

	
2.3914 × 10−89

	
4.1645 × 10−36

	
8.6284 × 10−37

	
significance

	
+

	
+

	
+

	
f14

	
p-value

	
0.0424

	
0.0117

	
4.4964 × 10−5

	
significance

	
+

	
+

	
+

	
f15

	
p-value

	
1.1749 × 10−6

	
0.9976

	
0.6064

	
significance

	
+

	
-

	
-

	
f16

	
p-value

	
2.2725 × 10−17

	
8.9230×10−12

	
2.3427 × 10−13

	
significance

	
+

	
+

	
+

	
f17

	
p-value

	
1.5713 × 10−81

	
7.3257 × 10−10

	
1.0099 × 10−6

	
significance

	
+

	
+

	
+

	
f18

	
p-value

	
0.8510

	
0.2430

	
0.1204

	
significance

	
-

	
-

	
-

	
f19

	
p-value

	
3.6331 × 10−25

	
5.3309 × 10−6

	
0.0086

	
significance

	
+

	
+

	
+

	
f20

	
p-value

	
3.5246 × 10−14

	
0.2830

	
0.4615

	
significance

	
+

	
-

	
-

	
f21

	
p-value

	
2.2455 × 10−6

	
0.0120

	
0.0028

	
significance

	
+

	
+

	
+

	
f22

	
p-value

	
3.2719 × 10−46

	
0.0634

	
0.0344

	
significance

	
+

	
-

	
-

	
f23

	
p-value

	
2.1191 × 10−33

	
0.1225

	
0.4819

	
significance

	
+

	
-

	
-

	
f24

	
p-value

	
8.9612 × 10−69

	
9.0342 × 10−5

	
6.0855 × 10−4

	
significance

	
+

	
+

	
+

	
f25

	
p-value

	
1.2812 × 10−59

	
1.0745 × 10−6

	
1.6123 × 10−8

	
significance

	
+

	
+

	
+

	
f26

	
p-value

	
4.6864 × 10−39

	
2.5440 × 10−16

	
1.1739 × 10−11

	
significance

	
+

	
+

	
+

	
f27

	
p-value

	
2.3540 × 10−46

	
4.8488 × 10−6

	
2.1456 × 10−7

	
significance

	
+

	
+

	
+

	
f28

	
p-value

	
6.4307 × 10−92

	
0.4414

	
0.0831

	
significance

	
+

	
-

	
-

Where the p-value is the result of the T test. The ‘+’ indicates the rejection of the null hypothesis at the 5% significance level, and the ‘-’ indicates the acceptance of the null hypothesis at the 5% significance level.

Table 5 indicates that AMdynFWA showed a large improvement over EFWA in most functions. However, in Unimodal Functions, AMdynFWA is not significant when compared with AFWA and dynFWA. In Basic Multimodal Functions and Composition Functions, the AMdynFWA also showed a large improvement over AFWA and dynFWA.

Table 5. Total number of significance of AMdynFWA compared with EFWA, AFWA and dynFWA.

	
Functions Type

	
EFWA

	
AFWA

	
dynFWA

	
Unimodal Functions (f1 − f5)

	
4

	
2

	
2

	
Basic Multimodal Functions (f6 − f20)

	
13

	
10

	
12

	
Composition Functions (f21 − f28)

	
8

	
5

	
5

	
Total number of significance in EFWA, AFWA and dynFWA

	

	
25

	
17

	
19

Figure 4 shows the mean fitness searching curves of the 28 functions for EFWA, AFWA, dynFWA, and AMdynFWA.

Figure 4. The EFWA, AFWA, dynFWA, and AMdynFWA searching curves. (a) f1 function; (b) f2 function; (c) f3 function; (d) f4 function; (e) f5 function; (f) f6 function; (g) f7 function; (h) f8 function; (i) f9 function; (j) f10 function; (k) f11 function; (l) f12 function; (m) f13 function; (n) f14 function; (o) f15 function; (p) f16 function; (q) f17 function; (r) f18 function; (s) f19 function; (t) f20 function; (u) f21 function; (v) f22 function; (w) f23 function; (x) f24 function; (y) f25 function; (z) f26 function; (A) f27 function; (B) f28 function.

[image: Algorithms 10 00048 g004a][image: Algorithms 10 00048 g004b][image: Algorithms 10 00048 g004c][image: Algorithms 10 00048 g004d]

4.2.3. Comparison of AMdynFWA with Other Swarm Intelligence Algorithms

In order to measure the relative performance of the AMdynFWA, a comparison among the AMdynFWA and the other swarm intelligence algorithms is conducted on the CEC2013 single objective benchmark suite. The algorithms compared here are described as follows.

	(1)

	
Artificial bee colony (ABC) [18]: A powerful swarm intelligence algorithm.

	(2)

	
Standard particle swarm optimization (SPSO2011) [19]: The most recent standard version of the famous swarm intelligence algorithm PSO.

	(3)

	
Differential evolution (DE) [20]: One of the best evolutionary algorithms for optimization.

	(4)

	
Covariance matrix adaptation evolution strategy (CMA-ES) [21]: A developed evolutionary algorithm.

The above four algorithms use the default settings. The comparison results of ABC, DE, CMS-ES, SPSO2011, and AMdynFWA are presented in Table 6, where the ’Mean error’ is the mean error of the best fitness value. The best results among the comparisons are shown in bold. ABC beats the other algorithms on 12 functions (some differences are not significant), which is the most, but performs poorly on the other functions. CMA-ES performs extremely well on unimodal functions, but suffers from premature convergence on some complex functions. From Table 7, the AMdynFWA ranked the top three (22/28), which is better than the other algorithms (except the DE), and in terms of average ranking, the AMdynFWA performs the best among these five algorithms on this benchmark suite due to its stability. DE and ABC take the second place and the third place, respectively. The performances of CMS-ES and the SPSO2011 are comparable.

Table 6. Mean errors and ranking achieved by ABC, DE, CMS-ES, SPSO2011, and AMdynFWA.

	
Functions

	
Mean Error/Rank

	
ABC

	
DE

	
CMS-ES

	
SPSO2011

	
AMdynFWA

	
f1

	
Mean error

	
0

	
1.89 × 10−3

	
0

	
0

	
0

	
Rank

	
1

	
2

	
1

	
1

	
1

	
f2

	
Mean error

	
6.20 × 106

	
5.52 × 104

	
0

	
3.38 × 105

	
3.84 × 105

	
Rank

	
5

	
2

	
1

	
3

	
4

	
f3

	
Mean error

	
5.74 × 108

	
2.16 × 106

	
1.41 × 101

	
2.88 × 108

	
8.32 × 107

	
Rank

	
5

	
2

	
1

	
4

	
3

	
f4

	
Mean error

	
8.75 × 104

	
1.32 × 10−1

	
0

	
3.86 × 104

	
2.02 × 10−2

	
Rank

	
5

	
3

	
1

	
4

	
2

	
f5

	
Mean error

	
0

	
2.48 × 10−3

	
0

	
5.42 × 10−4

	
1.86 × 10−4

	
Rank

	
1

	
4

	
1

	
3

	
2

	
f6

	
Mean error

	
1.46 × 101

	
7.82

	
7.82 × 10−2

	
3.79 × 101

	
2.39 × 101

	
Rank

	
3

	
2

	
1

	
5

	
4

	
f7

	
Mean error

	
1.25 × 102

	
4.89×101

	
1.91 × 101

	
8.79 × 101

	
8.85 × 101

	
Rank

	
5

	
2

	
1

	
3

	
4

	
f8

	
Mean error

	
2.09 × 101

	
2.09 × 101

	
2.14 × 101

	
2.09 × 101

	
2.09 × 101

	
Rank

	
1

	
1

	
2

	
1

	
1

	
f9

	
Mean error

	
3.01 × 101

	
1.59 ×101

	
4.81 × 101

	
2.88 × 101

	
2.28 × 101

	
Rank

	
4

	
1

	
5

	
3

	
2

	
f10

	
Mean error

	
2.27 × 10−1

	
3.42 × 10-2

	
1.78 × 10−2

	
3.40 × 10−1

	
3.18 × 10−2

	
Rank

	
4

	
3

	
1

	
5

	
2

	
f11

	
Mean error

	
0

	
7.88 × 101

	
4.00 × 102

	
1.05 × 102

	
9.75 × 101

	
Rank

	
1

	
2

	
5

	
4

	
3

	
f12

	
Mean error

	
3.19 × 102

	
8.14 × 101

	
9.42 × 102

	
1.04 × 102

	
1.25 × 102

	
Rank

	
4

	
1

	
5

	
2

	
3

	
f13

	
Mean error

	
3.29 × 102

	
1.61 × 102

	
1.08 × 103

	
1.94 × 102

	
1.63 × 102

	
Rank

	
4

	
1

	
5

	
3

	
2

	
f14

	
Mean error

	
3.58 ×10−1

	
2.38 × 103

	
4.94 × 103

	
3.99 × 103

	
2.64 × 103

	
Rank

	
1

	
2

	
5

	
4

	
3

	
f15

	
Mean error

	
3.88 × 103

	
5.19 × 103

	
5.02 × 103

	
3.81 × 103

	
3.87 × 103

	
Rank

	
3

	
5

	
4

	
1

	
2

	
f16

	
Mean error

	
1.07

	
1.97

	
5.42 × 10−2

	
1.31

	
3.4 × 10−1

	
Rank

	
3

	
5

	
1

	
4

	
2

	
f17

	
Mean error

	
3.04 × 101

	
9.29 × 101

	
7.44 × 102

	
1.16 × 102

	
1.25 × 102

	
Rank

	
1

	
2

	
5

	
3

	
4

	
f18

	
Mean error

	
3.04 × 102

	
2.34 × 102

	
5.17 × 102

	
1.21 × 102

	
1.77 × 102

	
Rank

	
4

	
3

	
5

	
1

	
2

	
f19

	
Mean error

	
2.62 × 10−1

	
4.51

	
3.54

	
9.51

	
6.55

	
Rank

	
1

	
3

	
2

	
5

	
4

	
f20

	
Mean error

	
1.44 × 101

	
1.43 × 101

	
1.49 × 101

	
1.35 × 101

	
1.30 × 101

	
Rank

	
4

	
3

	
5

	
2

	
1

	
f21

	
Mean error

	
1.65 × 102

	
3.20 × 102

	
3.44 × 102

	
3.09 × 102

	
3.51 × 102

	
Rank

	
1

	
3

	
4

	
2

	
5

	
f22

	
Mean error

	
2.41 × 101

	
1.72 × 103

	
7.97 × 103

	
4.30 × 103

	
3.12 × 103

	
Rank

	
1

	
2

	
5

	
4

	
3

	
f23

	
Mean error

	
4.95 × 103

	
5.28 × 103

	
6.95 × 103

	
4.83 × 103

	
4.67 × 103

	
Rank

	
3

	
4

	
5

	
2

	
1

	
f24

	
Mean error

	
2.90 × 102

	
2.47 × 102

	
6.62 × 102

	
2.67 × 102

	
2.65 × 102

	
Rank

	
4

	
1

	
5

	
3

	
2

	
f25

	
Mean error

	
3.06 × 102

	
2.89 × 102

	
4.41 × 102

	
2.99 × 102

	
2.87 × 102

	
Rank

	
4

	
2

	
5

	
3

	
1

	
f26

	
Mean error

	
2.01 × 102

	
2.52 × 102

	
3.29 × 102

	
2.86 × 102

	
2.12 × 102

	
Rank

	
1

	
3

	
5

	
4

	
2

	
f27

	
Mean error

	
4.16 × 102

	
7.64 × 102

	
5.39 × 102

	
1.00 × 103

	
8.87 × 102

	
Rank

	
1

	
4

	
2

	
5

	
3

	
f28

	
Mean error

	
2.58 × 102

	
4.02 × 102

	
4.78 × 103

	
4.01 × 102

	
3.62 × 102

	
Rank

	
1

	
4

	
5

	
3

	
2

Table 7. Statistics of rank (SR) and average rankings (AR).

	
SR/AR

	
ABC

	
DE

	
CMS-ES

	
SPSO2011

	
AMdynFWA

	
Total number of rank 1

	
12

	
5

	
9

	
4

	
5

	
Total number of rank 2

	
0

	
10

	
3

	
4

	
11

	
Total number of rank 3

	
4

	
7

	
0

	
9

	
6

	
Total number of rank 4

	
8

	
4

	
2

	
7

	
5

	
Total number of rank 5

	
4

	
2

	
14

	
4

	
1

	
Total number of rank

	
76

	
72

	
93

	
87

	
70

	
Average ranking

	
2.71

	
2.57

	
3.32

	
3.11

	
2.5

5. Conclusions

AMdynFWA was developed by applying two mutation methods to dynFWA. It selects the Gaussian mutation or Levy mutation according to the mutation probability. We apply the CEC2013 standard functions to examine and compare the proposed algorithm AMdynFWA with ABC, DE, SPSO2011, CMS-ES, AFWA, EFWA, and dynFWA. The results clearly indicate that AMdynFWA can perform significantly better than the other seven algorithms in terms of solution accuracy and stability. Overall, the research demonstrates that AMdynFWA performed the best for solution accuracies.

The study on the mutation probability p demonstrates that there is no constant p for all the test problems, while p = 0.3 is regarded as the relatively suitable value for the current test suite. A dynamic p may be a good choice. This will be investigated in future work.

Acknowledgments

The authors are thankful to the anonymous reviewers for their valuable comments to improve the technical content and the presentation of the paper. This paper is supported by the Liaoning Provincial Department of Education Science Foundation (Grant No. L2013064), AVIC Technology Innovation Fund (basic research) (Grant No. 2013S60109R), and the Research Project of Education Department of Liaoning Province (Grant No. L201630).

Author Contributions

Xi-Guang Li participated in the draft writing. Shou-Fei Han participated in the concept, design, and performed the experiments and commented on the manuscript. Liang Zhao, Chang-Qing Gong, and Xiao-Jing Liu participated in the data collection, and analyzed the data.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Tan, Y.; Zhu, Y. Fireworks Algorithm for Optimization. In Advances in Swarm Intelligence, Proceedings of the 2010 International Conference in Swarm Intelligence, Beijing, China, 12–15 June 2010; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]

	2.
Zheng, S.; Janecek, A.; Tan, Y. Enhanced fireworks algorithm. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2069–2077. [Google Scholar]

	3.
Zheng, S.; Li, J.; Tan, Y. Adaptive fireworks algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 3214–3221. [Google Scholar]

	4.
Zheng, S.; Tan, Y. Dynamic search in fireworks algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 3222–3229. [Google Scholar]

	5.
Li, X.-G.; Han, S.-F.; Gong, C.-Q. Analysis and Improvement of Fireworks Algorithm. Algorithms 2017, 10, 26. [Google Scholar] [CrossRef]

	6.
Tan, Y. Fireworks Algorithm Introduction, 1st ed.; Science Press: Beijing, China, 2015; pp. 13–136. (In Chinese) [Google Scholar]

	7.
Gao, H.Y.; Diao, M. Cultural firework algorithm and its application for digital filters design. Int. J. Model. Identif. Control 2011, 4, 324–331. [Google Scholar] [CrossRef]

	8.
Andreas, J.; Tan, Y. Using population based algorithms for initializing nonnegative matrix factorization. In Advances in Swarm Intelligence, Proceedings of the 2010 International Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 307–316. [Google Scholar]

	9.
Wen, R.; Mi, G.Y.; Tan, Y. Parameter optimization of local-concentration model for spam detection by using fireworks algorithm. In Proceedings of the 4th International Conference on Swarm Intelligence, Harbin, China, 12–15 June 2013; pp. 439–450. [Google Scholar]

	10.
Zheng, S.; Tan, Y. A unified distance measure scheme for orientation coding in identification. In Proceedings of the 2013 IEEE Congress on Information Science and Technology, Yangzhou, China, 23–25 March 2013; pp. 979–985. [Google Scholar]

	11.
Pholdee, N.; Bureerat, S. Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints. Adv. Eng. Softw. 2014, 75, 1–13. [Google Scholar] [CrossRef]

	12.
Yang, X.; Tan, Y. Sample index based encoding for clustering using evolutionary computation. In Advances in Swarm Intelligence, Proceedings of the 2014 International Conference on Swarm Intelligence, Hefei, China, 17–20 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 489–498. [Google Scholar]

	13.
Mohamed Imran, A.; Kowsalya, M. A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 312–322. [Google Scholar] [CrossRef]

	14.
Zhou, F.J.; Wang, X.J.; Zhang, M. Evolutionary Programming Using Mutations Based on the t Probability Distribution. Acta Electron. Sin. 2008, 36, 121–123. [Google Scholar]

	15.
Fei, T.; Zhang, L.Y.; Chen, L. Improved Artificial Fish Swarm Algorithm Mixing Levy Mutation and Chaotic Mutation. Comput. Eng. 2016, 42, 146–158. [Google Scholar]

	16.
Liang, J.; Qu, B.; Suganthan, P.; Hernandez-Diaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Technical Report 201212; Zhengzhou University: Zhengzhou, China, January 2013. [Google Scholar]

	17.
Teng, S.Z.; Feng, J.H. Mathematical Statistics, 4th ed.; Dalian University of Technology Press: Dalian, China, 2005; pp. 34–35. (In Chinese) [Google Scholar]

	18.
Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]

	19.
Zambrano-Bigiarini, M.; Clerc, M.; Rojas, R. Standard particle swarm optimization 2011 at CEC2013: A baseline for future PSO improvements. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2337–2344. [Google Scholar]

	20.
Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]

	21.
Hansen, N.; Ostermeier, A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 312–317. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 algorithms-10-00048

 		
 algorithms-10-00048

media/file8.jpg

media/file11.png
optima

-545 T T
—&— AFWA
5509" ——+— EFWA
) > dynFWA
AMdynFWA
-555 -
-560 |- 4
©
£
g
-565 - -
570+ -
e I > b—p——b—>P
575+ | A N A W A A A o—C—6C—6C—6——0©
_580 | | | |
0 0.5 1 1.5 25 3
Evaluations x 10
(1)
2000 .
—&— AFWA
—*+— EFWA
—b— dynFWA
1500 AMdynFWA]
1000 .
©
£
o
]
500 f
0]
-500 '
0 0.5 1 1.5 2.5 3
Evaluations x 10
2000 . . .
—S— AFWA
—+— EFWA
—bB— dynFWA
15004 AMdynFWA |

©
£
g
_500 | | | |
0 0.5 1 1.5 2.5 3
Evaluations X 10
(m)
11,000 . .
—Co— AFWA
10,0000 —+— EFWA
] —>— dynFWA
9000 — AMdynFWA
8000 - 4
7000 - _
6000 - .
5000 - .
4000 | B0 00800000600 0000 -
3000 | 1 1 | |
0 0.5 1 1.5 2 2.5 3
Evaluations X 105

(0)

optima

—Oo— AFWA
—+— EFWA

— D dynFWA
AMdynFWA

_05 | | | | |
0.5 1 1.5 2 2.5 3
Evaluations x 10
1800 \ \ ‘
| —E6— AFWA
1600 —— EFWA
3 —b&— dynFWA
1400 AMdynFWA ||
1200 -
1000 -
[
E 800 |
&
600 -
400 -
200 -
0 -
-200 — '
0 0.5 1 1.5 2 25 3
Evaluations x 10
11,000 - x \ . s
i —O— AFWA
10,000'¢ EEWA
9000 —>— dynFWA
N AMdynFWA
8000 s
7000 - .
6000 - =
5000 - —
4000 - -
D—D—P—t——b>
3000 - BSOS Bd|
2000 L L ! 1 !
0 0.5 1 1.5 2 2.5 3
Evaluations % 1 05
(n)
206 T T T T T
—&— AFWA
1 —+—EFWA
205 | — > dynFWA |
AMdynFWA
©
£ |
g

o VA

0.5 1)
Evaluations

(p)

media/file6.jpg

media/file1.png
Value

(@]

!
(631
T

SN "‘i!i’“”*“’f’y‘i\ |

—%—— Gaussian mutation

Levy mutation

[| | | | | |
10 20 30 40 50 60 70
[terations

[
80

[
90

100

media/file13.png
optima

optima

1650

1600

1550

1

[
—O— AFWA

—*— EFWA
—b— dynFWA
AMdynFWA

1500
1450
1400
1350 ' ' : :
0 0.5 1.5 2 2.5
Evaluations x 10
3800 I I T
—6— AFWA
36007 —+— EFWA i
—>— dynFWA
3400 AMdynFWA H
3200 H 1
3000 =
2800 =
2600 *—f———
2400 i
[, [[
J </ 7 L/
2200 s
2000 ’ ' :
0 0.5 1.5 2 2.5 3
Evaluations 5
x 10

(A)

optima

log10(optima)

1900 \

—c— AFWA
1850 —+— EFWA I
—>—dynFWA
1800 M
AMdynFWA
1750
1700
1650
1600
1550
1500
1450
1400 | [[| |
0 0.5 1 1.5 2 2.5 3
Evaluations % 10
(z)
46 T T T T T
—C— AFWA
ad —+— EFWA
: —b— dynFWA
AMdynFWA
42T .
4 —
38l — kK J
3.6~ .
3.4+ 7
39 T - A A A A A A A A
"0 0.5 1 1.5 2 2.5 3
Evaluations
x 10

(B)

media/file7.jpg
T

:;
i

media/file10.png
optima

log10(optima)

optima

optima

129 T T T T T
—C— AFWA
10% —+— EFWA i
—Db— dynFWA
AMdynFWA
8 H _
6 |
4L |
2r |
Or _
_2 | | L | |
0] 0.5 1 1.5 2 2.5 3
Evaluations x 10
(a)
2c T T T T T
—O— AFWA
24 —+— EFWA
—b— dynFWA
22 AMdynFWA ||

6 | | | | |
0 0.5 1 1.5 2 2.5 3
Evaluations x 105
(c)
x 10°
35]]]]]
b —S— AFWA
3 —+— EFWA
—t— dynFWA
55 AMdynFWA i

_05 | | | | |
0.5 1 1.5 2 25 3
Evaluations X 105
(e)
x 10°
14 T T T T T
T —o— AFWA
12 —+— EFWA
—b&— dynFWA
10l AMdynFWA ||

Evaluations 5

(8)

log10(optima)

optima

optima

10.5 : : : ‘
—O— AFWA
100 —+— EFWA
i —bB— dynFWA
95{ AMdynFWA ||

Evaluations

x 10
(b)

x 10’
4.5 : : : ‘

T — O AFWA

4 —+— EFWA Ml
—>— dynFWA

35 AMdynFWA ||

05 I I I | |
0.5 1 1.5 2 2.5 3
Evaluations x 10
x 10"
3.5% T T T T T
—o— AFWA
3 —+— EFWA
—— dynFWA
o5 AMdynFWA

0.5 1 1.5 2 2.5 3
Evaluations x 10
-678.5 \ . . .
—o— AFWA
678.6 —+— EFWA
R — D dynFWA
A AMdynFWA
678.7% -
-678.8 .
-678.9 .
-679 .
-679.1 .
-679.2 ’ ' ' '
0 0.5 1 1.5 2.5 3
Evaluations X 105

(h)

media/file5.png
\
_’____

\

\

|
__'.___

|

|

\
\
— 41—
\
e

|
_.'__
|
|
- -
|
— L
|
|

I AFWA

T EFWA
[ldynFWA

40

B AMdynFWA
==
\
o5 1 — L |

35
20 -
15— —

(syowi]

fo9 f10 111 f12 113 f14 15 f16 f17 f18 f19 f20 21 f22 123 24 25 26 27 28
Function Number

18

f6 f7

2 B3 4 15

f1

media/file12.png
optima

3500

3000}

2500

—O— AFWA
—*— EFWA
—>— dynFWA
AMdynFWA

2000 .
©
£E
a
© 1500 -
1000 .
500 .
0 | | | | |
0 0.5 1 1.5 2 2.5 3
Evaluations x 105
x 107
3.5 ‘
—6— AFWA
*
3 —*+— EFWA
—t— dynFWA
AMdynFWA
2.5 -
2 L _
©
£
g
1.5 -
1 L _
0.5+ -
0! &6 08>0 H—86>
0 0.5 1 1.5 2.5 3
Evaluations x 105
(s)
9000 T T
—6— AFWA
8000 —x— EFWA
q —b— dynFWA
2000 AMdynFWA ||
6000 -
©
£ 5000 |
Q.
¢)
4000 |
3000 -
2000 -
1000 S5 oo
0 1 1.5 2 2.5 3
Evaluations x 10
(u)
12,000 . .
—o— AFWA
11,000 —+— EFWA
—D— dynFWA
10.000 AMdynFWA ||
9000 -
8000 -
A
7000 -
6000 -
L =7 L L N=F L N7 N=F N/ Q @ @ @ @ @
5000 | | 1 |

15
Evaluations

(W)

3500

3000

—C— AFWA
—*+— EFWA
—>—dynFWA
AMdynFWA

()

2500 .
(1
E 2000 i
Q.
o
1500 =
1000 .
500
0 . 3
Evaluations N 105
()
61 5{ T T T T
—C— AFWA
614.8 —x— EFWA i
— b dynFWA
614.6- AMdynFWA |
614.4 -
614.2 - 8
o
£ s14; .
Q
O
613.8 8
613.6 - 8
613.4 - 8
T\ N N N
613.2 8
613 | [| | |
0 0.5 1 1.5 2 2.5 3
Evaluations x 105
12,000
g —G— AFWA
11,000%
—x— EFWA
10.000 L —>— dynFWA i
AR AMdynFWA
9000 |}
@ 8000t
£
S 7000t
6000 |
5000 |
4000 |
3000 1 1 1 1
0 0.5 1.5 2 2.5
Evaluations % 10
(V)
2000* I | \
—O— AFWA
1900 —*— EFWA
—b—dynFWA
1800 AMdynFWA |
1700 -
©
£ 1600 1
[oX
[e]
1500 .
1400 .
e e e i —
1300 £ £ Py £ Y g g = = Py Py Py Fany N
1200 : : ‘ ‘
0 0.5 1.5 2 2.5 3
Evaluations 5
x 10

media/file3.png
(e)

Randomly generated n fireworks

L 4

Each firework produces its own Sparks
by explosion operator

Calculate the value of E

No Yes
\ 4 \ 4
Produce mutation Produce mutation sparks

sparks by Levy mutation

by Gaussian mutation

Find optimal

location

Select n fireworks by

selection strategy

Yes

media/file9.jpg
IEERREN]

Nevvooossosossossood

o

media/file14.png

media/file4.jpg
,_l

media/file0.jpg
Value

15

Lew mutation
= Gaussian mutation

10

20

40

50
lterations

60

70 8 90 100

media/file2.jpg
Randomly generated n fireworks.

i

Each firework produces its own Sparks
by explosion operator

e

Calculate the value of €

Yes

Produce mutation
sparks by Levy mutation

Produce mutation sparks
by Gaussian mutation

Find optimal

selectnfireworks by| (g
selection strategy

!

End

