
Article

Revised Gravitational Search Algorithms Based on
Evolutionary-Fuzzy Systems

Danilo Pelusi *, Raffaele Mascella and Luca Tallini

Department of Communication Sciences, University of Teramo, 64100 Teramo, Italy; rmascella@unite.it (R.M.);
ltallini@unite.it (L.T.)
* Correspondence: dpelusi@unite.it; Tel.: +39-0861-266036

Academic Editor: Oscar Castillo
Received: 25 January 2017; Accepted: 18 April 2017; Published: 21 April 2017

Abstract: The choice of the best optimization algorithm is a hard issue, and it sometime depends on
specific problem. The Gravitational Search Algorithm (GSA) is a search algorithm based on the law
of gravity, which states that each particle attracts every other particle with a force called gravitational
force. Some revised versions of GSA have been proposed by using intelligent techniques. This work
proposes some GSA versions based on fuzzy techniques powered by evolutionary methods, such as
Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE), to
improve GSA. The designed algorithms tune a suitable parameter of GSA through a fuzzy controller
whose membership functions are optimized by GA, PSO and DE. The results show that Fuzzy
Gravitational Search Algorithm (FGSA) optimized by DE is optimal for unimodal functions, whereas
FGSA optimized through GA is good for multimodal functions.

Keywords: gravitational search algorithm; fuzzy systems; evolutionary algorithm

1. Introduction

Solving optimization problems using exhaustive search techniques is not always the best way. In
fact, in the problems with huge dimensional space search, the classical optimization algorithms do
not provide a suitable solution. Many researchers take on the problem to optimize objective functions
by designing algorithms inspired by the behaviors of natural phenomena. The issue of tuning some
parameters of a search algorithm is one of the most important areas of research in evolutionary
computation [1]. This research line was followed by Montiel et al. [2] and Castillo et al. [3], which
treated the idea of adjusting an evolutionary algorithm.

Among the intelligent evolutionary optimization methods, the Genetic Algorithms (GA) [4]
are heuristic approaches well suited to solve complex computational problems [5–9]. Another
evolutionary algorithm is the Particle Swarm Optimization (PSO), which depends on the simulation of
social behavior [10]. This search method has been applied in various optimization problems [11–15].
An algorithm that operates through the computational steps of a standard evolutionary algorithm
is the Differential Evolution (DE). It employs the difference of the parameter vectors to explore the
objective function landscape [16]. DE algorithms are applied in many fields [17–21].

Recently, a new search algorithm based on the law of gravity has been proposed: the Gravitational
Search Algorithm (GSA) [22]. This algorithm is based on Newton’s law of gravity, which states that
each particle attracts every other particle with a force called gravitational force [23]. The speed of the
search process of GSA depends on parameters that play the main role in the search process. These
parameters can be optimized by using evolutionary algorithms such as PSO and DE. However, they
may be tuned through fuzzy systems. Askari and Zahiri [24,25] designed fuzzy controllers able to
check the search parameters of GSA. In order to improve the performances of GSA, suitable fuzzy
logic controllers have been proposed [26–28].

Algorithms 2017, 10, 44; doi:10.3390/a10020044 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10020044
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 44 2 of 19

Improvements of the original version of GSA have been achieved by using the binary discrete
space. In fact, there are many optimization problems [13,29–34], where the solutions are encoded as
binary vectors. Rashedi et al. [35] proposed a binary version of GSA, called BGSA. This work shows
the efficiency of BGSA in solving various nonlinear benchmark functions.

This paper aims to improve GSA for certain benchmark functions. The task is to design a fuzzy
system able to tune suitable parameters of GSA, taking into account the exploration, the exploitation
capabilities and escaping being trapped in local optima. The novelty of the proposed approach is the
choice of adjusting, in a fuzzy way, a specific GSA parameter, which may be used both as fuzzy input
and output. The fuzzy input is the parameter value in the previous state, whereas the fuzzy output
is the GSA parameter value in the current state. In this way, the GSA parameter is tuned depending
on the parameter value in the previous state and the remaining fuzzy inputs. Moreover, to assure an
intelligent strategy for exploration and exploitation, the fuzzy rules are designed to prevent problems
of getting trapped into local optima and premature convergence. The main idea is to design a Fuzzy
Gravitational Search Algorithm (FGSA) where the membership functions of the fuzzy controller are
optimized by applying evolutionary algorithms such as GA, PSO and DE. The complexity problem
is avoided because the fuzzy controller is optimized just one time and than used in GSA. Therefore,
FGSA contains the contribution of the optimized fuzzy controller, which does not add considerable
complexity with respect to GSA. Finally, the challenge of this work is to improve the average best so
far solution of [22,26–28,35] for certain benchmark functions.

The paper is organized as follows. Section 2 describes GSA with the same notation of [22]. The
revised GSA optimized through intelligent techniques is described in Section 3. Section 4 contains the
discussion of the simulation results of the proposed algorithms. Section 5 concludes the paper.

2. The Gravitational Search Algorithm

The gravitational search algorithm was introduced for the first time by Rashedi et al. in [22]. Their
main idea was to consider the searcher agents as a collection of masses that interact with each other
based on Newtonian gravity and the laws of motion.

In nature, there are four fundamental interactions [36]: the electromagnetic force, the weak nuclear
force, the strong nuclear force and the gravitational force. Newton’s law of gravity states that every
point mass attracts every single other point mass by a force pointing along the line intersecting both
points [23,36]. The gravitational force F is defined by the formula (1) where M1 and M2 are the
masses of the particles, G is the gravitational constant and R is the distance between the two particles.
Note that, the force F is directly proportional to the product of the masses M1 and M2 and inversely
proportional to the square of the distance between the particles.

F = G
M1M2

R2 (1)

The second law of Newton [23] states that the ratio between a force F applied on a particle of
mass M is equal to the acceleration a of the particle (see (2)).

a =
F
M

(2)

In order to describe the gravitational search algorithm, the definitions of active gravitational mass,
passive gravitational mass and inertial mass are needed. The active gravitational mass is a measure of
the strength of the gravitational field due to a particular object. The passive gravitational mass is a
measure of the strength of an object’s interaction with the gravitational field. The inertial mass is a
measure of an object resistance of changing its state of motion when a force is applied.

Let Xi = (x1
i , ..., xd

i , ..., xn
i ,) be the position of the i-th agent for i = 1, 2, ..., n where xd

i represents
the position of the i-th agent in the d-th dimension. The force acting on mass i from mass j at a specific
time t is denoted with Fd

ij(t) (see (3)), where G(t) is the gravitational constant, which depends on time,
Maj is the active gravitational mass related to agent j, Mpi is the passive gravitational mass related to

Algorithms 2017, 10, 44 3 of 19

agent i, ε is a small constant and Rij(t) is the Euclidean distance between two agents i and j as defined
in (4).

Fd
ij(t) = G(t)

Mpi(t)×Mai(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (3)

Rij(t) = ||Xi(t), Xj(t)||2 (4)

In the gravitational search algorithm, G(t) is defined as (5) [22], where G0 is the initial value of G,
T is the total number of iterations and α is a parameter.

G(t) = G0 exp(−α
t
T
) (5)

The total force Fd
i (t) that acts on agent i in a dimension d is a randomly weighted sum of d-th

components of the forces exerted from other agents (see Equation (6)). In (6), randj is a random number
that lies between [0, 1].

Fd
i (t) =

N

∑
j=1,j 6=i

randjFd
ij(t) (6)

By the law (2), it follows that the acceleration of the agent i at time t and in direction d-th, ad
i (t), is

given by (7), where Mii is the inertial mass of the i-th agent.

ad
i (t) =

Fd
i (t)

Mii(t)
(7)

The velocity of an agent at t + 1 time is a fraction of the velocity at t time added to its acceleration
a(t) (see (8) with randi uniform random variable in the interval [0, 1]). Moreover, the position at t + 1
time xd

i (t + 1) is calculated through (9).

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (8)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (9)

The gravitational and inertial masses are updated by the Equations (10)–(12), where f iti(t)
represents the fitness value of the agent i at time t, and worst(t) and best(t) are defined as in (13)
and (14) for minimization (maximization) problems.

Mai = Mpi = Mii = Mi, i = 1, 2, ..., n (10)

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(11)

Mi(t) =
mi(t)

∑n
j=1 mj(t)

(12)

best(t) = min
j∈1,...,n

(
max

j∈1,...,n

)
f itj(t) (13)

worst(t) = max
j∈1,...,n

(
min

j∈1,...,n

)
f itj(t) (14)

In order to find a good compromise between exploration and exploitation, the number of agents
with a lapse of time has to be reduced. To improve the performance of GSA by controlling exploration

Algorithms 2017, 10, 44 4 of 19

and exploitation, only the Kbest agents will attract the others [22]. Therefore, Equation (6) can be
rewritten as in (15):

Fd
i (t) =

n

∑
j∈Kbest ,j 6=i

randjFd
ij(t) (15)

Algorithm 1 describes the gravitational search algorithm.

Algorithm 1
S1. First of all, the algorithm initializes, in a random way, the position X of the agents in the search
space. The initialization procedure depends on the number of agents n, the dimension of the test
functions r and the allowable range [up, down] for the search space. The positions X’s are calculated
by generating n× r random numbers between 0 and 1 and normalizing them on the range [up, down].
In other terms, the positions are computed by the formula X(i, j) = rand(i, j) ∗ (down− up) + down,
with i = 1, ..., n and j = 1, ..., r.
S2. Once the positions are generated, the algorithm computes the fitness of the agents for a certain
function. In other words, the value of the objective function is computed. Note that the fitness depends
on the position of the agents and the dimension of the function.
S3. The value of the fitness is necessary to calculate the mass of each agent mi(t) for i = 1, 2, ..., n. (see
(11)). On the other hand, mi(t) depends on best(t) and worst(t) (Equations (13) and (14), respectively),
which also depend on fitness. Subsequently, the gravitational constant G(t), as defined in (5), is
computed.
S4. According to G(t), the total force in different directions is calculated. In particular, the algorithm
computes the Euclidean distance between two agents Rij(t) and the force acting on mass i from mass j
at a specific time t (see (3)). Subsequently, the total force Fd

i (t) (see (6)) is computed. Therefore, the
acceleration of the agents, their velocity and position at t time are calculated by means of (7), (8) and
(9), respectively.
S5. The steps from S2–S4 are repeated until a certain number of iterations is reached.

3. The Evolutionary Fuzzy Algorithms

The first task of our study is the choice of the GSA parameter, which must be tuned. Because the
gravitational constant G defined in (5) has a significant effect on the control of the exploration versus
exploitation propensities of the particle swarm [25], the parameter α of (5) is chosen. The adjusting of
α is accomplished through a fuzzy controller optimized by GA, PSO and DE.

The first step to design a fuzzy controller is the definition of the fuzzy inputs and outputs.
The number of fuzzy inputs and outputs depends on the specific problem. In this case, four fuzzy
inputs are defined. The first input is the iteration number N = {1, 2, ..., k}. Let Pd(i) be the population
diversity at the i − th iteration, with i = 1, ..., k; by considering the (4), the population diversity is
defined as in (16), where Rmean(i), Rmin(i), Rmax(i) are the mean, min and max Euclidean distance
between two agents, respectively. The population diversity is the main tool for monitoring the
convergence rate of the algorithm, and it represents the second fuzzy input.

Pd(i) =
Rmean(i)− Rmin(i)
Rmax(i)− Rmin(i)

(16)

Another important parameter for monitoring the convergence rate is the population progress at
the i-th iteration denoted by Pp(i). By considering the (13) and (14), the definition of Pp(i) is shown in
(17), where f itmean(i) is the fit mean value at the i− th iteration. Pp(i) is the third fuzzy input.

Pp(i) =
f itmean(i− 1)− f itmean(i)

f itmean(i)
(17)

The fourth fuzzy input α(i− 1) is the value of α at the (i− 1)th iteration. Because the parameter α has
to be tuned, the fuzzy output is the value α(i), i.e., the value of α at the i− th iteration.

Algorithms 2017, 10, 44 5 of 19

The next step is the choice of the number and shape of the membership functions. This choice
depends on the specific problem, and sometimes, it is a trial and error procedure. By considering our
problem, triangular/trapezoidal membership functions are chosen. The inputs N, α(t− 1) and the
output α(t) have three membership functions: Low (L), Medium (M) and High (H). The other inputs
have two membership functions: Low (L) and High (H). The ranges of α are defined experimentally for
each benchmark function, whereas the ranges of N, Pd and Pp are the same for all of the test functions.

The number of membership functions for each input defines the fuzzy rules number. Therefore,
our rule set is composed of 3× 2× 2× 3 = 36 rules (see Table 1).

Table 1. Fuzzy rules.

Rule Fuzzy inputs Fuzzy output

R N Pd Pp α(i− 1) α(i)
1 L L L L L
2 L L L M L
3 L L L H L
4 L L H L L
5 L L H M L
6 L L H H M
7 L H L L L
8 L H L M L
9 L H L H M

10 L H H L L
11 L H H M M
12 L H H H H
13 M L L L L
14 M L L M L
15 M L L H M
16 M L H L L
17 M L H M L
18 M L H H M
19 M H L L L
20 M H L M L
21 M H L H M
22 M H H L L
23 M H H M M
24 M H H H H
25 H L L L L
26 H L L M M
27 H L L H H
28 H L H L M
29 H L H M H
30 H L H H H
31 H H L L M
32 H H L M H
33 H H L H H
34 H H H L H
35 H H H M H
36 H H H H H

The rules shown in Table 1 are designed to prevent problems of being trapped in local optima
and premature convergence. This fact justifies the dependance of the (16), (17) and α from the number
of iterations; in other terms, Pd = Pd(i), Pp = Pp(i) and α = α(i) with i = 1, ..., k.

All of the rules have been generated through knowledge. The presence of a lack of improvement
when the number of iterations is low is a sign of being trapped in the local optimum and premature
convergence. If the number of iterations is low and α(i − 1) is low, then α(i) is set to low. In fact,
when α is low, the value of the gravitational constant G increases. Therefore, the acceleration and
velocity of the agents increase, and the population can escape from being trapped in local optima.
In the situations where the population diversity is low and the number of iterations is medium, a
reduction of α improves the diversity to achieve better solutions.

Algorithms 2017, 10, 44 6 of 19

In order to increase the power of exploitation of the algorithm, when the iteration number is high,
the gravitational constant must decrease. Therefore, by increasing α, it follows that G decreases.

If the algorithm is at the last iterations, there is a lack of improvement and the diversity is huge,
the algorithm has failed the convergence target. In these situations, α must be increased. Finally, all of
the rules follow the knowledge described before.

Our fuzzy system uses the Mamdani inference system, and the inputs are combined logically
using the AND operator. The centroid is the used defuzzification method.

In the evolutionary fuzzy systems, the membership functions’ shapes can be evolved using a
genetic algorithm [37]. Setnes et al. [38] proposed a real-coded GA, which simultaneously optimizes
the parameters of the antecedent membership functions and the rule consequent. By following this
way, we apply a suitable genetic algorithm to establish the best slopes of the triangular/trapezoidal
membership functions.

In order to achieve a good optimization, the optimization range for all of the membership functions
has to be defined. The ranges are established avoiding possible crossings of more than two membership
functions. The inputs N, Pd and Pp have the same ranges for all of the simulations. The whole range of
the iteration number N is [0, 1000] (i.e., k = 1000), whereas the population diversity Pd and population
progress Pp are normalized in [0, 1]. On the contrary, the optimization intervals of the α membership
functions are determined empirically for each benchmark function.

In this work, we consider real-coded GAs [39] because binary coded or classical GAs [40] are less
efficient when applied to multidimensional, high-precision or continuous problems. In fact, the bit
strings can become very long, and the search space blows up.

A serious problem of the genetic algorithms’ design is the definition of the fitness function [41].
Bad fitness functions can easily make the algorithm get trapped in a local optimum solution and
lose the discovery power. Petridis et al. [42] presented a specific varying fitness function technique
that incorporates the problem’s constraints into the fitness function in a dynamic way. However, our
evaluation of the fitness functions is based on two features: efficiency and precision. Good fitness
functions help the algorithm to explore the search space more effectively and efficiently. In order to
assure such features, the fitness function f (x) shown in (18) is defined.

f (x) =
1

1 + exp(4
√

x)
; (18)

In Equation (18), the variable x represents the best so far solution [22] to the iteration number
k = 1000. The genetic algorithm searches the value of x that maximizes the fitness function (18). Such
a value of x will be as small as possible. The slope of the membership functions is adjusted until the
optimal value of (18) is achieved.

The genetic algorithms are characterized by three genetic procedures: selection, crossover and
mutation. Among the various selection methods, we choose the roulette wheel selection method [43].
In roulette wheel selection, the probability that individual i is selected, P(I = i), is computed by
Equation (19), where l is the population number.

P(I = i) =
fi(x)

∑l
j=1 f j(x)

; (19)

Algorithm 2 implements the roulette wheel selection.

Algorithms 2017, 10, 44 7 of 19

Algorithm 2

S1. For each individual i, with i = 1, 2, ..., l:
S1.1. Generate a random number r between 0 and 1.
S1.2. Initialize the variables sum to 0 and j to 1.
S1.3. If sum ≥ r go to S.1.4.
S1.3.1. Compute sum = sum + P(I = i), where P(I = i) is defined in (19).
S1.3.2. Increment j.
S1.3.3. Go to Step S1.3.
S1.4. Set parent(i) = par(j− 1), i.e., establish the i− th parent parent from the (j− 1)− th value of
the parameter par.
S2. Print the values of the parents.

In order to improve the convergence of the GA, we consider the elitism procedure [44]. It is an
addition to many selection methods that forces the GA to retain some number of the best individuals
at each generation. Some studies [45,46] show that elitism can increase the performance of GA by
preventing the loss of good solutions once they are found.

Another genetic procedure is the crossover. The crossover recombines genetic material of parent
chromosomes to produce offspring on the basis of crossover probability [47]. Given the mutations
number nmutation, the number of elitism nelit, the number of the population l and the parents
parent(i) (i = 1, ..., l), the designed crossover algorithm follows the steps of Algorithm 3.

Algorithm 3

S1. For all j from 1 to
⌊

l−nmutation−nelit
2

⌋
:

S1.1. Compute a random number t between −0.25 and 1.25
S1.2. Compute the parameters p(2j − 1) = t · parent(2j − 1) + (1 − t) · parent(2j) and
p(2j) = t · parent(2j) + (1− t) · parent(2j− 1).
S2. Print the parameters p

The mutation is a genetic operation that occasionally breaks one or more members of a population
out of a local minimum/maximum space and potentially discovers a better minimum/maximum
space [44]. Algorithm 4 describes the mutation algorithm, where the mutations number nmutation
and the random mutations number nmutationR [41,43] are given. Moreover, the variable sigma in
Algorithm 4 is calculated through the formula (20) where max(pr) and min(pr) are the max and min
value of the initial random parameters pr.

sigma =
max(pr)−min(pr)

10
; (20)

Algorithm 4
S1. For all the i from l − nmutation + 1 to l − nmutationR:
S1.1. Compute a random number phi between −1 and +1.
S1.2. Compute z = er f inv(phi) ∗ (20.5), where er f inv is the inverse error function.
S1.3. Compute the parameter p with the formula p(i) = z · (sigma) + parent(i), where sigma is
calculated by (20).
S2. Print the parameters p.

In our algorithm, the number l of population P is set to 100; the number of mutation m is equal
to 20; and number of elitism is equal to two. The designed fuzzy controller is optimized through
GA: the steps of the optimization algorithm are described in the Algorithm 5. GA optimizes the
slope of the membership functions (four parameters for each membership function), to achieve the
optimal membership functions. Because the membership functions number is 13, it follows that

Algorithms 2017, 10, 44 8 of 19

13× 4 = 52 parameters are optimized. Once the fuzzy controller is optimized, it may be used to adjust
the parameter α of GSA. The fuzzy gravitational search algorithm optimized by GA is described in
Algorithm 6.

Algorithm 5
S1. Pass the optimization ranges of the membership functions to GA.
S2. Select in a random way the initial optimal values of the parameters in the optimization ranges and calculate
the termination criteria of GA. This criteria depends on number of generations and fitness function values.
S3. If the termination criteria is achieved, go to S10.
S4. For each j− th element of the population P, with j = 1, ..., l, compute the steps from S4.1–S4.4
S4.1. Pass the optimal parameters to the fuzzy inputs/output of the controller.
S4.2. Initialize, in a random way, the position X of the agents in the search space. The initialization procedure
depends on the number of agents n, the dimension of the test functions r and the allowable range [up, down]
for the search space. The positions X’s are calculated by generating n × r random numbers between 0 and
1, and normalize them on the range [up, down]. In other terms, the positions are computed by the formula
X(i, j) = rand(i, j) ∗ (down− up) + down, with i = 1, ..., n and j = 1, ..., r.
S4.3. Set the initial value α(1) and for each iteration i, with i = 1, 2, ..., k, compute the steps from S4.3.1–S4.3.4
S4.3.1. Compute the fitness of the agents for a certain function. The fitness depends on the position of the agents
and the dimension of the function.
S4.3.2. The value of the fitness is necessary to calculate the mass of each agent mi(t) for i = 1, 2, ..., n. (see (11)). On
the other hand, mi(t) depends on best(t) and worst(t) (Equations (13) and (14), respectively), which also depend
on fitness. The gravitational constant G(t) is computed according to α(1) at the first iteration, whereas, for the
other iterations, G(t) is calculated according to the tuned value of α.
S4.3.3. According to G(t), the total force in different directions is calculated. In particular, the algorithm computes
the Euclidean distance between two agents Rij(t) and the force acting on mass i from mass j at a specific time t
(see (3)). Subsequently, the total force Fd

i (t) (see (6)) is computed. Therefore, the acceleration of the agents, their
velocity and position at t time are calculated by means of (7), (8) and (9), respectively.
S4.3.4. Compute the fuzzy output α(i + 1), i.e., the i + 1 value of α, through the fuzzy controller, which receives
the following inputs: iteration number i, population diversity Pd(i), population progress Pp(i) and α(i).
S4.4. Calculate the j− th value of the fitness function f j(x) defined in (18).
S5. Update the termination criteria parameters, which depend on fitness function values.
S6. Compute the parents parent(i) with i = 1, ..., l through the selection method by using the Algorithm 2.
S7. Compute the parameters p through the crossover method described in the Algorithm 3.
S8. Compute some parameters p with the mutation (Algorithm 4).
S9. Go to Step S3.
S10. Give to the output the optimal parameters of the membership functions.

Algorithm 6
S1. Initialize, in a random way, the position X of the agents in the search space. The initialization procedure
depends on the number of agents n, the dimension of the test functions r and the allowable range [up, down]
for the search space. The positions X’s are calculated by generating n × r random numbers between 0 and
1, and normalize them on the range [up, down]. In other terms, the positions are computed by the formula
X(i, j) = rand(i, j) ∗ (down− up) + down, with i = 1, ..., n and j = 1, ..., r.
S2. Set the initial value α(1) and for each iteration i, with i = 1, 2, ..., k, compute the steps from S2.1–S2.5.
S2.1. Compute the fitness of the agents for a certain function. The fitness depends on the position of the agents
and the dimension of the function.
S2.2. The value of the fitness is necessary to calculate the mass of each agent mi(t) for i = 1, 2, ..., n. (see (11)). On
the other hand, mi(t) depends on best(t) and worst(t) (Equations (13) and (14), respectively), which also depend
on fitness. The gravitational constant G(t) is computed according to α(1) at the first iteration, whereas, for the
other iterations, G(t) is calculated according to the adjusted value of α (which comes from fuzzy controller).
S2.3. According to G(t), the total force in different directions is calculated. In particular, the algorithm computes
the Euclidean distance between two agents Rij(t) and the force acting on mass i from mass j at a specific time t
(see (3)). Subsequently, the total force Fd

i (t) (see (6)) is computed. Therefore, the acceleration of the agents, their
velocity and position at t time, are calculated by means of (7), (8) and (9), respectively.
S2.4. Calculate the population diversity Pd(i) and the population progress Pp(i) as defined in (16) and (17).
S2.5. The GA-optimized fuzzy controller receives the inputs: iteration number i, population diversity Pd(i),
population progress Pp(i) and α(i). The controller gives the fuzzy output α(i + 1), i.e., the i + 1 value of α. In this
way, the value of α is tuned.
S3. Give to the output the best-so-far solution.

Algorithms 2017, 10, 44 9 of 19

Table 2. Test functions.

Unimodal Functions S

F1(X) = ∑r
i=1 x2

i [−100; 100]r

F2(X) = ∑r
i=1 |xi|+ ∏n

i=1 |xi| [−10; 10]r

F3(X) = ∑r
i=1

(
∑i

j=1 xj

)2
[−100; 100]r

F4(X) = maxi{|xi|, 1 ≤ i ≤ r} [−100; 100]r

F5(X) = ∑r−1
i=1

[
100 (xi+1 − xi)

2 + (xi − 1)2
]

[−30; 30]r

F6(X) = ∑r
i=1 ([xi + 0.5])2 [−100; 100]r

F7(X) = ∑r
i=1 i · x4

i + random[0, 1) [−1.28; 1.28]r

Multimodal Functions S
F8(X) = ∑r

i=1−xisin
√
|xi| [−500; 500]r

F9(X) = ∑r
i=1
[
x2

i − 10cos(2πxi + 10)
]

[−5.12; 5.12]r

F10(X) = −20exp
(
−0.2

√
1
n ∑r

i=1 x2
i

)
+ [−32; 32]r

−exp
(

1
r ∑n

i=1 cos(2πxi)
)
+ 20 + e

F11(X) = 1
4000 ∑r

i=1 x2
i −∏r

i=1 cos
(

xi√
i

)
+ 1 [−600; 600]r

F12(X) = π
r {10sin(πy1) + ∑r−1

i=1 (yi − 1)2[1+ [−50; 50]r

+10sin2(πyi+1)] + (yr − 1)2}+
+∑r

i=1 u(xi, 10, 100, 4)
yi = 1 + xi+1

4

u(xi, a, k, m) =

k(xi − a)m, xi > a
0, a < xi < a
k(−xi − a)m, xi < −a

F13(X) = 0.1{sin2(3πx1) + ∑r
i=1(x1 − 1)2[1+ [−50; 50]r

+sin2(3πx1 + 1)] + (xr − 1)2[1 + sin2(2πxr)]}+
+∑r

i=1 u(xi, 5, 100, 4)

In order to test the algorithms, unimodal and multimodal benchmark functions [48] are considered.
Table 2 shows the test functions, where r is the dimension of the function and S is a subset of Rr.

The membership functions of the fuzzy controller can be optimized also through evolutionary
algorithms such as PSO and DE. The idea is to optimize the parameter α of GSA by PSO and DE. In this
case, only the ranges of the α membership functions are optimized. Therefore, 3 × 4 (alpha previous
state) + 3 × 4 (alpha current state) = 24 parameters are optimized. In the PSO and DE case, the
membership functions ranges of α are defined considering a neighborhood of the optimal value of α

that come from PSO [10] (DE [16]) optimization. The steps of FGSA-PSO (DE) algorithm are illustrated
in Algorithm 7.

Algorithms 2017, 10, 44 10 of 19

Algorithm 7
S1. Optimize GSA with PSO (DE); in this way, the optimal value αopt is computed.
S2. Calculate a suitable neighborhood of αopt with the formulas: αoptin f = αopt − ε and αoptsup = αopt + ε, with
ε = 0.02.
S3. Compute the membership functions ranges of α taking into account the neighborhood of αopt.
S4. Initialize, in a random way, the position X of the agents in the search space. The initialization procedure
depends on the number of agents n, the dimension of the test functions r and the allowable range [up, down]
for the search space. The positions X’s are calculated by generating n × r random numbers between 0 and
1, and normalize them on the range [up, down]. In other terms, the positions are computed by the formula
X(i, j) = rand(i, j) ∗ (down− up) + down, with i = 1, ..., n and j = 1, ..., r.
S5. Set the initial value α(1) and for each iteration i, with i = 1, 2, ..., k, compute the steps from S5.1–S5.5.
S5.1. Compute the fitness of the agents for a certain function. The fitness depends on the position of the agents
and the dimension of the function.
S5.2. The value of the fitness is necessary to calculate the mass of each agent mi(t) for i = 1, 2, ..., n. (see (11)). On
the other hand, mi(t) depends on best(t) and worst(t) (Equations (13) and (14), respectively), which also depend
on fitness. The gravitational constant G(t) is computed according to α(1) at the first iteration, whereas, for the
other iterations, G(t) is calculated according to the adjusted value of α (which comes from fuzzy controller).
S5.3. According to G(t), the total force in different directions is calculated. In particular, the algorithm computes
the Euclidean distance between two agents Rij(t) and the force acting on mass i from mass j at a specific time t
(see (3)). Subsequently, the total force Fd

i (t) (see (6)) is computed. Therefore, the acceleration of the agents, their
velocity and position at t time, are calculated by means of (7), (8) and (9), respectively.
S5.4. Calculate the population diversity Pd(i) and the population progress Pp(i) as defined in (16) and (17).
S5.5. The PSO (DE)-optimized fuzzy controller receives the inputs: iteration number i, population diversity Pd(i),
population progress Pp(i) and α(i). The controller gives the fuzzy output α(i + 1), i.e. the i + 1 value of α. In this
way, the value of α is tuned.
S6. Give to the output the best-so-far solution.

4. Simulation and Discussion

The proposed algorithms are tested with MATLAB software on a 2.20-GHz CPU hardware for the
benchmark functions of Table 2. We firstly apply our algorithms to the unimodal functions, i.e., to the
test functions from F1 to F7. Subsequently, we take into account the multimodal test functions from F8

to F13. In all of the cases the number n of agents is set to 50; the dimension of the functions r is 30; the
maximum iteration k is 1000.

Algorithms 2–5 give the optimal parameters to define the membership functions. For each
benchmark function, different membership functions’ slopes are obtained. As an example, Figure 1
shows the optimal membership functions for the test function F10.

0 200 400 600 800 1000
0

0.5

1

N
0 0.2 0.4 0.6 0.8 1

0

0.5

1

Pd

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Pp
41 41.5 42 42.5 43
0

0.5

1

α(τ−1)

41 41.5 42 42.5 43
0

0.5

1

α(τ)

L

L

L

L

L

H

H

H

H

H

M

M

M

Figure 1. Optimal membership functions for the benchmark function F10.

By running Algorithm 6 with the best membership functions, we obtain the solid curve of Figure 2
for the benchmark function F1. The dashed line represents the best so far solution of GSA [22].

Algorithms 2017, 10, 44 11 of 19

Note that FGSA-GA tends to find the global optimum faster than GSA, and hence, it has a higher
convergence rate.

0 100 200 300 400 500 600 700 800 900 1000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

 F1

 Iteration

 B
e
s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 2. Comparison of the performance of the Gravitational Search Algorithm (GSA) and Fuzzy
Gravitational Search Algorithm (FGSA)-GA for minimization of F1.

The best so far solutions of GSA and FGSA-GA for F2 are shown in Figure 3. Observing Figure 3,
we note that up to the 30th iteration, the trend of GSA and FGSA-GA is about the same. After this
value, FGSA-GA is better than GSA. Note that the best so far solution achieved at the last iteration is
4.2× 10−13.

0 100 200 300 400 500 600 700 800 900 1000
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

 F2

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 3. Comparison of the performance of GSA and FGSA-GA for minimization of F2.

The trend of the GSA and FGSA-GA best so far solution for F3 is shown in Figure 4. The
improvement of FGSA-GA with respect to GSA is about four orders of magnitude.

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

 F3

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 4. Comparison of the performance of GSA and FGSA-GA for minimization of F3.

Algorithms 2017, 10, 44 12 of 19

From Figure 5, we observe that the trend of FGSA-GA is close to GSA: a relevant improvement is
achieved at the end of the iterations. Quantitatively, for the function F4, there is an improvement of
two orders of magnitude.

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 F4

 Iteration

 B
e
s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 5. Comparison of the performance of GSA and FGSA-GA for minimization of F4.

The multimodal functions are most difficult to optimize because they have many local minima.
For multimodal functions, the final results are more important, since they reflect the ability of the
algorithm to escape from poor local optima and locating a near-global optimum. Using Algorithm 6,
significant improvements are achieved with the test functions F10, F11 and F12.

For the multimodal function F10, FGSA-GA is better than GSA from the beginning to the end of
the iterations (see Figure 6). In particular, the maximum difference is of 10 orders of magnitude.

0 100 200 300 400 500 600 700 800 900 1000
10

−15

10
−10

10
−5

10
0

10
5

 F10

 Iteration

 B
e
s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 6. Comparison of the performance of GSA and FGSA-GA for minimization of F10.

Observing Figure 7, we can note that FGSA-GA improves GSA by about eight orders of magnitude:
FGSA-GA’s best so far solution is 9.61× 10−9.

0 100 200 300 400 500 600 700 800 900 1000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

 F11

 Iteration

 B
e
s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 7. Comparison of the performance of GSA and FGSA-GA for minimization of F11.

Algorithms 2017, 10, 44 13 of 19

Figure 8 shows the GSA and FGSA-GA trend over iteration number for function F12. Note that
the trend is about the same up to the 500th iteration. However, there is an improvement of FGSA-GA
at the end of the iterations.

0 100 200 300 400 500 600 700 800 900 1000
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

 F12

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA

 GSA

Figure 8. Comparison of the performance of GSA and FGSA-GA for minimization of F12.

Algorithm 5 uses GA to optimize the membership functions of the fuzzy system. However, the
parameter α of GSA can be optimized with the help of other optimization methods such as PSO and
DE. In FGSA, the idea is to define the membership functions range of α, taking into account the optimal
value of α obtained with PSO and DE. The procedure is described in Algorithm 7.

We compare the results of GSA and FGSA optimized by PSO (GSA-PSO and FGSA-PSO,
respectively). By observing Figure 9, we can note that the best-so-far solution of FGSA-PSO is better
than GSA-PSO for the test function F1. In fact, from Iteration 700–1000, the FGSA curve is below the
GSA curve. There is a good improvement for the test function F7 (see Figure 10) where FGSA-PSO
overcomes the performances of GSA-PSO. For the other test functions, the results are about the sames.

0 100 200 300 400 500 600 700 800 900 1000
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

 F1

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−PSO

 GSA−PSO

Figure 9. Comparison of performance of FGSA-PSO and GSA-PSO for minimization of F1.

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

 F7

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−PSO

 GSA−PSO

Figure 10. Comparison of the performance of FGSA-PSO and GSA-PSO for minimization of F7.

Algorithms 2017, 10, 44 14 of 19

Better results are achieved by FGSA optimized by DE (FGSA-DE) versus GSA optimized by
DE (GSA-DE). The results of FGSA-DE come from Algorithm 7. Figure 11 shows the comparison
between FGSA-DE and GSA-DE for the minimization of F4. Note that the FGSA-DE trend is better
than GSA-DE because the FGSA-DE curve is below GSA-DE. A similar situation for the function F9 is
obtained (see Figure 12). Moreover, for the test function F11, there is an improvement of about one
order of magnitude (see Figure 13). The simulation results for the function F13 show that the FGSA-DE
curve is always below GSA-DE (see Figure 14); therefore, FGSA-DE tends to find the global optimum
faster than GSA-DE.

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

 F4

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−DE

 GSA−DE

Figure 11. Comparison of the performance of FGSA-Differential Evolution (DE) and GSA-DE for
minimization of F4.

0 100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

 F9

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−DE

 GSA−DE

Figure 12. Comparison of the performance of FGSA-DE and GSA-DE for minimization of F9.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

 F11

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−DE

 GSA−DE

Figure 13. Comparison of the performance of FGSA-DE and GSA-DE for minimization of F11.

Algorithms 2017, 10, 44 15 of 19

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

 F13

 Iteration

 B
e

s
t−

s
o

−
fa

r

 FGSA−DE

 GSA−DE

Figure 14. Comparison of the performance of FGSA-DE and GSA-DE for minimization of F13.

The results are averaged over 30 and 16 runs, as in [22,26,27,35] and [28], respectively, and the
average, standard deviation and median of the best solution in the last iteration are computed.

Tables 3–6 resume the comparison between the algorithms FGSA-GA, FGSA-PSO and FGSA-DE
over 30 and 16 runs. The values shown in the tables are the average, standard deviation and median of
the best solution in the last iteration. Note that FGSA-DE is better than FGSA-GA and FGSA-PSO for
the functions F1 and F2. On the other hand, FGSA-GA overcomes FGSA-PSO and FGSA-DE for the
functions F3, F11 and F12. For the test functions F5–F9, the results are similar: there is not a dominant
algorithm.

Table 3. Comparisons between FGSA-GA, FGSA-PSO and FGSA-DE over 30 runs for unimodal functions.

F1 F2 F3 F4 F5 F6 F7

FGSA-GA 1.78× 10−27 2.32× 10−13 3.27× 10−5 2.28× 10−11 2.11× 101 2.00× 10−11 1.76× 10−2

5.61× 10−27 4.83× 10−13 3.24× 10−4 4.27× 10−12 3.85× 10−1 7.61× 10−12 6.32× 10−3

1.62× 10−26 2.30× 10−12 2.04× 10−4 1.26× 10−10 2.11× 101 3.20× 10−11 1.68× 10−2

FGSA-PSO 7.93× 10−25 6.16× 10−7 5.55× 102 2.85× 100 2.84× 101 4.56× 10−11 3.81× 10−2

2.30× 10−25 3.49× 10−7 2.27× 102 1.57× 100 4.16× 101 7.81× 10−12 2.28× 10−2

7.82× 10−25 8.05× 10−7 5.20× 102 2.57× 100 2.76× 101 5.26× 10−11 3.46× 10−2

FGSA-DE 2.85× 10−35 4.44× 10−17 9.68× 10−3 3.86× 10−11 2.10× 101 8.04× 10−11 2.27× 10−2

1.56× 10−36 2.35× 10−18 3.08× 10−3 6.35× 10−12 3.08× 10−1 6.79× 10−12 6.92× 10−3

1.46× 10−35 2.95× 10−17 1.48× 10−4 2.85× 10−11 2.10× 101 9.78× 10−11 2.16× 10−2

Table 4. Comparisons between FGSA-GA, FGSA-PSO and FGSA-DE over 30 runs for multimodal functions.

F8 F9 F10 F11 F12 F13

FGSA-GA 2.65× 103 1.47× 101 7.88× 10−15 1.30× 10−9 2.44× 10−21 2.74× 10−2

3.54× 102 3.28× 100 1.14× 10−16 2.69× 10−10 5.26× 10−22 3.41× 10−3

2.69× 103 1.39× 101 7.99× 10−15 2.97× 10−9 5.96× 10−21 1.59× 10−2

FGSA-PSO 2.73× 103 1.77× 101 7.05× 10−11 1.35× 101 1.12× 10−2 2.08× 101

4.20× 102 3.96× 100 2.01× 10−11 3.87× 100 3.06× 10−3 9.56× 100

2.73× 103 1.79× 101 7.51× 10−11 1.27× 10 1.13× 10−2 1.83× 101

FGSA-DE 2.79× 103 1.46× 101 7.99× 10−15 2.89× 10−2 1.97× 10−1 1.85× 10−2

5.55× 102 3.92× 100 9.33× 10−16 4.16× 10−2 3.18× 10−2 3.03× 10−3

2.71× 103 1.49× 101 7.99× 10−15 1.11× 10−2 7.55× 10−2 2.03× 10−2

Algorithms 2017, 10, 44 16 of 19

Table 5. Comparisons between FGSA-GA, FGSA-PSO and FGSA-DE over 16 runs for unimodal functions.

F1 F2 F3 F4 F5 F6 F7

FGSA-GA 1.73× 10−26 2.01× 10−12 3.22× 10−4 8.29× 10−11 2.10× 101 2.50× 10−11 2.15× 10−2

3.31× 10−27 6.75× 10−13 2.99× 10−5 2.77× 10−12 3.55× 10−1 4.47× 10−12 1.40× 10−3

1.66× 10−26 2.08× 10−12 1.90× 10−4 1.29× 10−10 2.12× 101 2.78× 10−11 1.84× 10−2

FGSA-PSO 8.91× 10−25 7.26× 10−7 5.77× 102 2.26× 100 5.07× 101 8.36× 10−11 3.38× 10−2

3.27× 10−26 2.19× 10−7 1.44× 102 1.49× 100 5.01× 100 1.45× 10−12 1.54× 10−2

8.28× 10−25 7.29× 10−7 5.37× 102 2.16× 100 2.76× 101 7.56× 10−11 3.18× 10−2

FGSA-DE 2.58× 10−35 5.17× 10−17 2.58× 10−4 3.11× 10−11 2.12× 101 8.36× 10−11 2.41× 10−2

2.23× 10−35 1.28× 10−18 2.48× 10−4 5.78× 10−12 1.75× 10−1 4.21× 10−12 8.14× 10−3

2.00× 10−35 3.05× 10−17 1.63× 10−4 1.98× 10−11 2.12× 101 7.78× 10−11 2.55× 10−2

Table 6. Comparisons between FGSA-GA, FGSA-PSO and FGSA-DE over 16 runs for multimodal functions.

F8 F9 F10 F11 F12 F13

FGSA-GA 2.63× 103 1.56× 101 8.44× 10−15 1.70× 10−9 2.04× 10−21 1.47× 10−2

4.45× 102 3.52× 100 1.21× 10−15 4.48× 10−10 4.15× 10−22 2.90× 10−3

2.49× 103 1.59× 101 7.99× 10−15 3.53× 10−8 6.73× 10−21 3.39× 10−2

FGSA-PSO 2.79× 103 1.82× 101 6.44× 10−11 1.50× 101 1.07× 10−2 1.80× 101

5.15× 102 4.62× 100 2.78× 10−11 3.94× 100 3.26× 10−3 1.03× 101

2.63× 103 1.89× 101 7.38× 10−11 1.36× 101 9.66× 10−3 1.71× 101

FGSA-DE 2.65× 103 1.55× 101 7.99× 10−15 6.18× 10−2 2.68× 10−1 2.23× 10−2

3.57× 102 4.30× 100 1.30× 10−15 6.37× 10−2 3.69× 10−1 3.21× 10−3

2.66× 103 1.49× 101 7.99× 10−15 5.37× 10−2 1.13× 10−1 1.38× 10−2

Table 7 shows the comparison of the results achieved by [22,26,27,35] with the performances of
the algorithms FGSA-GA, FGSA-PSO and FGSA-DE over 30 runs. This table does not contain the
results of all 13 test functions, but it resumes the more significant improvements for certain benchmark
functions. The last three columns of Table 7 contain the average of the best solution in the last iteration
of Algorithms 6–7. FGSA-GA gives better results than the GSA proposed by [22] for all of the functions
of Table 7. The maximum improvement is 19 orders of magnitude for the function F12. Moreover,
FGSA-GA is better than the BGSA proposed in [35] for all of the functions shown in Table 7. The best
improvement is of 22 orders of magnitude for the function F1. FGSA-GA improves the GSA designed
in [27] for the functions F2, F3, F4, F11 and F12. In particular, for the function F12, an improvement
of 20 orders of magnitude is achieved. The comparison between our FGSA and FGSA proposed by
Khabisi [26] can be accomplished only for the functions F1− F4. Except for the function F3, our
algorithm has better solutions than FGSA in [26]. FGSA-PSO is better than [22] for the functions F1,
F2, F3, F10 and F12. The best improvement is of 14 orders of magnitude for the function F1. Note that,
by comparing the FGSA-PSO results with [35], FGSA-PSO provides better outcomes except for F3 and
F11. Only for the function F12, FGSA-PSO overcomes the GSA proposed in [27]. FGSA-DE improves
the results of [22,26,27,35] for all of the functions in Table 7, except for F3 of [26].

Table 8 shows the results of FGSA-GA, FGSA-PSO and FGSA-DE versus GSA of [28] over 16 runs.
FGSA-GA improves the results of [28] for all of the functions, providing a relevant improvement for
F1 of 20 orders of magnitude. The provided solutions by FGSA-PSO are better than GSA [28] only for
the function F1. FGSA-DE is better than GSA [28] for the functions F1− F4 and F10. In this case, an
improvement of 18 orders of magnitude for F1 is achieved.

Finally, the results show that, both over 30 and 16 runs, FGSA-DE is optimal for unimodal
functions, whereas FGSA-GA is good for multimodal functions.

Algorithms 2017, 10, 44 17 of 19

Table 7. Comparison between FGSA-GA and revised GSA over 30 runs.

GSA [22] BGSA[35] GSA[27] FGSA[26] FGSA-GA FGSA-PSO FGSA-DE

F1 7.3× 10−11 4.65× 10−5 8.85× 10−34 2.2× 10−21 1.78× 10−27 7.93× 10−25 2.85× 10−35

F2 4.03× 10−5 0.0016 1.16× 10−10 2.5× 10−11 2.32× 10−13 6.16× 10−7 4.44× 10−17

F3 0.16× 103 26.29 468.44 1.1× 10−11 3.27× 10−5 5.55× 102 9.68× 10−4

F4 3.7× 10−6 1.28 0.0912 4.8× 10−11 2.28× 10−11 2.85× 100 3.86× 10−11

F10 6.9× 10−6 0.0400 6.34× 10−15 – 7.88× 10−15 7.05× 10−11 7.99× 10−15

F11 0.29 0.00409 4.9343 – 1.30× 10−9 1.35× 101 2.89× 10−2

F12 0.01 0.9001 0.1103 – 2.44× 10−21 1.12× 10−2 1.97× 10−1

Table 8. Comparison between FGSA-GA and revised GSA over 16 runs.

GSA [28] FGSA-GA FGSA-PSO FGSA-DE

F1 8.15× 10−17 1.73× 10−27 8.91× 10−25 2.58× 10−35

F2 1.42× 10−12 2.01× 10−13 7.26× 10−7 5.17× 10−17

F3 0.946 3.22× 10−5 5.77× 102 2.58× 10−4

F4 5.62× 10−5 8.29× 10−11 2.26× 100 3.11× 10−11

F10 8.22× 10−14 8.44× 10−15 6.44× 10−11 7.99× 10−15

F11 0.043678 1.70× 10−9 1.50× 101 6.18× 10−2

F12 6.03× 10−11 2.04× 10−21 1.07× 10−2 2.68× 10−1

5. Conclusions

The challenge of improving the performances of the search algorithms is an open problem.
However, there is no specific algorithm to achieve the best solution of the optimization problems. GSA
is a recent search method to find the global optimum. Many researches proposed revised versions of
GSA to reduce the time for finding the global optimum. Following this, intelligent techniques have
been applied to increase the search performances of GSA. In this paper, some revised FGSA based on
the optimization through GA, PSO and DE are proposed. The main idea is to tune the parameter α of
the gravitational constant G through a fuzzy controller optimized via GA, PSO and DE. The first FGSA
uses GA to optimize the membership functions’ slope of the fuzzy variable α. In the second and third
FGSA, PSO and DE define the best range of the fuzzy input/output membership functions. In both
cases, the optimization process of the fuzzy controller is accomplished just one time: once the fuzzy
controller is optimized, it is inserted in the steps of GSA to design FGSA.

In order to compare our outcomes to those of [22,26–28,35], the results are averaged over 30
and 16 runs. The results show that FGSA optimized by GA achieves better results than [22,26–28,35].
The best improvement with respect to [22] is of 19 orders of magnitude. Better results have been
achieved by comparing our findings with the findings of [27,35]: a maximum of 22 and 20 orders
of magnitude, respectively, is achieved. The order of magnitude of FGSA-GA is six-times greater
than [26] for the test function F1. The results of [28] are improved for all of the functions achieving
a maximum order of magnitude of 10. Moreover, FGSA optimized with PSO achieves better results
than GSA-PSO. Significant improvements are achieved for test functions F1 and F7, where FGSA-PSO
is better than GSA-PSO. For the function F13, FGSA-DE is better than GSA-DE by two orders of
magnitude. Comparing the results of FGSA-GA, FGSA-PSO and FGSA-DE, it follows that FGSA-DE is
optimal for unimodal functions, whereas FGSA-GA is good for multimodal functions.

Future studies will focus on novel adaptive gravitational search algorithms for fuzzy-controlled
servo system.

Author Contributions: Danilo Pelusi conceived and designed the experiments; Danilo Pelusi performed the
experiments; Danilo Pelusi and Raffaele Mascella analyzed the data; Danilo Pelusi, Raffaele Mascella and
Luca Tallini contributed analysis tools; Danilo Pelusi wrote the paper. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2017, 10, 44 18 of 19

References

1. Eiben, A.E.; Hinterding, R.; Michalewicz, Z. Parameter Control in Evolutionary Algorithms. IEEE Trans.
Evolut. Comput. 1999, 3, 47–75.

2. Montiel, O.; Castillo, O.; Melin, P. ; Rodriguez Diaz, A.; Sepulveda, R. Human evolutionary model: A new
approach to optimization. Inf. Sci. 2007, 177, 2075–2098.

3. Castillo, O.; Valdez, F.; Melin, P. Hierarchical genetic algorithms for topology optimization in fuzzy control
systems. Int. J. Gen. Syst. 2007, 36, 575–591.

4. Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology,
Control, and Artificial Intelligence; Bradford Books: Cambridge, MA, USA, 1992.

5. Tang, K.S.; Man, K.F.; Kwong, S.; He, Q. Genetic algorithms and their applications. IEEE Signal Process. Mag.
1996, 13, 22–37.

6. Pelusi, D. Optimization of a fuzzy logic controller using genetic algorithms. In Proceedings of the International
Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2011;
Volume 2, pp. 143–146.

7. Pelusi, D.; Mascella, R. Optimal control algorithms for second order systems. J. Comput. Sci. 2013, 9, 183–197.
8. Pelusi, D. On designing optimal control systems through genetic and neuro-fuzzy techniques. In Proceedings

of the International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 14–17
December 2011; pp. 134–139.

9. Pelusi, D.; Vazquez, L.; Diaz, D.; Mascella, R. Fuzzy algorithm control effectiveness on drum boiler simulated
dynamics. In Proceedings of the 36th International Conference on Telecommunications and Signal Processing,
Rome, Italy, 2–4 July 2013; pp. 272–276.

10. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

11. Ren, Z.; Zhang, A.; Wen, C.; Feng, Z. A scatter learning particle swarm optimization algorithm for multimodal
problems, Cybernetics. IEEE Trans. Cybern. 2014, 44, 1127–1140.

12. Shin, Y.-B.; Kita, E. Search performance improvement of Particle Swarm Optimization by second best particle
information. Appl. Math. Comput. 2014, 246, 346–354.

13. Wu, G.; Qiu, D.; Yu, Y.; Pedrycz, W.; Ma, M.; Li, H. Superior solution guided particle swarm optimization
combined with local search techniques. Expert Syst. Appl. 2014, 41, 7536–7548.

14. Wu, T.H.; Chang, C.C.; Chung, C.H. A simulated annealing algorithm for manufacturing cell formation
problems. Expert Syst. Appl. 2008, 34, 1609–1617.

15. Yu, X.; Zhang, X. Enhanced comprehensive learning particle swarm optimization. Appl. Math. Comput. 2014,
242, 265–276.

16. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359.

17. Fan, Q.; Yan, X. Self-adaptive differential evolution algorithm with discrete mutation control parameters.
Expert Syst. Appl. 2015, 42, 1551–1572.

18. Fan, Y.; Liang, Q.; Liu, C.; Yan, X. Self-adapting control parameters with multi-parent crossover in differential
evolution algorithm. Int. J. Comput. Sci. Math. 2015, 6, 40–48.

19. Goudos, S.K.; Zaharis, Z.D.; Yioultsis, T.V. Application of a differential evolution algorithm with strategy
adaptation to the design of multi-band microwave filters for wireless communications. Prog. Electromagn. Res.
2010, 109, 123–137.

20. Li, Y.-L.; Zhan, Z.-H.; Gong, Y.-J.; Chen, W.-N.; Zhang, J.; Li, Y. Differential Evolution with an Evolution Path:
A DEEP Evolutionary Algorithm. IEEE Trans. Cybern. 2015, 45, 1798–1810.

21. Li, X.; Yin, M. Application of Differential Evolution Algorithm on Self-Potential Data. PLoS ONE 2012, 7,
e51199.

22. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179,
2232–2248.

23. Holliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics; John Wiley and Sons: Hoboken, NJ, USA, 1993.
24. Askari, H.; Zahiri, S.H. Data Classification Using Fuzzy-GSA. In Proceedings of the International eConference

on Computer and Knowledge Engineering, Mashhad, Iran, 13–14 October 2011; pp. 6–11.

Algorithms 2017, 10, 44 19 of 19

25. Zahiri, S.H. Fuzzy gravitational search algorithm an approach for data mining. Iran. J. Fuzzy Syst. 2012, 9,
21–37.

26. Saeidi-Khabisi, F.S.; Rashedi, E. Fuzzy gravitational search algorithm. In Proceedings of the International
E-Conference on Computer and Knowledge Engineering, Mashhad, Iran, 18–19 October 2012; pp.156–160.

27. Sombra, A.; Valdez, F.; Melin, P.; Castillo, O. A new gravitational search algorithm using fuzzy logic to
parameter adaptation. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico,
20–23 June 2013; pp. 1068–1074.

28. Amoozegar, M.; Rashedi, E. Parameter Tuning of GSA Using DOE. In Proceedings of the International
eConference on Computer and Knowledge Engineering, Mashhad, Iran, 29–30 October 2014.

29. Avishek, P.; Maiti, J. Development of a hybrid methodology for dimensionality reduction in
Mahalanobis-Taguchi system using Mahalanobis distance and binary particle swarm optimization.
Expert Syst. Appl. 2010, 37, 1286–1293.

30. Beretaa, M.; Burczynski, T. Comparing binary and real-valued coding in hybrid immune algorithm for feature
selection and classification of ECG signals. Eng. Appl. Artif. Intell. 2007, 20, 571–585.

31. Chuang, L.H.; Chang, H.W..; Tu, C.J. Improved binary PSO for feature selection using gene expression data.
Comput. Biol. Chem. 2008, 32, 29–38.

32. Srinivasa, K.G.; Venugopal, K.R.; Patnaik, L.M. A self-adaptive migration model genetic algorithm for data
mining applications. Inf. Sci. 2007, 177, 4295–4313.

33. Yuan, X.; Nie, H.; Su, A.; Wang, L.; Yuan, Y. An improved binary particle swarm optimization for unit
commitment problem. Expert Syst. Appl. 2009, 36, 8049–8055.

34. Wang, X.; Yang, J.; Teng, X .; Xia, W.; Jensen, R. Feature selection based on rough sets and particle swarm
optimization. Pattern Recognit. Lett. 2007, 28, 459–471.

35. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. BGSA: Binary Gravitational Search Algorithm. Nat. Comput.
2010, 9, 727–745.

36. Schutz, B. Gravity from the Ground Up; Cambridge University Press: Cambridge, UK, 2003.
37. Shi, Y.; Eberhart, R.; Chen, Y. Implementation of Evolutionary Fuzzy Systems IEEE Trans. Fuzzy Syst. 1999, 7,

109–119.
38. Setnes, M.; Roubos, H. GA-Fuzzy Modeling and Classification: Complexity and Performance. IEEE Trans.

Fuzzy Syst. 2000, 8, 509–522.
39. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed.; Springer-Verlag: New York,

NY, USA, 1994.
40. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading; Addison-Wesley:

Boston, MA, USA, 1989.
41. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:

Cambridge, MA, USA, 1992
42. Petridis, V.; Kazarlis, S.; Bakirtzis, A. Varying Fitness Functions in Genetic Algorithm Constrained

Optimization: The Cutting Stock and Unit Commitment Problems. IEEE Trans. Syst. Man Cybern. 1998,
28, 629.

43. Banzhaf, W.; Nordin, P.; Keller, R.E.; Francone, F.D. Genetic Programming: An Introduction; Morgan Kaufmann:
San Mateo, CA, USA, 1998.

44. Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1999
45. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results.

Evol. Comput. 2000, 8 , 173–195.
46. Rudolph, G. Evolutionary Search under Partially Ordered Sets; Deptartment Computer Science/LS11,

University Dortmund: Dortmund, Germany, 1999.
47. Angeline, P.J. Two Self-Adaptive Crossover Operators for Genetic Programming, in Advances in Genetic Programming 2;

Angeline, P.J., Kinnear, K.E., Eds.; MIT Press; Cambridge, MA, USA, 1996.
48. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evolut. Comput. 1999, 3, 82–102.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Gravitational Search Algorithm
	The Evolutionary Fuzzy Algorithms
	Simulation and Discussion
	Conclusions

