
Article

Fuzzy Random Walkers with Second Order Bounds:
An Asymmetric Analysis

Georgios Drakopoulos 1, Andreas Kanavos 1,∗ and Konstantinos Tsakalidis 2

1 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;
drakop@ceid.upatras.gr

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L3G1, Canada;
ktsakali@uwaterloo.ca

* Correspondence: kanavos@ceid.upatras.gr

Academic Editors: Katia Lida Kermanidis, Christos Makris, Phivos Mylonas and Spyros Sioutas
Received: 22 December 2016; Accepted: 27 March 2017; Published: 30 March 2017

Abstract: Edge-fuzzy graphs constitute an essential modeling paradigm across a broad spectrum
of domains ranging from artificial intelligence to computational neuroscience and social network
analysis. Under this model, fundamental graph properties such as edge length and graph diameter
become stochastic and as such they are consequently expressed in probabilistic terms. Thus,
algorithms for fuzzy graph analysis must rely on non-deterministic design principles. One such
principle is Random Walker, which is based on a virtual entity and selects either edges or, like in
this case, vertices of a fuzzy graph to visit. This allows the estimation of global graph properties
through a long sequence of local decisions, making it a viable strategy candidate for graph processing
software relying on native graph databases such as Neo4j. As a concrete example, Chebyshev
Walktrap, a heuristic fuzzy community discovery algorithm relying on second order statistics and
on the teleportation of the Random Walker, is proposed and its performance, expressed in terms
of community coherence and number of vertex visits, is compared to the previously proposed
algorithms of Markov Walktrap, Fuzzy Walktrap, and Fuzzy Newman–Girvan. In order to facilitate
this comparison, a metric based on the asymmetric metrics of Tversky index and Kullback–Leibler
divergence is used.

Keywords: Bernoulli distribution; binomial distribution; Chebyshev inequality; first order statistics;
fuzzy graphs; graph analytics; higher order data; Jensen inequality; Markov inequality; Poisson
distribution; Random Walker principle; second order statistics; Walktrap algorithm

1. Introduction

The Random Walker principle is the algorithmic cornerstone for building a number of heuristics
for large graphs, namely for those with the fundamental property that neither their vertex nor their
edge set fits in main memory. Such heuristics are efficient in terms either of computation time or
memory requirements or often both. Under this principle, a virtual entity usually named the Random
Walker visits the vertices. Within the scope of this article, the probabilistic strategy followed by
the Random Walker to decide which vertex will visit next is of paramount importance, although,
depending on the problem under study, other properties of the Random Walker may be of interest.

Virtual or ideal entities play an important role in science and engineering, mainly as a means to
prove a theorem, to establish ideal performance limits, and to provide grounds for rejecting a conjecture
based on a reductio ad absurdum methodology. Consider, for instance, the particle sorting demon of
Maxwell [1,2] with its connections to algorithmic information theory and the steam engine of Heron of
Alexandria [3]. In addition, the Random Walker principle itself has been applied to a number of graph
analytics such as vertex similarity [4] and graph cuts [5] as well as to image processing [6].

Algorithms 2017, 10, 40; doi:10.3390/a10020040 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 40 2 of 21

A central finding of the theory of scale-free graphs, corroborated by significant evidence from a
broad range of fields such as genomics, computational neuroscience, combinatorics, and social network
analysis, states that they strongly tend to exhibit modularity. Namely, scale free graphs are recursively
composed of vertex communities. The latter is a crucial factor for simultaneously achieving scalability,
low-delay local information propagation, and structural robustness [7,8]. For instance, a large online
social media group for Roman history afficionados can be composed of overlapping but to a great
extent distinct specialized communities about Roman politics, law, and military, whereas the latter
may be further subdivided into smaller communities regarding weaponry, tactics, legion standards,
key battles, distinguished commanders, and the Praetorian guard.

Even though knowledge about communities offers a deep insight to graph structure, locating
them is intractable. Consequently, numerous community discovery algorithms have been developed.
Two of the most prominent ones are the Newman–Girvan [8] and the Walktrap [9] algorithms.
The former is deterministic and is based on local edge density, while the latter is heuristic and
relies on an edge crossing Random Walker. In [10], variants of both algorithms for edge-fuzzy graphs
were proposed. Furthermore, in [11], a random walk approach for community detection in complex
networks is introduced.

This article extends the work of [12]. Initially, the implementation of the Markov Walktrap
algorithm, which is an extended version of Fuzzy Walktrap, was firstly proposed in [10].
Fuzzy Walktrap in turn has been based on deterministic Walktrap algorithm [9]. Furthermore,
a method for algorithmically assessing the performance of Markov Walktrap relative to Fuzzy Walktrap
and Fuzzy Newman–Girvan, being another fuzzy community detection technique [10], are thoroughly
presented. Finally, one very important aspect to be mentioned is the expression of Markov Walktrap in
Cypher, which composes the main query language for Neo4j [13].

The primary contribution of this article is the implementation over Neo4j of Chebyshev
Walktrap, a community discovery algorithm designed for edge-fuzzy graphs, a class of fuzzy
graphs [14] used among others in [10], which is based on the Random Walker algorithmic principle.
Additionally, Chebyshev Walktrap relies on the competitive factors of second order statistics though
the Chebyshev inequality and on an optional relocation capability in order to bound unnecessarily
costly walks and, thus, remaining inside a community and being trapped for too long within the
boundaries of a community, respectively. The relocation aspect was also backported to the Markov
Walktrap algorithm first proposed in [15]. The effect of relocation on the community coherence
was evaluated based on the asymmetric Tversky index using the Fuzzy Newman–Girvan algorithm
from [15] as baseline, while its effect on the output distribution was assessed with the asymmetric
Kullback–Leibler divergence.

The remainder of this article is structured as follows. Scientific literature regarding community
discovery is reviewed in Section 2. The fuzzy graph model is outlined in Section 3 while Markov
Walktrap and Fuzzy Walktrap algorithms are presented in Section 4. Experimental results are discussed
in Section 5. Finally, the main findings of this paper as well as future research directions are discussed
in Section 6. Table 1 summarizes the symbols used in this paper.

Table 1. Paper notation.

Symbol Meaning
4
= Definition or equality by definition
⊗ Kronecker tensor product
{s1, . . . , sn} Set with elements s1, s2, . . . , sn
|·| Set cardinality or path length (depending on the context)
(e1, . . . , em) Path comprised of edges e1, . . . , em
Kn Complete graph with n vertices and (n

2) edges

Algorithms 2017, 10, 40 3 of 21

Table 1. Cont.

Symbol Meaning

E [X] Mean value of random variable X
Var [X] Variance of random variable X
τT,V Tanimoto similarity coefficient for sets T and V
νT,V Asymmetric Tversky index for sets T and V
S1 \ S2 Asymmetric set difference S1 minus S2
S̃ Fuzzy set S
〈sk〉 Sequence of elements sk
H (s1, . . . , sn) Harmonic mean of elements s1, . . . , sn
H (s1, . . . , sn; τ0) Thresholded or effective harmonic mean of s1, . . . , sn
1n n× 1 vector with ones
ek

n n× 1 zero vector with a single one at the k-th entry
f (n)(x) n-th order derivative of f (x)
〈p || q〉 Kullback–Leibler divergence between distributions p and q

2. Related Work

From a system perspective, graph analytics play a crucial role in data mining systems such as
Google Pregel or in massive machine learning frameworks such as GraphLab (https://turi.com/).
Moreover, recently, there is strong interest for scalable, production grade graph databases [13,16]
such as BrightStar (https://brightstardb.com), Neo4j (www.neo4j.com), Titan (https://github.com/
thinkaurelius/titan), Sparksee (www.sparsity-technologies.com) and GraphDB (www.ontotext.com).

Traditionally, from an algorithmic viewpoint, analytics include structural [17,18] and
spectral [19,20] partitioning, where a graph is split according to some functional constraints such
as flow or edge density. Efficient information diffusion in large graphs is also of interest [21,22],
especially for online political campaigns and digital marketing. The Random Walker principle has
been also applied to two other important metrics, namely vertex similarity [4] and heuristic minimum
cuts [5]. Both metrics can also be treated deterministically, especially in the context of social network
analysis [23,24]. Community structure discovery provides insight to the inner workings of a particular
graph [7,8,17], while metrics such as those in [25] control the discovery process quality. Persistent
graphs can be instrumental in designing rollback capabilities in graph databases [26].

Among the numerous applications of graphs or linked data, one can find Web searching
and ranking [27] with established algorithms such as PageRank [28] and HITS [29]. Bibliometric
and scientometric data analysis [30] can boost collaboration between researchers, while image
segmentation [6] is central to computer vision and robotics. Social network analysis has greatly
benefited from structural [31] or functional [32,33] community detection algorithms. Additionally,
influence and perceived social status in online social media have been tied to the participation in
communities [34]. Message diffusion within a social graph is studied [34,35], while [36–38] deal with
emotional modeling with respect to user influence [36]. Finally, random walkers have served as models
for the propagation of computer viruses both in single systems and in networks, including LANs
and the Internet [39,40]. Within this context, the strategy or the mix of strategies followed by the
random walker is of paramount importance as it affects the entity and number of resources susceptible
to infection.

First and second order statistics are used across a number of fields. In [41], a channel estimation
methodology based on first order statistics is proposed. Methods for blind source separation using
second order statistics include [42,43]. A comprehensive approach about the applications of higher
order methods is given in [44] signal processing and in [45] for biomedical engineering. In [46],
a third order method was presented for adaptively scheduling biosignal processing applications at
the operating system level. Independent Component Analysis (ICA), a powerful signal processing
technique, is based on higher order spectra [47]. Among the multitude of ICA applications is source
separation in EEG waveforms [48].

https://turi.com/
https://brightstardb.com
www.neo4j.com
https://github.com/thinkaurelius/titan
https://github.com/thinkaurelius/titan
www.sparsity-technologies.com
www.ontotext.com

Algorithms 2017, 10, 40 4 of 21

3. Edge-Fuzzy Graphs

3.1. Definitions

Within the scope of this paper, the edge-fuzzy graphs are probabilistic and combinatorial hybrids
comprised of a fixed set of vertices V and a fuzzy set of edges Ẽ. Formally,

Definition 1. A homogeneous edge-fuzzy graph is the ordered triplet

G 4
=
(
V, Ẽ, h

)
, (1)

where V = {vk} is the set of vertices, Ẽ = {ek} ⊆ V×V is the fuzzy set of edges, and h is the edge membership
function h : E→ (0, 1], which quantifies the degree of participation of each ek to G [10]. Moreover:

• the vertex set V is fixed, namely they belong to G with probability one,
• the distribution h is the same for each edge,
• the existence probability of ek is drawn independently for each edge.

A subtle point is that h does not affect the structural properties of the graph in the sense that no
edges are added or deleted, except when for a particular ek holds that h(ek) = 0. If h is continuous,
the probability of this ocurring is zero. However, if h is discrete, then depending on h a potentially
non-negligible portion of the edges may be deleted. In this article, h was chosen so that only at most
an exponentially small proportion of the edges would be assigned to a zero weight. Consequently,
the underlying graph preserved its original structure along with any associated connectivity patterns.
Otherwise, if a considerable fraction of edges were to be deleted, then the resulting graph would
behave more like an Erdös-Rényi graph. The latter are known to be easily constructed by randomly
sampling a graph space or, equivalently, the edges of Kn but their properties deviate in a significant
way from those of real world, large graphs.

Observe that there is no fuzziness whatsoever regarding vertices as by definition they always
exist with probability one. In scientific literature, the existence of fuzzy graph classes is prominent.
Vertices are fuzzy as well as their fuzziness interacts with that of the edges, mostly by long product
chains. Such graphs are beyond the scope of this article.

Definition 2. Under the fuzzy graph model of Defintion 1, the cost δ(ek) of traversing ek is

δ(ek)
4
=

1
h(ek)

∈ [1,+∞) , h(ek) ∈ (0, 1] , (2)

which expresses the intuitive requirement that edges which are less likely to belong to the graph are also harder
to cross.

Depending on the application, δ may well be connected through another non-linear transform to
h as long as edges with high h(ek) are easy to cross and edges with low h are difficult to cross such as

δ′(ek)
4
=

1
1 + h2(ek)

∈
[

1
2

, 1
]

,

δ′′(ek)
4
= ln

(
1

h(ek)

)
= − ln h(ek) ∈ [0,+∞) . (3)

Definition 3. The cost ∆
(

pj
)

of a fuzzy path pj = (e1, . . . , em) is the sum of the cost of its individual edges

∆
(

pj
) 4
= ∑

ek∈pj

δ(ek) =
m

∑
k=1

1
h(ek)

=
m

H (h(e1), . . . , h(em))
, h(ek) 6= 0, 1 ≤ k ≤ m, (4)

Algorithms 2017, 10, 40 5 of 21

whereH (h(e1), . . . , h(em)) is the harmonic mean of h(ek) defined as

H (s1 . . . sn)
4
=

1
1
n ∑n

k=1

(
1
sk

) =
n

1
s1
+ . . . + 1

sn

, sk 6= 0, 1 ≤ k ≤ n. (5)

By construction ∆
(

pj
)

is bounded as follows

1
max1≤k≤m {h(ek)}

≤
∆
(

pj
)∣∣pj
∣∣ ≤ 1

min1≤k≤m {h(ek)}
. (6)

Whether the above bounds are loose depends on the variability of the actual values h(ek). That is,
if the latter are drawn from a distribution which favors extreme values, ∆

(
pj
)

will tend to be close
to these bounds. It should also be noted that the variance ∆

(
pj
)

is strongly dependent on that of
h(ek). Moreover, ∆

(
pj
)

is prone to outliers, which might lead to an unrealistically high average fuzzy
path length. This can be remedied by taking into account the variance of the fuzzy path length.
Finally, a low ∆

(
pj
)

tends to contain almost exclusively low edge costs δ(ek) or, equivalently, edges
with high probability of belonging to the graph, an argument which agrees with the weak law of
large numbers. In turn, this suggests the intuitive corollary that low cost paths are comprised almost
exclusively of edges that are less likely to be fuzzy. This corollary can be used in order to design
efficient hybrid probabilistic and combinatorial algorithms based on dynamic programming for finding
and enumerating low cost paths akin to the way a similar observation has led to the development of
shortest paths relying on dynamic programming in deterministic graphs.

From a probabilistic viewpoint, the sum ∑m
k=1 δ(ek) is interesting by itself as a finite but possibly

large sum of inverse random variables. Notice that the central limit theorem may not be applied in such
a setting since the variance of the h(ek) might be infinite. If this is not the case, different bounds can be
computed depending on the distribution of h(ek) such as the abovementioned central limit theorem,
a Poisson bound, a power law bound, or finally approximations based on Markov or Chebyshev
inequalities, the Chernoff bound, or on the Gnedenko extreme value theorem. Notice that the effect of
a single edge which is exceedingly difficult to cross can be instrumental in shaping graph communities.

The numerical properties of the above sum are also of interest. As values of possibly uneven orders
of magnitude may be added, catastrophic cancellation may occur resulting in the loss of meaningful
information. This might happen if the summation is executed in an order left to the implementation.
On the other hand, the summation order dictated by the Priest algorithm [49] results in the least
possible loss of significant decimal digits by adding only numbers of comparable magnitude. Another
option would be to substitute the harmonic mean with its thresholded counterpart

H (s1, . . . , sm; τ0)
4
=

m

∑m
1

1
max{h(ek),τ0}

=
m

1
max{h(e1),τ0}

+ . . . + 1
max{h(em),τ0}

. (7)

For other uses of the thresholded harmonic and geometric means, see [50], while, for the effect of
finite precision arithmetic to long biosignals, see [51].

An alternative for long paths would be to substitute, under certain conditions, the finite sum with
an appropriate integral. Assuming with no loss of generality that h(e1) = min1≤k≤m {h(ek)} 6= 0 and
h(em) = max1≤k≤m {h(ek)} 6= 0, then

∆
(

pj
) 4
=

m

∑
k=1

1
h(ek)

≈ ρ0 +
∫ h(em)

h(e1)

1
x

dx = ln h(em)− ln h(e1) + ρ0 = ln
(

h(em)

h(e1)

)
+ ρ0, (8)

Algorithms 2017, 10, 40 6 of 21

where ρ0 is an optional correction factor. A finer approach requiring more probabilistic information
about the longer paths of a given graph would be to partition such a path pj so that

∆
(

pj
) 4
=

m

∑
k=1

1
h(ek)

≈
n

∑
i=1

(
ln h(eui)

ln h
(
e`i

) + ρi

)
=

n

∑
i=1

(
ln h(eui)

ln h
(
e`i

))+
n

∑
i=1

ρi =
n

∑
i=1

(
ln h(eui)

ln h
(
e`i

))+ ρ′0. (9)

Selecting n and forming the sets {h(eui)}
n
i=1,

{
h
(
e`i

)}n
i=1, and {ρi}n

i=1 is not a trivial task. Instead,
choosing such an approach might be a viable solution only for certain combinations of h and

∣∣pj
∣∣.

Techniques for estimating the variability as well as the cardinality of large sets such as [52] can be
useful while pursuing this approach.

It should be emphasized that the class of fuzzy graphs of Definition 1 can be well considered as
a typical example of higher order data. This is attributed to the inherently distributed way information
is stored in a graph, in this particular case as edge existence probabilities. In order for meaningful
information regarding path costs to be mined, a non-negligible fraction of edges must be crossed and,
thus, the interplay of a number of edges must be considered.

3.2. Reciprocal Random Variables

Because of the Definitions 2 and 3 for δ(ek) and ∆
(

pj
)
, respectively, the properties of an inverse

random variable gain more interest. The following definition is straightforward.

Definition 4. The inverse distribution of a mass distribution function of a random variable X is defined as the
mass distribution function of 1

X [53].

Property 1. In the continuous case, the distributions of X and 1
X are linked as

f 1
X
(y) =

1
y2 fX

(
1
y

)
, y 6= 0. (10)

Proof. The cumulative distribution of 1
X is defined as

F 1
X
(y)

4
= prob

{
1
X
≤ y

}
= prob

{
X ≥ 1

y

}
= 1− prob

{
X <

1
y

}
= 1− FX

(
1
y

)
. (11)

By differentiating the last relationship, the stated result follows.

For instance, if X is the continuous uniform random variable in [α1, α2], where α1, α2 6= 0, then the
distribution of 1

X is

f 1
X
(y) =

1
y2(α2 − α1)

, y ∈
[

1
α2

,
1
α1

]
. (12)

Despite its simplicity, in certain scenaria, relationship (10) cannot be used. For instance, only the
first moments of X may be known or y = 0 might be a legitimate value, in which case there is
a singularity in the inversion of fX(x). Instead, bounds are sought for the first moments of 1

X ,
which makes more sense from a programming viewpoint in the case of large graphs.

Jensen inequality provides a straightforward way to bound the expected value E
[

1
X

]
by using

the expected value E [X] of the non-zero random variable X.

Theorem 1. (Jensen inequality) For any random variable and any convex function g(x) provided that both the
domains of X and E [X] are subsets of the domain of g(·)

g(E [X]) ≤ E [g(X)] . (13)

Algorithms 2017, 10, 40 7 of 21

Corollary 1. The mean value of the strictly positive random variable 1
X has a lower bound of

1
E [X]

≤ E
[

1
X

]
, X 6= 0. (14)

Property 2. Function g(x) = 1
x is convex when x > 0.

Proof. Notice that the second derivative g(2)(x) = 2
x3 is positive when x is positive. An alternative

way to prove this claim is to apply the standard convexity definition. For every α0 ∈ [0, 1], x1 > 0,
and x2 > 0

g(α0x1 + (1− α0)x2) ≤ α0g(x1) + (1− α0)g(x2)⇒
1

α0x1 + (1− α0)x2
≤ α0

x1
+

1− α0

x2
⇔

α0x2(α0x1 + (1− α0)x2) + (1− α0)x1(α0x1 + (1− α0)x2)− x1x2 ≥ 0⇔

α0(1− α0)(x1 − x2)
2 ≥ 0. (15)

In order to derive realistic upper bounds for the path lengths of a given fuzzy graph, certain
probabilistic inequalities can be employed. The first is Markov inequality, which establishes a first
order bound for the probability of X taking very large values by stating that

Theorem 2. (Markov inequality) The probability of a strictly positive random variable X exceeding γ0 is
bounded by

prob {X ≥ γ0} ≤
E [X]

γ0
, γ0 > 0, X > 0. (16)

Second order bounds can be derived by the Chebyshev inequality. The latter provides tighter
bounds while lifting the positivity assumption.

Theorem 3. (Chebyshev inequality) The probability of an arbitrary random variable X exceeding its expected
value by a certain fraction γ0 of its standard deviation as

prob
{
|X− E [X]| ≥ γ0

√
Var [X]

}
≤ 1

γ2
0

, γ0 > 0. (17)

The Chebyshev inequality is generic enough to be applied in a number of scenaria, including
those in the present article. Still, it should be noted that other techniques may provide sharper bounds
in certain cases. For instance, when X is normally distributed, then specialized methods exist for
evaluating the integral under its tail.

Estimating the variance of a transformed random variable can be done through the delta method.

Theorem 4. (Delta method) Let X be a random variable whose expected value E [X] and variance Var [X] are
known. For an analytic g(x), the variance of g(X) can be estimated as

Var [g(X)] ≈
(

g(1)(E [X])
)2

Var [X] . (18)

Proof. The first order approximation of the Taylor expansion of g(·) around E [X] is

g(X) =
+∞

∑
k=0

g(k)(E [X])
Xk

k!
≈ g(E [X]) + g(1)(E [X]) (X− E [X]). (19)

Algorithms 2017, 10, 40 8 of 21

Taking the variance of both sides along with the identities,

Var [α0 + α1X] = α2
1Var [X] ,

Var [X− E [X]] = Var [X] , (20)

yields the stated result.

Corollary 2. For g(x) = 1
x , the delta method yields

Var
[

1
X

]
≈ Var [X]

E [X]4
=

E
[
X2]− E [X]2

E [X]4
=

E
[
X2]

E [X]4
− 1

E [X]2
, E [X] 6= 0. (21)

The Markov and Chebyshev are but two of the probabilistic inequalities collectively known as
concentration inequalities, the latter bound the deviation of a random variable or a sequence of random
variables from a known value. Other such inequalities include the Talagrand, the Efron–Stein, and the
Dvoretzky–Kiefer–Wolfowitz inequalities.

4. Family of Walktrap Heuristics

4.1. Deterministic Walktrap

The original Walktrap algorithm [9] simulates an edge crossing random walker in order to estimate
the stationary distribution of a homogeneous Markov chain. The walker can commence from any vertex
and cross edges by randomly selecting destination vertices, systematically moving to vertices with
high edge density as vertices are selected with probability proportional to their degree. Since vertices
can be visited an arbitrary number of times, unlike algorithms like BFS and DFS, eventually some
patterns in the vertex visiting sequence will emerge. As a community is from a structural perspective,
essentially a locally dense graph segment, the walker is more likely to move along vertices belonging
to the same community for a large time interval before moving to another community. Thus, analysis
of the vertex sequence generated by the random walker can reveal the underlying graph community
structure. The Walktrap algorithm is outlined in Algorithm 1.

Algorithm 1: Deterministic Walktrap
Require: graph G(V, E), termination criterion τ0
Ensure: vertex pair sequence

〈
sk, s∗k

〉
is generated

1: pick a random vertex v
2: repeat
3: pick a neighboring vertex v∗ with probability proportional to its degree as in (23)
4: store current vertex in v and move the walker to the new vertex v∗

and
〈
sk+1, s∗k+1

〉
← (v, v∗)

5: until τ0 is true
6: return vertex sequence

〈
sk, s∗k

〉
The degree of any neighboring vertex can be determined by the graph adjacency matrix A

defined as

A[i, j]
4
=

{
1, i = j ∨ (i, j) ∈ E

0, i 6= j ∧ (i, j) 6∈ E
∈ {0, 1}|V|×|V|. (22)

Algorithms 2017, 10, 40 9 of 21

Specifically, the degree of vk is the sum of the k-th column of A. The probability that from vertex
vp a neighbor vq is selected at the next step is directly proportional to

deg
(
vq
)

∑(vp ,vj)∈E deg
(
vj
) =

1T
|V| A eq

|V|

∑(vp ,vj)∈E 1T
|V| A ej

|V|

. (23)

In contrast to many graph algorithms, each vertex may be visited more than once. In fact, vertices
must be visited many times in order for meaningful patterns to emerge regarding community structure.
Typically, for deterministic graphs, a constant number of visits per vertex may suffice resulting in
a total of O (|V|) visits, though techniques exploiting the self-similarity nature of large, scale free
graphs may yield somewhat lower bounds of O

(
log1+ε |V|

)
, ε > 0. For fuzzy graphs, the linear

bound is as of yet unknown as to whether it can be improved.
In a distributed setting such as Hadoop, the Deterministic Walktrap can be scaled up since graph

segments can be distributed to the nodes. The map part will be the parallel random walkers crossing
edges. If such a walker must cross a segment, it can either bounce back or be transferred to the
appropriate node. The reduce part will be the frequency count of a large number of vertex pairs.

Once the random walker has finished crossing the graph, the communities are discovered by
means of hierarchical clustering using the frequency of pairs (s, s∗) as weights. It should be noted
that other methods such as Hidden Markov Models and text mining techniques dealing with missing
values [54] may be used for discerning community patterns in the sequence

〈
sk, s∗k

〉
.

4.2. Fuzzy Walktrap

The Fuzzy Walktrap algorithm has been proposed and analyzed in [10]. Similarly to Algorithm 2,
given a vertex vp, each neighbor vq is a candidate for being visited by the Random Walker with
probability proportional to its probability of belonging to the fuzzy graph, namely proportional to

h
((

vp, vq
))

∑(vp ,vj)∈Ẽ h
((

vp, vj
)) =

1T
|V| A

F eq
|V|

∑(vp ,vj)∈E 1T
|V| A

F ej
|V|

, (24)

where the fuzzy adjacency matrix AF defined as

AF[i, j]
4
=

1, i = j,

h
(
eij
)
, eij =

(
vi, vj

)
∈ Ẽ

0,
(
vi, vj

)
6∈ Ẽ.

∈ [0, 1]|V|×|V| , (25)

Fuzzy Walktrap is outlined in Algorithm 2.

Algorithm 2: Fuzzy Walktrap

Require: fuzzy graph G
(
V, Ẽ, h

)
, termination criterion τ0

Ensure: vertex pair sequence
〈
sk, s∗k

〉
is generated

1: pick a random vertex v
2: repeat
3: pick a neighboring vertex v∗ with probability proportional to its cost as in (24)
4: store current vertex in v and move the walker to the new vertex v∗

and
〈
sk+1, s∗k+1

〉
← (v, v∗)

5: until τ0 is true
6: return

〈
sk, s∗k

〉

Algorithms 2017, 10, 40 10 of 21

4.3. Markov Walktrap and Chebyshev Walktrap

Both the Markov Walktrap, proposed in [10], and Chebyshev Walktrap, introduced in this article,
algorithms improve Fuzzy Walktrap in two ways. The first is that during the walking phase the
Random Walker has two optional safeguards against being confined inside a community for too long.
Both of these safeguards are common for Markov Walktrap and Chebyshev Walktrap. The second
improvement is that, during the clustering phase, two communities may not merge if the path lengths
within the resulting community exceed a certain threshold. The latter is based on first order statistics
for the Markov Walktrap and on second order statistics for the Chebyshev Walktrap.

Regarding the control of community merge, for community Vk, the mean path cost πk is the sum
of the individual edge costs

πk
4
=

1
|Vk| ∑

ej∈Vk

δ
(
ej
)
, (26)

and, therefore, is also a random variable. By linearity of expectation,

E [πk] = E

 1
|Vk| ∑

ej∈Vk

δ
(
ej
) =

|Ek|
|Vk|

E
[
δ
(
ej
)]

. (27)

Moreover, as δ
(
ej
)

are independent,

Var [πk] = Var

 1
|Vk| ∑

ej∈Vk

δ
(
ej
) =

|Ek|
|Vk|2

Var
[
δ
(
ej
)]

. (28)

In the general case, the distribution of δ
(
ej
)

is unknown, for specific choices of h, it can be
computed or estimated. Alternatively, since πk is a sum of random variables, its distribution may be
known for certain special cases. For instance, the sum of independent Poisson random variable is
another Poisson random variable. In addition, the sum of independent binomial random variables is
also a binomial random variable. Finally, the sum of a large number of independent random variables
with finite variance is a normal random variable according to the Central Limit Theorem. Nonetheless,
in this article, no such assumptions were made and the expected value and the variance of πk were
approximated by the Jensen inequality and the delta method, respectively, in Equations (13) and (18).

Since πk is by construction positive, the Markov inequality can be applied. Therefore,

prob {πk ≥ γ0} ≤
E [πk]

γ0
(29)

or, equivalently,

prob
{

πk ≥
E [πk]

γ0

}
≤ γ0. (30)

If, for a threshold α0 ∈ (0, 1) πk exceeds α0γ0, then that community is excluded from merging for
an iteration provided it has at least ξ0 vertices. This is a first order probabilistic safeguard preventing
almost formed communities from losing their coherence.

On similar grounds, a second order such safeguard can be built on the Chebyshev inequality

prob
{
|πk − E [πk]| ≥ γ1

√
Var [πk]

}
≤ 1

γ2
1

. (31)

4.4. Escape Strategies

Although the purpose of the Random Walker is to discover communities by repeatedly visiting
neighboring vertices and crossing low cost edges, it is possible to be trapped inside a community

Algorithms 2017, 10, 40 11 of 21

if the latter is connected only through very high cost edges from the remaining graph. To this end,
the Random Walker has the option as in [15] to reverse its strategy and select neighboring vertices
with probability inversely proportional to their probability of existence if a random flag is triggered.
The latter was implemented as a Bernoulli random variable with success probability q0, which can
be set to zero if so desired in order to disable the weight inversion strategy. Recommended values
are typically O

(
|V|−ε

)
, ε ≥ 2. Therefore, as in [15], when weight inversion is enabled, the distance d

between communities implicitly depends on terms of the form

d ∝
∏ek∈Ẽ δ(ek)

∏ej∈Ẽ δ
(
ej
) , (32)

instead of terms of the form
d ∝ ∏

ek∈Ẽ

δ(ek). (33)

Alternatively, a probabilistically triggered restart of the Random Walker akin to the PageRank
teleportation [28], the random mutation operator in a genetic algorithm [55,56], or the restart strategy
in GMRES iterative solver for linear systems [57,58] was also considered. The relocation probability q1

has a Bernoulli distribution and is evaluated independently at each step. The number of steps before
such a relocation takes place is finite however small q1 may be as long as it remains strictly positive.
The number of steps N to the first relocation has a geometric distribution with success probability
equal to q1 with mass distribution function

prob {N = k} = q1 (1− q1)
k, k ≥ 0. (34)

Therefore, the expected value and variance of N, respectively, are

E [N] =
1
q1

and Var [N] =
1− q1

q2
1

. (35)

Even though the relocation modification clearly violates the inherent locality of the Walktrap
family of heuristics, if properly calibrated, it happens infrequently enough so as not to severely degrade
time performance. Moreover, in a distributed system, a simple move of the random walker to the
appropriate graph segment suffices and its cost is certainly affordable. Moreover, since relocation is
a rare event, the total number of relocations can be modeled by a Poisson distribution.

5. Analysis

5.1. Data

In order to experimentally evaluate the performance of Markov Walktrap, a Kronecker synthetic
graph [59–61] has been created. Kronecker graphs are recursively constructed from an original
generator graph with the following model

A0 = A,

Ak+1 = Ak⊗A, n ≥ 1, (36)

where A0 is the generator graph and ⊗ denotes the Kronecker tensor product.

Algorithms 2017, 10, 40 12 of 21

The generator matrix was

A0 =

1 1 1 0 0 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 0 0 1 1 1

, (37)

which has p = 7 vertices numbered from 0 to 6 and each vk is connected to vk1 , vk2 , and vk3 , where

k1 = (k− 1) mod p,

k2 = (k + 1) mod p,

k3 = (k + 2) mod p. (38)

The generator graph is shown in Figure 1.

Figure 1. The generator graph.

The Kronecker model of Equation (36) has been executed six times aiming to obtain a large graph
Y whose properties are summarized in Table 2.

Definitions 5 and 6 outline four important structural graph metrics.

Definition 5. The (log)density of a fuzzy graph is the ratio of the (logarithm of the) number of its edges to the
(logarithm of the) number of its vertices.

ρ0
4
=
|E|
|V| =

|V|1+ε

|V|
= |V|ε, 0 ≤ ε ≤ 1,

ρ′0
4
=

log |E|
log |V| =

log |V|1+ε

log |V| = 1 + ε. (39)

Definition 6. The (log)completeness of a fuzzy graph is the ratio of the (logarithm of the) number of its edges to
the (logarithm of the) number of the edges of the complete graph with the same number of vertices.

σ0
4
=
|E|
(|V|2)

=
2|E|

|V|(|V| − 1)
≈ 2

|E|
|V|2

= 2 |V|ε−1,

σ′0
4
=

log |E|
log (|V|2)

=
log |E|

log
(
|V|(|V|−1)

2

) =
log |E|

log |V|+ log (|V| − 1)− 1
≈ log |E|

2 log |V| =
ρ′0
2

=
1 + ε

2
. (40)

Algorithms 2017, 10, 40 13 of 21

Table 2. Structural properties of graph Y.

Property Value Property Value Property Value Property Value

Vertices 117,649 σ0 7.68 × 10−4 Triangles 37127 Squares 1981
Edges 5,315,625 σ′0 0.6631 min cost 5.1891 max cost 10.7232

ρ0 45.1821 Diameter length 19 avg cost 72.1149 avg cost 106.0012
ρ′0 1.3263 Diameter cost 124.4021 max cost 143.2716 max cost 198.2221

Observe that Y is highly connected as it has a low diameter of a relatively low cost, high average
degree, and a high number of triangles and squares.

5.2. Time and Memory Requirements

In Table 3, the total execution time for Chebyshev Walktrap (CW), Markov Walktrap (MW),
Fuzzy Walktrap (FW), and Fuzzy Newman–Girvan (FN-G) is shown. The last two algorithms are
outlined in [10], whereas Fuzzy Markov was proposed in [15]. The effect of the escape mechanisms
of weight inversion (I) and relocation (R) are also shown for Markov Walktrap and Chebyshev
Walktrap. The Fuzzy Newman–Girvan is an exhaustive algorithm that will serve as baseline both for
the requirements and the clustering quality. For the Walktrap algorithms, the time for the two phases,
namely random walking (RW) and community building (CB), are recorded separately, while for the
Fuzzy Newman–Girvan case only, the total time is recorded as there is only a single phase. In addition,
the last column of Table 3 lists the number of the vertices visited by the random walker.

Table 3. Performance in terms of time (sec) and vertex visits.

Algorithm Distribution RW (s) CB (s) Total (s) Visits

CW Poisson 128.1381 2000.9831 2129.1212 471,858
CW Binomial 131.2182 2000.0304 2131.2486 470,342

CW + I Poisson 144.4752 1911.9118 2056.3870 477,423
CW + I Binomial 139.9916 1904.0216 2044.0132 477,216
CW + R Poisson 157.0104 1840.0013 1997.0117 476,997
CW + R Binomial 157.6633 1850.1003 2007.7636 476,957
CW + IR Poisson 164.3779 2002.7745 2167.1524 477,762
CW + IR Binomial 162.0222 1911.8664 2073.8886 477,002

MW Poisson 157.5248 2104.9918 2262.5166 475,308
MW Binomial 156.9924 2099.5256 2256.5180 475,121

MW + I Poisson 165.3374 1908.6612 2073.9986 478,313
MW + I Binomial 163.0015 1902.4319 2065.4334 478,102
MW + R Poisson 173.9016 1850.0971 2023.9987 477,916
MW + R Binomial 171.0017 1840.0054 2011.0071 477,831
MW + IR Poisson 181.0013 2000.9917 2181.9930 478,514
MW + IR Binomial 178.0017 2000.8585 2178.8602 478,333

FW Poisson 191.9989 2425.1121 2617.1110 515,444
FW Binomial 184.0451 2417.3376 2601.3827 514,312

FN-G Poisson – – 9322.9514 –
FN-G Binomial – – 9344.7778 –

Fuzzy Newman–Girvan is considerably slower than any member of the Walktrap family of
algorithms. This can be attributed to the exhaustive nature of Fuzzy Newman–Girvan as well as
to the extensive use of locality by the Walktrap family. Moreover, the probabilistic constraints of
Markov Walktrap and Fuzzy Walktrap resulted in the acceleration of both phases of the respective
algorithms, with the second order constraints yielding the lowest times in each case. Concerning the
escape strategy of the random walker, the relocation option resulted in a slower walking phase but
in an accelerated community building phase, with that combination being more efficient than both

Algorithms 2017, 10, 40 14 of 21

weight inversion and the combination of the two escape strategies. Omitting an escape strategy is not
advisable. Therefore, it is not recommended to activate both escape strategies at the same time. At any
rate, the Chebyshev Walktrap with relocation (CW+R) had the best overall performance tagged along
in a close manner by the Markov Walktrap with relocation (MW+R). The original Fuzzy Markov being
the tardiest member of the family.

An explanation for the time achieved under the relocation strategy is that the teleportation
of the random walker results in cache misses, which translates to expensive fetch cycles in the
memory hierarchy system. This can be seen in the last two columns of Table 3, as there is not a clear
correspondence between the number of total visits and the total walking phase time. When relocation
is enabled, the mean visit time is clearly higher. At any rate, the number of visits is linear in the vertex
set cardinality.

In addition, the selection of h did not appear to have a significant performance impact, although in
most cases the random walker was slower when h was a Poisson random variable both in terms of time
and in terms of total visits. This can be attributed to the large number of high cost edges which forced
the walker to bounce more times inside a community before eventually moving to another. On the
other hand, the symmetric form of the binomial distribution mass function resulted in a larger number
of low cost edges, facilitating the movement of the random walker and making the communities easily
separable compared to the Poisson case.

The memory requirements were monitored with the Ubuntu Watch administrative tool as
presented in Table 4. In contrast to other similar tools such as htop, Watch generates a text output
which can be parsed and analyzed. It was periodically ran every 10 s through a bash script resulting in
records of several thousand of entries each.

Table 4. Performance in terms of memory (rounded in MBs).

Algorithm Distribution min max mean std

CW Poisson 4128 6742 4892 322
CW Binomial 4128 6744 4880 324

CW + I Poisson 4128 6739 4886 335
CW + I Binomial 4128 6744 4881 338
CW + R Poisson 4128 8002 5113 427
CW + R Binomial 4128 8000 5121 422
CW + IR Poisson 4128 8001 5208 345
CW + IR Binomial 4128 8002 5214 339

MW Poisson 4128 6744 4800 331
MW Binomial 4128 6740 4881 325

MW + I Poisson 4128 6739 4879 336
MW + I Binomial 4128 6751 4883 335
MW + R Poisson 4128 8004 5112 428
MW + R Binomial 4128 8002 5108 428
MW + IR Poisson 4128 8002 5200 343
MW + IR Binomial 4128 8000 5204 341

FW Poisson 4128 6750 4912 281
FW Binomial 4128 6742 4910 280

FN-G Poisson 8192 12,402 11,012 278
FN-G Binomial 8192 12,464 11,121 280

Fuzzy Newman–Girvan consumes more memory than any other algorithm presented in this
article by far. However, it utlilizes the memory constantly and consistently, as denoted by the relatively
low standard deviation. This is an important performance feature for operating systems process
schedulers [46]. On the other hand, the Walktrap family exploits graph caching. This in turn
translates to lower traffic between the disk and the memory, as Neo4j is not a memory-only database,
as well as to fewer synchronization and serialization operations. When the relocation strategy is

Algorithms 2017, 10, 40 15 of 21

selected, then memory utilization has certain spikes, as it can be inferred from the increased maximum
memory occupied and the increased standard deviation. This is a direct result of the random walker
teleportation which temporarily annuls any scheduling optimization as well as any caching done at
the software or hardware level.

5.3. Community Coherence

The following definition will facilitate further analysis of the experimental results.

Definition 7. The (log)scree plot of a set S is the plot of the (logarithm of the) values of S versus their
sorted frequency.

Since Y does not contain ground truth communities, the communities obtained by the Fuzzy
Newman–Girvan will be used as a baseline reference since their sizes are closer to a power law
distribution, which is an essential feature of large, scale-free graphs. The deviation ξ of a set of
numbers {x}n

k=1 from a power law

fk = α0 k−γ0 , 1 ≤ k ≤ n, α0 > 0, γ0 > 0 (41)

is quantified by the formula [62,63]

ξ =

√
1
n

n

∑
k=1

(log fk − (log α0 − γ0 log k))2, (42)

where parameters α0 and γ0 can be estimated by, for instance, a least squares method [25]. Additionally,
the estimated value of α0 serves as a quality indicator, as it should be as close to [2, 3] as possible.

The number of communities for each algorithm are shown in Table 5. Notice that this is not an
absolute clustering quality metric, as typically a large number of coherent communities is preferable to
a smaller number of sparse ones. Nonetheless, the introduction of the relocation strategy systematically
pushes the number of communities towards the reference number, although more evidence is required
for determining community coherence. This will be addressed by the two asymmetric indices of
this section.

Table 5. Number of communities.

CW CW + I CW + R CW + IR MW MW + I MW + R MW + IR FW FN-G

Poisson 13,751 137,58 13,332 13,443 13,761 13,789 13,456 13,804 14,127 12,816
Binomial 18,841 18,912 16,090 17,621 18,877 18,801 17,002 18,811 18,891 15,117

In order to evaluate the clustering quality, the Kullback–Leibler divergence between the sorted
sizes of the communities generated by the Fuzzy Newman–Girvan and the sorted community sizes
of the remaining algorithms was computed. Recall that for two discrete distributions pk and qk the
Kullback–Leibler divergence is defined as

〈p || q〉 4=
n

∑
k=1

pk log
(

pk
qk

)
=

n

∑
k=1

pk log pk −
n

∑
k=1

pk log qk, (43)

where k ranges over the union of discrete events. If pk and qk have no events in common, then the
result is undefined. If for a single event pk = 0 or qk = 0, then the corresponding summand is zero.
Table 6 summarizes the divergence for the Poisson and the binomial cases.

Algorithms 2017, 10, 40 16 of 21

Table 6. Kullback–Leibler divergence.

CW CW + I CW + R CW + IR MW MW + I MW + R MW + IR FW

Poisson 0.6409 0.6311 0.2766 0.4504 0.3826 0.3911 0.3281 0.4519 0.8012
Binomial 0.3885 0.3977 0.3519 0.3700 0.5804 0.5687 0.6140 0.5626 0.6748

Chebyshev Walktrap with relocation outperforms the remaining algorithms, as it has less
divergence from the reference distribution.

A question at this point is whether a correspondence between the communities returned by each
algorithm can be found. The asymmetric Tversky index between two sets T and V is defined as

νT,V
4
=

|T ∩V|
|T ∩V|+ w1|T \V|+ w2|V \ T| , w1, w2 > 0, (44)

and it quantifies the distance between the template set T and the variant set V. By the very definition
of the index, the template set T and the variant set V are not interchangeable, namely νT,V 6= νV,T .
This agrees with intuition, as it makes sense to ask how much the heuristic results differ from the
ground truth community, whereas there is no point in asking the inverse question. On the contrary,
with a symmetric distance metric such as, for instance, the Tanimoto similarity coefficient

τT,V
4
=
|T ∩V|
|T ∪V| =

|T ∩V|
|T|+ |V| − |T ∩V| , (45)

no distinction can be made between the template and the variant, which can potentially lead to
misleading results.

At this point, it should be highlighted that Fuzzy Newman Girvan was executed only once since
it is a deterministic algorithm.

Returning to Label (44), the case w1 + w2 = 1 is of particular interest in data mining, as it
confines the coefficients on the plane which maximizes the minimum distance of T from V. Notice
that algebraically this asymmetry stems from both the terms |T \V| and |V \ T|, which denote the
number of elements of T not found in V and vice versa. Both terms signify in their own way how V is
different from T. The former corresponds to the part of V which is missing from T, whereas the latter
corresponds to any additions to V. As a rule, |T \V| is more important and, consequently, w1 > w2. As
there is no standard rule for selecting w1 and w2, the following two schemes have been used, a linear

w1 =
s

1 + s
=

1
1 + 1

s
, w2 =

1
1 + s

, 1 ≤ s ≤ 5 (46)

and an exponential

w1 =
es

1 + es =
1

1 + e−s , w2 =
1

1 + es , 0 ≤ s ≤ 2. (47)

Observe that in the first case w1
w2

= s, while in the second w1
w2

= es, which clearly represents
a non-linear scaling of the first case. Furthermore, the second case is considerably biased in favor
of |T \V|.

Once for each possible pair of the m ground truth communities Ti 1 ≤ i ≤ m and the n estimated
ones Vj 1 ≤ j ≤ n the mn Tversky indices have been computed, the similarity score J(s) for a given s
is computed

J(s)
4
=

1
mn

m

∑
i=1

n

∑
j=1

νTi ,Vj . (48)

Algorithms 2017, 10, 40 17 of 21

Summing over the range of s and taking the average, the mean similarity score J̄ is obtained

J̄ 4=
1
|s| ∑

s
J(s). (49)

The overall similarity scores are shown in Table 7.

Table 7. Tversky index.

Linear CW CW + I CW + R CW + IR MW MW + I MW + R MW + IR FW

Poisson 0.6199 0.6126 0.6616 0.6012 0.5881 0.5902 0.6211 0.5577 0.2742
Binomial 0.4323 0.4153 0.6059 0.5853 0.5648 0.5702 0.5814 0.5332 0.2131

Exponential CW CW + I CW + R CW + IR MW MW + I MW + R MW + IR FW

Poisson 0.5505 0.5345 0.7503 0.5462 0.5271 0.5383 0.7354 0.4811 0.1703
Binomial 0.5230 0.4841 0.6992 0.4737 0.5102 0.4890 0.6772 0.4283 0.1523

Again, Chebyshev Walktrap with relocation outperforms the remaining algorithms as it has
the highest similarity with the reference communities. Note that the exponential weighting scheme
sharpens the difference between the algorithms by raising the maximum scores and lowering the
minimum ones.

For the experiments of the section, the termination criterion τ0 was chosen to be a user supplied
number of iterations, namely |V| log |V|. This number of iterations is sufficiently large for generating
communities in a reliable way. Moreover, each iteration is very quick, so the overall execution time
was kept at an acceptable level despite the large number of iterations.

5.4. Relocations

Analysis is concluded with a summary regarding the relocations made by the Chebyshev Walktrap
and the Markov Walktrap.

In Table 8, certain statistics regarding the random walker relocations are shown. Specifically,
the first line presents the total number of relocations, whereas the second line shows the number
of steps that the random walker makes before being relocated for the first time. Similarly, the last
three lines contain the minimum, maximum and average number of steps between two successive
relocations, respectively.

Table 8. Relocation summary.

CW + R MW + R

Number of relocations 18 14
First relocation step 101 44

min between relocations 17,812 32,991
max between relocations 27,099 64,818

mean between relocations 21,002 38,002

6. Conclusions

The primary contribution of this article is the implementation over Neo4j of Chebyshev Walktrap,
a community discovery algorithm designed for edge-fuzzy graphs, a class of fuzzy graphs used
among others in [10], which is based on the Random Walker algorithmic principle. Additionally,
Chebyshev Walktrap relies on the competitive factors of second order statistics though the Chebyshev
inequality and on an optional relocation capability in order to bound unnecessarily costly walks
and, thus, remaining inside a community and being trapped for too long within the boundaries
of a community, respectively. The relocation aspect was also backported to the Markov Walktrap
algorithm first proposed in [15]. The effect of relocation on the community coherence was evaluated

Algorithms 2017, 10, 40 18 of 21

based on the asymmetric Tversky index using the Fuzzy Newman–Girvan algorithm from [15] as
baseline, while its effect on the output distribution was assessed with the asymmetric Kullback–Leibler
divergence. The latter was also the basis for evaluating the distance between the community size
distribution generated by Fuzzy Newman–Girvan and the one computed by the Makrov Walktrap and
the Chebyshev Walktrap. In these cases, the introduction of asymmetry resulted in the clear distinction
between the baseline data and their variants.

The test dataset was a large synthetic Kronecker graph whose edge fuzziness was controlled
either by a binomial or by a Poisson distribution. In this dataset, our performance metrics showed that
Chebyshev Walktrap yields more compact communities whose sizes are more clustered. Additionally,
Markov Walktrap is, in many instances, slightly faster at the expense of a somewhat bigger
memory footprint.

The experimental results of Section 5 hint at some future research directions. More sophisticated
from a probabilistic viewpoint, community discovery algorithms should be able to exploit the
asymmetry of the edge fuzziness distribution through higher order concentration inequalities such
as the Talagrand inequality, provided their computation is efficient. Moreover, new metrics for
community matching, perhaps utilizing functional or semantic information should be developed.
Additionally, methodologies for reliably assessing community coherence based on higher order
structural or functional interactions should be sought. Finally, more experiments in larger graphs
should be conducted in order to determine any inherent scalability limitations.

Author Contributions: Georgios Drakopoulos, Andreas Kanavos, and Konstantinos Tsakalidis conceived of the
idea, designed and performed the experiments, analyzed the results, drafted the initial manuscript and revised
the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zurek, W.H. Algorithmic Information Content, Church-Turing Thesis, Physical Entropy, and Maxwell’s Demon;
Technical Report; Los Alamos National Lab.: Los Alamos, NM, USA, 1990.

2. Brillouin, L. Maxwell’s demon cannot operate: Information and entropy. I. J. Appl. Phys. 1951, 22, 334–337.
3. Herrmann, D. Heron von Alexandria. In Die antike Mathematik; Springer: Berlin/Heidelberg, Germany, 2014;

pp. 257–288.
4. Fouss, F.; Pirotte, A.; Renders, J.M.; Saerens, M. Random-walk computation of similarities between nodes of

a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 2007, 19, 355–369.
5. Sinop, A.K.; Grady, L. A seeded image segmentation framework unifying graph cuts and random walker

which yields a new algorithm. In Proceedings of the 2007 IEEE 11th International Conference on Computer
Vision, Rio de Janeiro, Brazil, 2007; pp. 1–8.

6. Couprie, C.; Grady, L.; Najman, L.; Talbot, H. Power watersheds: A new image segmentation framework
extending graph cuts, random walker and optimal spanning forest. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 731–738.

7. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of community hierarchies in large
networks. J. Stat. Mech. Theory Exp. 2008, doi:10.1088/1742-5468/2008/10/P10008.

8. Girvan, M.; Newman, M. Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA
2002, 99, 7821–7826.

9. Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. Available Online:
https://arxiv.org/abs/physics/0512106 (accessed on 28 March 2017).

10. Drakopoulos, G.; Kanavos, A.; Makris, C.; Megalooikonomou, V. On converting community detection
algorithms for fuzzy graphs in Neo4j. In Proceedings of the 5th International Workshop on Combinations of
Intelligent Methods and Applications (CIMA), Vietri sul Mare, Italy, 9–11 November 2015.

11. Rosvall, M.; Bergstrom, C. Maps of Information Flow Reveal Community Structure in Complex Networks; Technical
Report; Available online: https://arxiv.org/abs/0707.0609 (accessed on 28 March 2017).

https://arxiv.org/abs/physics/0512106
https://arxiv.org/abs/0707.0609

Algorithms 2017, 10, 40 19 of 21

12. Drakopoulos, G.; Kanavos, A. Tensor-based Document Retrieval over Neo4j with an Application to
PubMed Mining. In Proceedings of the 7th International Conference of Information, Intelligence, Systems,
and Applications (IISA 2016), Chalkidiki, Greece, 13–15 July 2016.

13. Panzarino, O.P. Learning Cypher; PACKT Publishing: Birmingham, UK, 2014.
14. Rosenfeld, A. Fuzzy Graphs. Fuzzy Sets Appl. 1975, 513, 77–95.
15. Drakopoulos, G.; Kanavos, A.; Tsakalidis, A. A Neo4j implementation of fuzzy random walkers.

In Proceedings of the 9th Hellenic Conference on Artificial Intelligence (SETN 2016), Thessaloniki, Greece,
18–20 May 2016.

16. Robinson, I.; Webber, J.; Eifrem, E. Graph Databases; O’Reilly: Sebastopol, CA, USA, 2013.
17. Fortunato, S. Community Detection in Graphs. Phys. Rep. 2010, 486, 75–174.
18. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On Spectral Clustering: Analysis and an algorithm. In Proceedings

of the Advances in Neural Information Processing Systems (NIPS 2001), Vancouver, BC, Canada,
3–8 December 2001.

19. Kernighan, B.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst. Tech. J. 1970,
49, 291–307.

20. Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000,
22, 888–905.

21. Lancichinetti, A.; Fortunato, S. Community Detection Algorithms: A Comparative Analysis. Phys. Rev. E
2009, 80, 056117.

22. Leskovec, J.; Lang, K.J.; Mahoney, M.W. Empirical Comparison of Algorithms for Network Community
Detection. In Proceedings of the 19th International Conference on World Wide Web (WWW 2010), Raleigh,
NC, USA, 26–30 April 2010; pp. 631–640.

23. Carrington, P.J.; Scott, J.; Wasserman, S. Models and Methods in Social Network Analysis; Cambridge University
Press: Cambridge, UK, 2005.

24. Scott, J. Social Network Analysis: A Handbook; SAGE Publications: Thousand Oaks, CA, USA, 2000.
25. Drakopoulos, G.; Kanavos, A.; Tsakalidis, A. Evaluating Twitter Influence Ranking with System Theory.

In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST),
Rome, Italy, 23–25 April 2016.

26. Kontopoulos, S.; Drakopoulos, G. A space efficient scheme for graph representation. In Proceedings of
the 26th International Conference on Tools with Artificial Intelligence (ICTAI 2014), Limassol, Cyprus,
10–12 November 2014; pp. 299–303.

27. Langville, A.; Meyer, C. Google’s PageRank and Beyond: The Science of Search Engine Rankings; Princeton
University Press: Princeton, NJ, USA, 2006.

28. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web;
Stanford InfoLab: Stanford, CA, USA, 1999.

29. Kleinberg, J.M. Authoritative Sources in a Hyperlinked Environment. In Proceedings of the Symposium of
Discrete Algorithms (SODA), San Francisco, CA, USA, 25–27 January 1998; pp. 668–677.

30. Newman, M. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010.
31. Newman, M.E. Fast Algorithm for Detecting Community Structure in Networks. Phys. Rev. E 2004, 69, 066133.
32. Kafeza, E.; Kanavos, A.; Makris, C.; Chiu, D. Identifying Personality-based Communities in Social Networks.

In Proceedings of the Legal and Social Aspects in Web Modeling (Keynote Speech) in Conjunction with the
International Conference on Conceptual Modeling (ER) (LSAWM), Hong Kong, China, 11–13 November 2013.

33. Kafeza, E.; Kanavos, A.; Makris, C.; Vikatos, P. Predicting Information Diffusion Patterns in Twitter.
In Proceedings of the Artificial Intelligence Applications and Innovations (AIAI), Rhodes, Greece,
19–21 September 2014; pp. 79–89.

34. Kanavos, A.; Perikos, I. Towards Detecting Emotional Communities in Twitter. In Proceedings of the
9th IEEE International Conference on Research Challenges in Information Science (RCIS), Athens, Greece,
13–15 May 2015; pp. 524–525.

35. Kafeza, E.; Kanavos, A.; Makris, C.; Vikatos, P. T-PICE: Twitter Personality based Influential Communities
Extraction System. In Proceedings of the IEEE International Congress on Big Data, Anchorage, AK, USA,
27 June–2 July 2014; pp. 212–219.

Algorithms 2017, 10, 40 20 of 21

36. Zamparas, V.; Kanavos, A.; Makris, C. Real Time Analytics for Measuring User Influence on Twitter.
In Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
Vietri sul Mare, Italy, 9–11 November 2015.

37. Kanavos, A.; Perikos, I.; Vikatos, P.; Hatzilygeroudis, I.; Makris, C.; Tsakalidis, A. Conversation Emotional
Modeling in Social Networks. In Proceedings of the 26th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Limassol, Cyprus, 10–12 November 2014; pp. 478–484.

38. Kanavos, A.; Perikos, I.; Vikatos, P.; Hatzilygeroudis, I.; Makris, C.; Tsakalidis, A. Modeling Retweet Diffusion
using Emotional Content. In Proceedings of the Artificial Intelligence Applications and Innovations (AIAI),
Rhodes, Greece, 19–21 September 2014; pp. 101–110.

39. Kephart, J.O.; White, S.R. Directed-graph epidemiological models of computer viruses. In Proceedings
of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA,
20–22 May 1991; pp. 343–359.

40. Ren, J.; Yang, X.; Yang, L.X.; Xu, Y.; Yang, F. A delayed computer virus propagation model and its dynamics.
Chaos Solitons Fractals 2012, 45, 74–79.

41. Tugnait, J.K.; Luo, W. On channel estimation using superimposed training and first-order statistics.
In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’03), Hong Kong, China, 6–10 April 2003; pp. 4–624.

42. Tong, L.; Xu, G.; Kailath, T. Blind identification and equalization based on second-order statistics: A time
domain approach. IEEE Trans. Inf. Theory 1994, 40, 340–349.

43. Belouchrani, A.; Abed-Meraim, K.; Cardoso, J.F.; Moulines, E. A blind source separation technique using
second-order statistics. IEEE Trans. Signal Process. 1997, 45, 434–444.

44. Mendel, J.M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical
results and some applications. Proc. IEEE 1991, 79, 278–305.

45. Chua, K.C.; Chandran, V.; Acharya, U.R.; Lim, C.M. Application of higher order statistics (spectra) in
biomedical signals—A review. Med. Eng. Phys. 2010, 32, 679–689.

46. Drakopoulos, G.; Megalooikonomou, V. An adaptive higher order scheduling policy with an application
to biosignal processing. In Proceedings of the 2016 Symposium Series on Computational Intelligence
(SSCI 2016), Athens, Greece, 6–9 December 2016; pp. 921–928.

47. Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314.
48. Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order

statistics and independent component analysis. Neuroimage 2007, 34, 1443–1449.
49. Priest, D.M. Algorithms for arbitrary precision floating point arithmetic. In Proceedings of the 10th IEEE

Symposium on Computer Arithmetic, Grenoble, France, 26–28 June 1991; pp. 132–143.
50. Drakopoulos, G. Tensor fusion of affective Twitter metrics in Neo4j. In Proceedings of the 7th International

Conference of Information, Intelligence, Systems, and Applications (IISA 2016), Chalkidiki, Greece,
13–15 July 2016.

51. Drakopoulos, G.; Megalooikonomou, V. Regularizing Large Biosignals with Finite Differences. In Proceedings
of the 7th International Conference of Information, Intelligence, Systems, and Applications (IISA 2016),
Chalkidiki, Greece, 13–15 July 2016.

52. Drakopoulos, G.; Kontopoulos, S.; Makris, C. Eventually consistent cardinality estimation with applications
in biodata mining. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy,
4–8 April 2016; pp. 941–944.

53. Hamming, R.W. On the distribution of numbers. Bell Syst. Tech. J. 1970, 49, 1609–1625.
54. Aggarwal, C.C.; Zhai, C. Mining Text Data; Springer Science and Business Media: Berlin/Heidelberg,

Germany, 2012.
55. De Jong, K. Learning with genetic algorithms: An overview. Mach. Learn. 1988, 3, 121–138.
56. De Jong, K.A.; Spears, W.M. Using Genetic Algorithms to Solve NP-Complete Problems. In Proceedings of

the ICGA, Fairfax, VA, USA, 4–7 June 1989; pp. 124–132.
57. Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear

systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869.
58. Morgan, R.B. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations.

SIAM J. Matrix Anal. Appl. 2000, 21, 1112–1135.

Algorithms 2017, 10, 40 21 of 21

59. Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C.; Ghahramani, Z. Kronecker graphs: An approach to
modeling networks. J. Mach. Learn. Res. 2010, 11, 985–1042.

60. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graphs over time: Densification laws, shrinking diameters and
possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD05), Chicago, IL, USA, 21–24 August 2005; pp. 177–187.

61. Tsourakakis, C.E. Fast counting of triangles in large real networks without counting: Algorithms and laws.
In Proceedings of the ICDM, Pisa, Italy, 15–19 December 2008; pp. 608–617.

62. Drakopoulos, G.; Kanavos, A.; Makris, C.; Megalooikonomou, V. Finding fuzzy communities in Neo4j.
In Smart Innovation, Systems, and Technologies; Howlett, R.J., Jain, L.C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2016.

63. Drakopoulos, G.; Baroutiadi, A.; Megalooikonomou, V. Higher order graph centrality measures for Neo4j.
In Proceedings of the 6th International Conference of Information, Intelligence, Systems, and Applications
(IISA 2015), Corfu, Greece, 6–8 July 2015.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Edge-Fuzzy Graphs
	Definitions
	Reciprocal Random Variables

	Family of Walktrap Heuristics
	Deterministic Walktrap
	Fuzzy Walktrap
	Markov Walktrap and Chebyshev Walktrap
	Escape Strategies

	Analysis
	Data
	Time and Memory Requirements
	Community Coherence
	Relocations

	Conclusions

