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Abstract: The Social Spider Optimization algorithm (SSO) is a novel metaheuristic optimization
algorithm. To enhance the convergence speed and computational accuracy of the algorithm, in this
paper, an elite opposition-based Social Spider Optimization algorithm (EOSSO) is proposed; we use
an elite opposition-based learning strategy to enhance the convergence speed and computational
accuracy of the SSO algorithm. The 23 benchmark functions are tested, and the results show that the
proposed elite opposition-based Social Spider Optimization algorithm is able to obtain an accurate
solution, and it also has a fast convergence speed and a high degree of stability.

Keywords: social spider optimization; elite opposition-based learning; elite opposition-based social
spider optimization; function optimization

1. Introduction

A swarm intelligence optimization algorithm originates from the simulation of various types
of biological behavior in nature and has the characteristics of simple operation, good optimization
performance and strong robustness. Inspired by this idea, many bio-inspired swarm intelligent
optimization algorithms are proposed, such as, ant colony optimization (ACO) [1], differential
evolution (DE) [2], particle swarm optimization (PSO) [3], firefly algorithm (FA) [4], glowworm
swarm optimization (GSO) [5], monkey search (MS) [6], harmony search (HS) [7], cuckoo search
(CS) [8,9], bat algorithm (BA) [10], krill herd algorithm (KH) [11–13], Swarm intelligence optimization
algorithm can solve problems which traditional methods cannot handle effectively and have shown
excellent performance in many respects, and its application scope has been greatly expanded.

The Social Spider Optimization algorithm (SSO), proposed by Erik Cuevas in 2013 [14], is a
novel metaheuristic optimization algorithm that simulates social-spider behavior. Although SSO has
obtained good performance on many optimization problems, it still falls easily into a local optimal
solution. In order to enhance the performance of SSO on optimization problems, this paper presents a
novel SSO algorithm called EOSSO by using OBL and elite selection mechanism. Opposition-based
Learning (OBL) is a new concept in computational intelligence, many algorithms have used the
OBL mechanism [15,16], and it has been proven to be an effective strategy to improve performance
of various optimization algorithms. The main idea behind OBL is to transform solutions in the
current search space to a new search space. By simultaneously considering the solutions in the
current search space and the transformed search space, OBL can provide a higher chance of finding
solutions which are closer to the global optimum. However, OBL could not be suitable for all kinds
of optimization problems. For instance, the transformed candidate may jump away from the global
optimum when solving multimodal problems. To avoid this case, a new elite selection mechanism
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based on the population is used after the transformation. The proposed elite opposition-based Social
Spider Optimization algorithm is validated by 23 benchmark functions. The results show that the
proposed algorithm is able to obtained accurate solution, and it also has a fast convergence speed and
a high degree of stability.

The rest of the paper is organized as follows. Section 2 introduces the original Social Spider
Optimization algorithm (SSO). Section 3 proposes a new elite opposition-based Social Spider
Optimization algorithm (EOSSO). A series of comparison experiments on various benchmarks in
Section 4. The results analysis is described in Section 5. Finally, conclusion and future works can be
found and discussed in Section 6.

2. The Social Spider Optimization Algorithm

The SSO algorithm is divided into two different search agents (spiders): males and females.
Depending on gender, each individual is conducted by a set of different evolutionary operators
which mimic different cooperative behaviors that are commonly assumed within the colony. The SSO
algorithm starts by defining the number of female and male spiders that will be characterized as
individuals in the search space. The number of females (N f ) is randomly selected within the range of
65%–90% of the entire population (N). Therefore, N f is calculated by the following equation:

N f = f loor[(0.9− rand ∗ 0.25) ∗ N] (1)

where, rand is a random number in the range [0, 1], whereas f loor(.) maps a real number to an integer
number. The number of male spiders (Nm) is computed as the complement between N and N f . It is
calculated as follows:

Nm = N − N f (2)

where, the population (S) is composed by N elements and is divided into sub-groups F and M.
The group (F) include the set of female individuals (F =

{
f1, f2, . . . , fN f

}
) and the group (M) include

the set of male individuals (M = {m1, m2, . . . , mNm}), where S = F∪M (S = {s1, s2, . . . , sN}), such that

S =
{

s1 = f1, s2 = f2, . . . , sN f = fN f , sN f +1 = m1, sN f +2 = m2, . . . , SN = mNm

}
.

2.1. Fitness Assignation

In natural metaphor, the spider size is the characteristic that evaluates the individual capacity,
every spider receives a weight (wi) which represents the solution quality that corresponds to the spider
(i) of the population (S). The weight of every spider is defined:

wi =
J(si)− worsts

bests − worsts
(3)

where, J(si) is the fitness value obtained by the evaluation of the spider position (si) with regard
to the objective function (J(.)). The values of worsts and bests are defined as follows (considering a
maximization problem):

bests = max(J(sk))
k∈{1,2,...,N}

and worsts = min(J(sk))
k∈{1,2,...,N}

(4)

2.2. Modeling of the Vibrations through the Communal Web

The communal web is used as a mechanism to transmit information among the colony members.
The vibrations depend on the weight and distance of the spider which has generated them.
The vibrations perceived by the individual (i) as a result of the information transmitted by the member
(j) are modeled as the following equation:
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Vibi,j = wj ∗ e−d2
i,j (5)

where, di,j is the Euclidian distance between the spiders i and j, such that di,j =
∣∣∣∣si − sj

∣∣∣∣.
Although it is virtually possible to compute perceived vibrations by considering any pair of

individuals, but only three special relationships are considered within the SSO approach:

(1) Vibrations (Vibci) are perceived by the individual (i) as a result of the information transmitted
by the member (c) who is an individual that has two characteristics: it is the nearest member to
individual (i) and possesses a higher weight in comparison to individual (i) (wc > wi).

Vibci = wc ∗ e−d2
i,c (6)

(2) The vibrations (Vibbi) perceived by the individual (i) as a result of the information transmitted
by the member (b), with individual (b) being the individual holding the best weight (best fitness
value) of the entire population (S), such that wb = max(wk)

k∈{1,2,...,N}
.

Vibbi = wb ∗ e−d2
i,b (7)

(3) The vibrations (Vib fi) perceived by the individual (i) as a result of the information transmitted by
the member ( f ), with individual ( f ) being the nearest female individual to individual (i).

Vib fi = w f ∗ e−d2
i, f (8)

2.3. Initializing the Population

The SSO algorithm begins by initializing the set (S) of N social-spider positions. Each social-spider
position, fi or mi, is an n-dimensional vector containing the parameter values to be optimized.
Such values are randomly and uniformly distributed between the pre-specified lower initial
parameter bound (plow

j ) and the upper initial parameter bound (phigh
j ), just as it described by the

following expressions:

f 0
k,j = plow

j + rand(0, 1) ∗ (phigh
j − plow

j )
k=1,2,...,N f ;j=1,2,...,n

m0
k,j = plow

j + rand(0, 1) ∗ (phigh
j − plow

j )
k=1,2,...,Nm ;j=1,2,...,n

(9)

where k and j are the individual indexes, whereas zero signals the initial population. The function
(rand(0, 1)) generates a random number between 0 and 1.

2.4. Cooperative Operators

2.4.1. Female Cooperative Operator

To emulate the cooperative behavior of the female spider, the operator considers the position
change of the female spider (i) at each iteration process. The position change is computed as a
combination of three different elements. The first one involves the change in regard to the nearest
member to individual (i) that holds a higher weight and produces the vibration (Vibci). The second
one considers the change regarding the best individual of the entire population (S) who produces the
vibration (Vibbi). Finally, the third one incorporates a random movement.
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For this operation, a uniform random number (rm) is generated within the range [0, 1]. If random
number (rm) is smaller than a threshold (PF), an attraction movement is generated; otherwise, a
repulsion movement is produced. Therefore, such operator can be modeled as follows:

f k+1
i =

{
f k
i + α ∗Vibci ∗ (sc − f k

i ) + β ∗Vibbi ∗ (sb − f k
i ) + δ ∗ (rand− 1

2 ); rm < PF
f k
i − α ∗Vibci ∗ (sc − f k

i )− β ∗Vibbi ∗ (sb − f k
i ) + δ ∗ (rand− 1

2 ); rm > PF
(10)

where, α, β, δ and rand are random numbers between 0 and 1, whereas k represents the iteration
number. The individual (sc) represent the nearest and holds a higher weight of member to individual
(i), the individual (ss) represent that the social-spider with a highest weight in the entire population (S).

2.4.2. Male Cooperative Operator

In the natural, male population of social-spider is divided into two classes: dominant members
(D) and non-dominant members (ND) of male spiders. Male members, with a weight value above the
median value within the male population, are considered the dominant individuals (D). On the other
hand, those under the median value are labeled as non-dominant (ND) males.

In order to implement this computation, the male population (M = {m1, m2, . . . , mNm}) is
arranged according to their weight value in decreasing order. Thus, the individual whose weight
(wN f +m) is located in the middle is considered the median male member. Since indexes of the male
population (M) in regard to the entire population (S) are increased by the number of female members
(N f ), the median weight is indexed by N f + m. According to this, the male spider positions change
as follows:

mk+1
i =


mk

i + α ∗Vib fi ∗ (s f −mk
i ) + δ ∗ (rand− 1

2 ); wN f +i > wN f +m

mk
i + α ∗ (

∑Nm
h=1 mk

h∗wNf +h

∑Nm
h=1 wNf +h

−mk
i ); wN f +i ≤ wN f +m

(11)

where, the individual (s f ) represents the nearest female individual to the male member (i), whereas

median (∑Nm
h=1 mk

h ∗ wN f+h

/
∑Nm

h=1 wN f+h ) correspond to the weighted mean of the male population (M).

2.5. Mating Operator

Mating in a social-spider colony is performed by dominant males and the female members. Under
such circumstances, when a dominant male (mg) spider (g ∈ D) locates a set of female members (Eg)
within range of mating (r), it mates, forming a new brood (snew) which is generated considering all the
elements of the set (Tg), which has been generated by the union (Eg ∪mg). It is emphasized that if the
set (Eg) is empty, the mating operation is canceled. The range (r) is defined as a radius which depends
on the size of the search space. Such radius (r) is computed according to the following model:

r =

n
∑

j=1
phigh

j − plow
j

2n
(12)

In the mating process, the weight of each involved social-spider (elements of Tg) defines the
probability of influence for each individual into the new brood. The social-spider holding a heavier
weight is more likely to influence the new product, while elements with lighter weight have a lower
probability. The influence probability (Psi) of each member is assigned by the roulette method, which
is defined as follows:

Psi =
wi

∑
j∈Tg

wj
(13)

where i ∈ Tg.
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Once the new spider is formed, it is compared to holding the worst spider (swo) of the colony,
according to their weight values (where wwo = min(wl)

l∈{1,2,...,N}
). If the new spider is better than the worst

spider, the worst spider is replaced by the new one. Otherwise, the new spider is discarded and the
population does not suffer changes.

2.6. Computational Procedure

The computational procedure for the Algorithm 1 can be summarized as follow:

Algorithm 1: The Social spider optimization algorithm

Step 1: Think N as the total number of n-dimensional colony members, define the number of male (Nm) and females
spiders (N f ) in the entire population (S).

N f = f loor[(0.9− rand ∗ 0.25) ∗ N], Nm = N − N f

Where rand is a random number in the range [0, 1], whereas f loor(.) maps a real number to an integer number.

Step 2: Initialize randomly the female members (F =
{

f1, f2, . . . , fN f

}
), male members (M = {m1, m2, . . . , mNm}) and

calculate the radius of mating.

r =

n
∑

j=1
phigh

j − plow
j

2n

Step 3: Calculation the weight of every spider of S.
For (i =1; i < N +1; i++)

wi =
J(si)−worsts
bests−worsts

, where bests = max(J(sk))
k∈{1,2,...,N}

and worsts = min(J(sk))
k∈{1,2,...,N}

End For
Step 4: Female spider’s movement according to the female cooperative operator.

For (i =1; i < N f +1; i++)
Calculate Vibci and Vibbi

If (rm < PF), where rm ∈ rand(0, 1)
f k+1
i = f k

i + α ∗Vibci ∗ (sc − f k
i ) + β ∗Vibbi ∗ (sb − f k

i ) + δ ∗ (rand− 1
2 )

Else If
f k+1
i = f k

i − α ∗Vibci ∗ (sc − f k
i )− β ∗Vibbi ∗ (sb − f k

i ) + δ ∗ (rand− 1
2 )

End If
End For

Step 5: Move the male spiders according to the male cooperative operator
Find the median male individual (wN f +m) from M.

For (i =1; i < Nm +1; i++)
Calculate Vib fi
If (wN f +i > wN f +m)
mk+1

i = mk
i + α ∗Vib fi ∗ (s f −mk

i ) + δ ∗ (rand− 1
2 )

Else If

mk+1
i = mk

i + α ∗ (
∑Nm

h=1 mk
h∗wNf +h

∑Nm
h=1 wNf +h

−mk
i )

End If
End For

Step 6: Perform the mating operation
For (i =1; i < Nm +1; i++)

If (mi ∈ D)
Find Ei

If (Ei is not empty)
From snew using the roulette method

If (wnew > wwo)
swo = snew

End If
End If

End If
End For

Step 7: if the stop criteria is met, the process is finished; otherwise, go back to Step 3.
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3. Elite Opposition-Based Social Spider Optimization Algorithm (EOSSO)

When the SSO calculates unimodal function and multimodal function, we can clearly discover
that the solutions obtained by SSO are not good enough. In order to enhance accuracy of the algorithm,
we append one optimization strategy to SSO. There is global elite opposition-based learning strategy
(GEOLS). In this part, we introduce opposition-based learning (OBL) and global elite opposition based
learning strategy (GEOLS).

3.1. Opposition Based Learning (OBL)

OBL is, basically, a machine intelligence strategy which was proposed by Tizhoosh in [17].
It considers the current individual and its opposite individual simultaneously in order to get a better
approximation at the same time for a current candidate solution. It has been also proved that an
opposite candidate solution has a greater opportunity to be closer to the global optimal solution than a
random candidate solution [17]. Therefore, the concept of OBL has been utilized to enhance population
based algorithms in [18–21]. The general, OBL concept has been, successfully, applied in some areas
of research work such as in reinforcement learning [22], window memorization for morphological
algorithms [23], image processing using the opposite fuzzy sets [24,25] and also in some popular
optimization techniques like ant colony optimization [26–28], GA [29], artificial neural networks
with opposite transfer function and back propagation [30,31], DE, PSO with Cauchy mutation [32],
gravitational search algorithm [33], harmonic search algorithm [34], and BBO [35,36]. In proposing
this technique, some definitions are clearly defined below:

A. Opposite number:

Let p ∈ [x, y] be a real number. The opposite number of p(p∗) is defined by:

p∗ = x + y− p (14)

B. Opposite point:

Let p = (s1, s2, . . . , sn) be a point in n-dimensional search space, where pr ∈ [xr, yr] and r =

{1, 2, . . . , n}. The opposite point is defined by

p∗r = xr + yr − pr (15)

C. Opposition based population initialization:

By utilizing opposite points, a suitable starting candidate solution may be obtained even when
there is not a priori knowledge about the solution. The main steps of the proposed approach are listed
as follows:

Step 1 Initialize the population set in a random manner.
Step 2 Calculate opposite population by:

opa,b = xb + yb − pa,b (16)

where a = 1, 2, . . . , N, b = 1, 2, . . . , n and pa,b and opa,b denote the bth variable of the ath
vector of the population and opposite population, respectively.

Step 3 Select the fittest N individuals from {p ∪ op} as initial population.

D. Opposition based generation jumping

If we apply similar approach to the current population, the whole evolutionary process can be
forced to jump to a new solution candidate who is more suitable than the current one. From this
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comparison, the fittest N individuals are selected. In each generation, search space is reduced to
calculate the opposite points, i.e.,

opa,b = Mingn
b + Maxgn

b − pa,b (17)

where a = 1, 2, . . . , N and b = 1, 2, . . . ., n. [Mingn
b , Maxgn

b ] is the current interval in the population
which is becoming increasingly smaller than the corresponding initial range [xb, yb].

3.2. Global Elite Opposition-Based Learning Strategy (GEOLS)

The Social Spider Optimization algorithm use cooperation among female groups in global search
process. It is simulated by changes in the position of female spiders. As we know that it is a stochastic
process, the probability of getting a good solution is relatively low. For increasing the probability of
obtained a better solution to the problem in global search process and expand the searching space,
this strategy is applied to the proposed EOSSO.

Elite opposition-based Learning is a new technique in the field of intelligence computation.
Its main ideology is: for a feasible solution, calculate and evaluate the opposite solution at the same
time, and choose the better one as the individual of next generation. In this paper, individual with the
best fitness value in the population is viewed as the elite individual. For explaining the definition of
elite opposition-based solution, an example should be exhibited. If we suppose that the elite individual
of the population is Xe = (xe,1, xe,2, . . . ., xe,n). For the individual Xi = (xi,1, xi,2, . . . ., xi,n), the elite
opposition-based solution of Xi which can be defined as X∗i = (x∗i,1, x∗i,2, . . . , x∗i,n). In addition, it can be
obtained by following equation:

x∗i,j = k(daj + dbj)− xe,j, i = 1, 2, . . . , N; j = 1, 2, . . . , n. (18)

where N is the population size, n is the dimension of X, k ∈ U(0, 1) and (dajdbj) is the dynamic bound
of jth decision variable. daj, dbj can be obtained by following equation:

daj = min(xi,j), dbj = max(xi,j) (19)

As we know that the shrink of searching space may cause algorithm stuck in local minimal. Thus,
in this proposed algorithm, we will update daj and dbj every 50 generations. Dynamic bound is good
at restoring searching experience. However, it can make x∗i,j jump out of (dajdbj), if that happened,
equation below should be used to reset x∗i,j.

x∗i,j = rand(daj, dbj), if x∗i,j < daj or x∗i,j > dbj (20)

In global searching process, this strategy expands the searching space of algorithm and it can
strengthen the diversity of the population, thus the proposed global searching ability can be enhanced
by this optimization strategy.

4. Simulation Experiments

In this section, 23 benchmark test functions [37] are applied to evaluate the optimal performance
of EOSSO. The space dimension, scope and optimal value of 23 functions are shown in Tables 1–3.
The rest of this section is organized as follows: experimental setup is given in Section 4.1 and the
comparison of each algorithm performance is shown in Section 4.2.
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Table 1. Unimodal benchmark function.

Function Dim Range f min

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

f2(x) = ∑n
i=1 |xi|+ ∏n

i=1|xi| 30 [−10, 10] 0

f3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30 [−100, 100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] 30 [−30, 30] 0

f6(x) = ∑n
i=1 ([xi + 0.5])2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + random[0.1) 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark function.

Function Dim Range f min

f8(x) = ∑n
i=1−xi sin(

√
|xi |) 30 [−500, 500] −418.9829*5

f9(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

f10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i )− exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

1 cos( xi√
i
) + 1 30 [−600, 600] 0

f12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
}

+∑n
i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m; xi > a
0;−a < xi < a
k(−xi − a)m; xi < a

30 [−50, 50] 0

f13(x) = 0.1
{

sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + 10 sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]
}
+ ∑n

i=1 u(xi , 5, 100, 4)
30 [−50, 50] 0

Table 3. Fixed-dimension multimodal benchmark function.

Function Dim Range f min

f14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

)
−1

2 [−65, 65] 1

f15(x) = ∑11
i=1 [ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
2

4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]× [30
+(2x1 − 3x2)

2 ∗ ×(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
2 [−2, 2] 3

f19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 [1, 3] −3.86

f20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 [0, 1] −3.32

f21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.1532

f22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.4028

f23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci ]
−1 4 [0, 10] −10.5363

The benchmark functions selected can be divided into three categories (i.e., unimodal benchmark
functions, multimodal benchmark functions and fixed-dimension multimodal benchmark functions).
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They are f1– f7 for unimodal benchmark functions, f8– f13 for multimodal benchmark functions and
f14– f23 for fixed-dimension multimodal benchmark functions.

4.1. Experimental Setup

The proposed elite opposition-based Social Spider Optimization algorithm (EOSSO) compared
with ABC, BA, DA, GGSA and SSO, respectively using the mean and standard deviation to compare
their optimal performance. The parameters settings of algorithms are as follows: for all the optimization
algorithms, population size N = 50, the iteration number is 1000 and execute 30 independent
experiments. All of algorithms were programmed in MATLAB R2012a, simulated with an Inter
(R) Core(TM) i5-4590 CPU and 4 GB memory.

4.2. Comparison of Each Algorithm Performance

The 30 independent runs were made for the six algorithms, the results obtained by six
algorithms are presented in Tables 4–6. The evolution curves and the variance diagram of
f1, f4, f7, f9, f10, f11, f16, f18, f19 and f23 obtained by six algorithms are presented in Figures 1–10 and
Figures 11–20, respectively.

In Tables 4–6, The “Function” represents test function, “Dim” represents dimension size, each
number in the column “mean” is the average global optimal value of 30 time independent operation,
the “best” is the best global optimal value of 30 time independent operation, the “worst” is the worst
global optimal value of 30 time independent operation, each number in the column “std.” represents
standard deviation value of 30 time independent operation.

Table 4. Simulation results for test unimodal benchmark function.

Function Dim Algorithm Best Worst Mean std.

f1 30

ABC 3.69 × 10−8 2.32 × 10−6 5.34 × 10−7 5.40 × 10−7

BA 4.58 × 102 5.79 × 103 3.13 × 103 1.39 × 103

GGSA 4.45 × 10−20 4.17 × 10−19 1.72 × 10−19 9.49 × 10−20

DA 73.2 1.54 × 103 5.50 × 102 3.37 × 102

SSO 8.63 × 10−2 8.63 × 10−2 8.63 × 10−2 0
EOSSO 3.53 × 10−67 3.53 × 10−67 3.53 × 10−67 2.01 × 10−82

f2 30

ABC 9.47 × 10−6 6.56 × 10−5 2.75 × 10−5 1.27 × 10−5

BA 1.14 × 102 2.93 × 109 1.03 × 108 5.35 × 108

GGSA 8.97 × 10−10 3.42 × 10−9 1.88 × 10−9 5.72 × 10−10

DA 5.81 × 10−3 20.5 8.44 52.2
SSO 1.20 1.20 1.20 2.26 × 10−16

EOSSO 1.92 × 10−38 1.92 × 10−38 1.92 × 10−38 1.33 × 10−53

f3 30

ABC 1.14 × 104 2.45 × 104 1.97 × 105 3.08 × 103

BA 4.33 × 103 1.71 × 104 9.12 × 103 3.17 × 103

GGSA 1.32 × 102 5.37 × 102 2.68 × 102 90.5
DA 3.60 × 102 1.49 × 104 5.39 × 103 3.87 × 103

SSO 1.98 1.98 19.8 1.13 × 10−15

EOSSO 7.61 × 10−76 7.61× 10−76 7.61 × 10−76 6.24 × 10−91

f4 30

ABC 59.6 73.9 67.8 36.2
BA 42.9 68.9 56.0 65.4

GGSA 5.25 × 10−10 1.96 × 10−9 1.24 × 10−9 4.04 × 10−10

DA 7.38 24.1 14.8 43.9
SSO 1.47 × 10−1 1.47 × 10−1 1.47 × 10−1 5.56 × 10−17

EOSSO 1.20 × 10−37 1.20 × 10−37 1.20 × 10−37 2.12 × 10−53
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Table 4. Cont.

Function Dim Algorithm Best Worst Mean std.

f5 30

ABC 767 89.3 37.9 20.7
BA 243 5.12 × 102 59.4 92.4

GGSA 255 1.18 × 102 33.0 22.0
DA 30.9 2.36 × 105 3.41 × 104 5.38 × 104

SSO 35.4 35.4 35.4 0
EOSSO 26.8 26.8 26.8 1.08 × 10−14

f6 30

ABC 3.43 × 10−8 6.92 × 10−6 1.01 × 10−6 1.67 × 10−6

BA 6.99 × 102 5.71 × 103 2.82 × 103 1.30 × 103

GGSA 0 0 0 0
DA 1.20 × 102 1.56 × 103 4.22 × 102 3.16 × 102

SSO 1.08 × 10−1 1.08 × 10−1 1.08 × 10−1 1.41 × 10−17

EOSSO 5.01 × 10−1 5.01 × 10−1 5.01 × 10−1 2.26 × 10−16

f7 30

ABC 4.19 × 10−1 10.2 7.09 × 10−1 1.58 × 10−1

BA 6.93 × 10−3 2.09 × 10−2 1.23 × 10−2 3.65 × 10−3

GGSA 3.90 × 10−3 1.39 × 10−1 1.73 × 10−2 2.37 × 10−2

DA 1.75 × 10−2 3.25 × 10−1 1.27 × 10−1 8.00 × 10−2

SSO 1.68 × 10−2 1.68 × 10−2 1.68 × 10−2 0
EOSSO 1.22 × 10−4 1.22 × 10−4 1.22 × 10−4 5.51 × 10−20

Table 5. Simulation results for test multimodal benchmark function.

Function Dim Algorithm Best Worst Mean std.

f8 30

ABC −1.21 × 104 −1.10 × 104 −1.16 × 104 2.81 × 102

BA −8.45 × 103 −5.97 × 103 −7.06 × 103 7.40 × 102

GGSA −3.93 × 103 −2.17 × 103 −3.08 × 103 3.64 × 102

DA 7.38 24.1 14.8 4.39
SSO −7.61 × 103 −7.61 × 103 −7.61 × 103 2.78 × 10−12

EOSSO −7.69 × 103 −7.69 × 103 −7.69 × 103 3.70 × 10−12

f9 30

ABC 1.02 11.6 5.47 2.9
BA 1.48 × 102 2.51 × 102 1.99 × 102 26.3

GGSA 7.95 23.8 16 4.57
DA 34.3 1.99 × 102 1.14 × 102 49.9
SSO 63.3 63.3 63.3 0

EOSSO 0 0 0 0

f10 30

ABC 9.16 × 10−5 1.58 × 10−3 4.79 × 10−4 3.79 × 10−4

BA 18.5 19.9 19 2.50 × 10−1

GGSA 1.48 × 10−10 5.26 × 10−10 3.09 × 10−10 7.42 × 10−11

DA 4.44 × 10−15 10.8 6.46 2.01
SSO 3.12 × 10−1 3.12 × 10−1 3.12 × 10−1 5.65 × 10−17

EOSSO 4.44 × 10−15 4.44 × 10−15 4.44 × 10−15 0

f11 30

ABC 2.31 × 10−7 1.34 × 10−2 6.06 × 10−4 2.47× 10−3

BA 2.98 × 102 5.34 × 102 4.31 × 102 60
GGSA 1.63 7.87 3.59 1.3

DA 1.56 17.5 5.05 3.4
SSO 1.26 × 10−2 1.26 × 10−2 1.26 × 10−2 0

EOSSO 0 0 0 0

f12 30

ABC 1.02 × 10−10 1.67 × 10−8 3.32 × 10−9 3.87 × 10−9

BA 22.1 49.7 38.3 7.94
GGSA 4.78 × 10−22 2.07 × 10−1 3.83 × 10−2 6.14 × 10−2

DA 1.71 52.6 12.2 12.9
SSO 1.37 × 10−3 1.37 × 10−3 1.37 × 10−3 2.21 × 10−19

EOSSO 9.29 × 10−3 9.29 × 10−3 9.29 × 10−3 3.53 × 10−18

f13 30

ABC 1.27 × 10−8 3.55 × 10−6 2.93 × 10−7 6.53 × 10−7

BA 80.8 1.19 × 102 1.04 × 102 10.1
GGSA 5.41 × 10−21 1.09 × 10−2 3.66 × 10−3 2.00 × 10−3

DA 4.95 3.09 × 104 1.52 × 103 5.69 × 103

SSO 2.04 × 10−2 2.04 × 10−2 2.04 × 10−2 3.53 × 10−18

EOSSO 6.17 × 10−1 6.17 × 10−1 6.17 × 10−1 3.39 × 10−16
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Table 6. Simulation results for test fixed-dimension multimodal benchmark function.

Function Dim Algorithm Best Worst Mean std.

f14 2

ABC 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 1.20 × 10−5

BA 9.98 × 10−1 22.9 10 6.97
GGSA 9.98 × 10−1 10.7 3 2.36

DA 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 8.09 × 10−11

SSO 1.99 1.99 1.99 1.36 × 10−15

EOSSO 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 4.52 × 10−16

f15 4

ABC 4.16 × 10−4 1.48 × 10−3 9.93 × 10−4 2.52 × 10−4

BA 3.07 × 10−4 5.19 × 10−3 1.10 × 10−3 1.17 × 10−3

GGSA 4.80 × 10−4 3.43 × 10−3 1.78 × 10−3 6.36 × 10−4

DA 4.91 × 10−4 3.44 × 10−3 1.28 × 10−3 6.43 × 10−3

SSO 4.18 × 10−4 4.18 × 10−4 4.18 × 10−4 1.65 × 10−19

EOSSO 3.70 × 10−4 3.70 × 10−4 3.70 × 10−4 2.21 × 10−19

f16 2

ABC −1.03 −1.03 −1.03 1.25 × 10−6

BA −1.03 2.1 −8.18 × 10−1 6.19 × 10−1

GGSA −1.03 −1.03 −1.03 6.18 × 10−16

DA −1.03 −1.03 −1.03 6.27 × 10−8

SSO −1.03 −1.03 −1.03 4.52 × 10−16

EOSSO −1.03 −1.03 −1.03 6.78 × 10−16

f17 2

ABC 3.97 × 10−1 3.98 × 10−1 3.97 × 10−1 3.64 × 10−5

BA 3.97 × 10−1 3.97 × 10−1 3.97 × 10−1 8.40 × 10−9

GGSA 3.97 × 10−1 3.97 × 10−1 3.97 × 10−1 0
DA 3.97 × 10−1 3.97 × 10−1 3.97 × 10−1 7.62 × 10−7

SSO 3.97 × 10−1 3.97 × 10−1 3.97 × 10−1 0
EOSSO 3.97 × 10−1 3.97 × 10−1 3.97 × 10−1 0

f18 2

ABC 3 3.03 3 8.64 × 10−3

BA 3 84. 12 21.6
GGSA 3 3 3 1.98 × 10−15

DA 3 3 3 3.28 × 10−7

SSO 3 3 3 4.52 × 10−16

EOSSO 3 3 3 1.81 × 10−15

f19 3

ABC −3.86 −3.86 −3.86 1.77 × 10−6

BA −3.86 −3.08 −3.83 1.41 × 10−1

GGSA −3.86 −3.86 −3.86 2.52 × 10−15

DA −3.86 −3.85 −3.86 1.05 × 10−3

SSO −3.86 −3.86 −3.86 1.36 × 10−15

EOSSO −3.86 −3.86 −3.86 4.48 × 10−14

f20 6

ABC −3.32 −3.31 −3.32 1.03 × 10−3

BA −3.32 −3.2 −3.25 6.02 × 10−2

GGSA −3.32 −2.81 −3.29 9.71 × 10−2

DA −3.32 −3.07 −3.26 7.34 × 10−2

SSO −3.2 −3.2 −3.2 1.36 × 10−15

EOSSO −3.32 −3.2 −3.2 2.17 × 10−2

f21 4

ABC −10.1 −9.64 −9.89 1.58 × 10−1

BA −10.1 −2.63 −4.96 2.85
GGSA −10.1 −5.05 −5.22 9.30 × 10−1

DA −10.1 −5.09 −9.64 1.54
SSO −10.1 −10.1 −10.1 1.81 × 10−15

EOSSO −10.1 −10.1 −10.1 9.70 × 10−11

f22 4

ABC −10.3 −9.78 −10.1 1.90× 10−1

BA −10.4 2.75 5.33 3.19
GGSA −10.4 −5.08 −7.56 2.69

DA −10.4 −5.08 −9.12 2.25
SSO −10.3 −10.3 −10.3 5.42 × 10−15

EOSSO −10.4 −10.4 −10.4 2.02 × 10−11

f23 4

ABC −10.4 −9.67 −1.01 × 10−1 2.06 × 10−1

BA −10.5 −2.42 −5.36 3.52
GGSA −10.5 −10.5 −10.5 1.32 × 10−15

DA −10.5 −5.17 −9.98 1.63
SSO −10.5 −10.5 −10.5 3.61 × 10−15

EOSSO −10.5 −10.5 −10.5 2.45 × 10−11
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Figure 1. Dim = 30, evolution curves of fitness value for f1.
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Figure 2. Dim = 30, evolution curves of fitness value for f4.
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Figure 3. Dim = 30, evolution curves of fitness value for f7.
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Figure 4. Dim = 30, evolution curves of fitness value for f9.
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Figure 5. Dim = 30, evolution curves of fitness value for f10.
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Figure 6. Dim = 30, evolution curves of fitness value for f11.
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Figure 7. Dim = 2, evolution curves of fitness value for f16.
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Figure 8. Dim = 2, evolution curves of fitness value for f18.
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Figure 9. Dim = 3, evolution curves of fitness value for f19.
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Figure 10. Dim = 4, evolution curves of fitness value for f23.
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Figure 11. Dim = 30, variance diagram of fitness value for f1.
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Figure 12. Dim = 30, variance diagram of fitness value for f4.
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Figure 13. Dim = 30, variance diagram of fitness value for f7.
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5. Result Analysis

Seen from Table 4, in unimodal benchmark functions, EOSSO can get a better optimal solution for
f1, f2, f3, f4, f5 and f7 and has a very strong robustness. For f6, the precision of optimal fitness value
and mean fitness value of GGSA are higher than other algorithms. For the seven functions in unimodal
benchmark functions, standard deviation of EOSSO is less than that of other algorithm. In addition,
this means that in the optimization of unimodal function, EOSSO has better stability.

Similarly, seen from Table 5, EOSSO can find the optimal solution for f9 and f11. In addition,
the standard deviations are zeros. For f9, f10 and f11, the precision of mean fitness value, best
fitness value, worst fitness value and standard deviation of EOSSO are better than other algorithms.
These results mean that EOSSO has a strong searching ability and a great stability for solving
multimodal function optimization.

For f14– f23, we can see from Table 6 above that the best fitness value, the worst fitness value,
mean fitness value and standard deviation produced by EOSSO are better than other algorithms.
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In addition, for, EOSSO can get better best fitness value and mean fitness value and worst fitness value,
but standard deviation are worse than that of SSO. After analyzing Tables 4–6, a conclusion can be
easily drawn that EOSSO has a great ability for solving function optimization problems according to
the experimental results.

Figures 1–10 show the evolution curves of fitness value for f1, f4, f7, f9, f10, f11, f16, f18, f19 and
f23. From these Figures, we can easily find that EOSSO converge faster than other population based
algorithms mentioned above, and the values obtained by EOSSO are closer to the optimal value of
benchmark functions. These show that EOSSO has a faster convergence speed and a better precision
than SSO and other population based algorithms. Figures 11–20 show the anova test of global
minimum for f1, f4, f7, f9, f10, f11, f16, f18, f19 and f23. From these figures, we can discover that the
standard deviation of EOSSO is much smaller, and the number of outlier is less than other algorithms.
These imply that EOSSO has a great performance with a high degree of stability. In sum, proposed
EOSSO is an algorithm with fast convergence speed, high level of precision and a great performance
of stability.

In Section 4.2, 23 standard benchmark functions are selected to evaluate the performance of elite
opposition-based Social Spider Optimization algorithm (EOSSO). f1– f7 are unimodal function, f8– f13

are multimodal function, f14– f23 are fixed-dimension multimodal benchmark function. Experiment
results are listed in Tables 4–6. Figures 1–20 are evaluation curves of fitness values and anova test
of global minimum for f1, f4, f7, f9, f10, f11, f16, f18, f19 and f23. The results in tables show that a more
precise solution can be found by EOSSO. Figures listed in paper reflect a fact that EOSSO has a faster
convergence speed and a higher stability.

6. Conclusions and Future Works

In order to overcome the disadvantage of Social Spider Optimization algorithm that it is still
easy to fall into a local optimal solution, this paper presents a novel SSO algorithm called EOSSO by
using OBL and the elite selection mechanism. Opposition-based Learning (OBL) is a new concept in
computational intelligence and it has been proven to be an effective strategy to improve performance
of various optimization algorithms. The main idea behind OBL is to transform solutions in the current
search space to a new search space. By simultaneously considering the solutions in the current search
space and the transformed search space, OBL can provide a higher chance of finding solutions that
are closer to the global optimum. This kind of mechanism enhances the diversity of the population,
which helps to improve its exploration ability. From the results of the 23 benchmark functions, the
performance of EOSSO is better than, or at least comparable with other population-based algorithm
mentioned in this paper. EOSSO has a fast convergence speed, a relatively high degree of stability and
it is also much more accurate in precision.

For EOSSO, there are various issues that still deserve further study. Firstly, multi-objective
optimization problems can be seen here and there in the real world. Compared with single objective
optimization problems, it is often very challenging to obtain high-equality solution. The proposed elite
opposition-based Social Spider Optimization algorithm should be used to solve these multi-objective
optimization problems in the future to validate its performance. Secondly, there exist many NP-hard
problems in literature, such as the traveling salesman problem, graph coloring problem, radial basis
probabilistic neural networks, and finder of polynomials based on root moments. In order to test the
performance of EOSSO, it should be used to solve these NP-hard problems in the future. Thirdly,
the proposed EOSSO should solve some practical engineering problems in the future, for example,
welding beam and spring pressure design problem, vehicle scheduling optimization problem and
scheduling optimization of hydropower station, etc. Finally, although the proposed algorithm is tested
with 23 benchmark functions, a more comprehensive computational study should be made to test the
efficiency of the proposed solution technique in the future.
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