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Abstract: Despite the recent rapid progress in high throughput measurements of biological data,
it is still difficult to gather all of the reaction speed data in biological pathways. This paper presents
a Petri net-based algorithm that can derive estimated values for non-valid reaction speeds in a
signaling pathway from biologically-valid data. In fact, these reaction speeds are reflected based on
the delay times in the timed Petri net model of the signaling pathway. We introduce the concept of a
“dependency relation” over a transition set of a Petri net and derive the properties of the dependency
relation through a structural analysis. Based on the theoretical results, the proposed algorithm can
efficiently shrink the transitions with two elementary structures into a single transition repeatedly to
reduce the Petri net size in order to eventually discover all transition sets with a dependency relation.
Finally, to show the usefulness of our algorithm, we apply our algorithm to the IL-3 Petri net model.
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1. Introduction

A Petri net [1,2] is a solid mathematical representation used in concurrent systems modeling,
enabling a formal and clear representation of biological pathways at different time and scale levels [3].
Structurally, a Petri net is a directed bipartite graph, including two types of nodes, places and
transitions and tokens contained in places. A state of a Petri net is expressed by a token distribution
over the places and can be changed by the firing of transitions. The first Petri net model of a
biological pathway [4] is a metabolic pathway, describing the conversion of metabolites through
enzyme-catalyzed chemical reactions, which has been extensively studied regarding the structural [5–8]
and dynamic [9–11] properties.

A signaling pathway is another major biological pathway, consisting of cascades of
activated/deactivated proteins or protein complexes, through which signals are propagated from the
cell surface to the nucleus. A Petri net has been used as a structural modeling framework for a signal
pathway in a knowledge representation [12] and for data implementation in a database [13].

Modularization of a Petri net model into biologically-functional parts in a signaling pathway has
been demonstrated using the fundamental behavioral property, T-invariant [14], which was formalized
in metabolic pathways before [5–8], and its extended property, the feasible T-invariant [15]. Here,
a T-invariant is a firing counting vector of transitions in a periodic firing sequence that leads back to the
original token distribution where it starts from. A technique to automatically classify T-invariants into
functional modules in a biological pathway was proposed in [16] based on cluster analysis. Another
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classification of T-invariants in terms of biological network structure was demonstrated in [17], where
hierarchically-structured Petri net representations are derived automatically. T-invariant was further
applied for the representation of the enzymatic activation process in a signaling pathway [18]. The
dynamic behaviors of a signaling pathway were examined in Petri net models for a token amount,
reflecting the concentration levels of molecules obtained based on the order of the transition firings
specified by the topological motifs in a signaling pathway [19,20], and were calculated after reducing
the number of parameters through a simplification process of a Petri net model [21].

The experimentally uncovered biological facts are usually summarized in a picture of a network
structured by figures of various shapes and several type of arrows reflecting biological images. A Petri
net allows us to model a biological pathway with maintaining its structural information, owing to the
characteristics of the graphical representation of Petri net. Accordingly, Petri net-based modeling does
not produce a negative effect of the abstraction in a modeling process compared to other modeling
methods, such as differential equation-based methods.

The timed Petri net is a type of Petri net, in which time delay is associated with state transition,
and is a promising candidate for modeling the dynamic property of a signaling pathway because the
delay time of a transition is able to reflect the rate of a corresponding reaction in a signaling pathway.
However, in the works above [18–21], a timed Petri net has not been employed.

The first attempt to use a timed Petri net for the modeling of a signaling pathway was in [22] (the
“time” Petri net, which has a different extension in terms of time to the “timed” Petri net, was applied
to model metabolic pathways in [11]), where the delay times were calculated based on a simple rule
in which the sum of the consumption is equal to the production, so as to maintain the concentration
equilibrium for each substance in a signaling pathway. Such Petri nets satisfying this simple rule
are called retention-free Petri nets later and introduced as a new concept enabling a more flexible
determination of the delay times using a concrete algorithm [23]. Cycles and inhibitory arcs, which
often appear in signaling pathways, are treated in [24], but have not been incorporated owing to the
difficulties in their structural handling.

These works [22–24] have studied a Petri net-based methodology to calculate estimated values for
non-valid reaction speeds from a valid reaction speed, namely a biologically-measured speed, in the
signaling pathway. A simple question therefore arises. How many and which reactions should be
biologically measured in order to obtain all of the delay times in a Petri net model through the proposed
methodology? This paper answers this question by introducing the concept of a “dependency relation”
over a transition set of a Petri net, by which the transition set is divided into equivalence classes in the
sense of a dependency relation, namely an equivalence relation. In fact, the number of equivalence
classes is the number of reactions that should be biologically measured.

One possible way to find such an equivalence class is to establish a series of linear equations for
all places based on the retention-freeness, solve the simultaneous equations to obtain the dependent
solutions and, finally, determine the transitions with a dependency relation. However, this will take
plenty of computation time for a given large-scale signaling pathway model. To cope with this problem,
this paper gives an efficient algorithm to reduce the size of a Petri net through a structural analysis
and, finally, to discover these equivalence classes.

The remainder of this paper is organized as follows. Section 2 provides the necessary definitions of
Petri nets, and Section 3 introduces a timed Petri net and retention-free Petri net (RFPN). In Section 4,
the concept of a dependency relation over the transitions of RFPN is introduced, and related properties
are derived through a structural analysis. In Section 5, based on the theoretical results of Section 4,
an algorithm is proposed and applied to the IL-3 Petri net model to show its usefulness. Finally,
Section 6 provides some concluding remarks and describes some future works.

2. Basic Definitions and Modeling Rules

In this section, we briefly provide the necessary definitions of a Petri net. For detailed descriptions,
the reader is suggested to refer to [2].
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Definition 1. A Petri net (or a net for short), denoted by PN = (T, P, E, α, β), is a bipartite graph consisting
of elements shown in Figure 1, where:

• T is a set of transitions {t1, t2, · · · , t|T|};
• P is a set of places {p1, p2, · · · , p|P|};
• E = E+ ∪ E−, and E+ and E− are respectively the sets of arcs from transitions to places e = (t, p) and

from places to transitions e = (p, t);
• αe is the weight of the arc expressed by positive integer e = (p, t); and
• βe is the weight of the arc expressed by positive integer e = (t, p).

Place Transition Directed arc

Figure 1. Petri net elements.

Definition 2. Let PN = (T, P, E, α, β) be a Petri net.

1. •t (t•) is the set of input (output) places of t∈T, and •p (p•) is the set of input (output) transitions of
p∈P.

2. A transition without an input arc is called the source transition, and the set of source transitions is denoted
by Tsrc = {tsrc

1 , · · · , tsrc
a }(a ≥ 1).

3. A transition without an output arc is called the sink transition, and the set of sink transitions is denoted
by Tsink = {tsink

1 , · · · , tsink
b }(b ≥ 1).

4. A transition t is called the synchronous transition if there exists a set of input places Ps that for any p ∈ Ps,
p• = {t} holds, and is defined by Tsync = {tsync

1 , · · · , tsync
c }(c ≥ 1).

5. A place can hold a positive integer that represents a number of tokens. An assignment of tokens in
places expressed in the form of a vector M is called a marking, which varies during the execution of
a Petri net. Given an initial marking M0, a Petri net is called a marked Petri net and is denoted by
MPN = (PN, Mo).

Figure 2 shows the source (i) and sink (ii) transitions, and Figure 3 shows a synchronous transition.
Note that we use discrete Petri nets in the present study.

Figure 2. Source and sink transitions.
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Figure 3. Synchronous transition.
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Definition 3. A transition t is fireable if each input place pI of PN has at least αe tokens, where αe denotes
the weight of an arc e = (pI , t). The firing of a transition t removes αe tokens from each input place pI
of t and deposits βe(e = (t, pO)) tokens to each output place pO of t, where βe denotes the weight of an arc
e = (t, pO). A source transition is always fireable.

Li et al. [18] gave the following modeling rules for signaling pathways based on a Petri
net representation.

1. Places denote static elements, including chemical compounds, conditions, states, substances
and cellular organelles participating in the biological pathways. Tokens indicate the presence
of such elements. The number of tokens can be regarded as a representation of the amount of
chemical substances. The current assignment of tokens to the different places is expressed in the
form of a vector, namely a marking, as defined above.

2. Transitions denote active elements, including chemical reactions, events, actions, conversions
and catalyzed reactions. A transition fires by taking off tokens from their individual input places
and creating new tokens that are distributed to the output places if the input places have at least
as many tokens in them as the arc weight from the place to the transition.

3. Directed arcs connecting places and transitions represent the relations between corresponding
static elements and active elements. Arc weights α and β (defined in Definition 1) describe the
quantities of substances required before and after a reaction, respectively. Particularly in the
case of modeling a chemical reaction, arc weights represent quantities given by stoichiometric
equations of the reaction itself. Note that the weight of an arc is omitted if the weight is one.

4. Because an enzyme itself acts as a catalyzer in biological pathways, and no consumption occurs
in the biochemical reactions, an enzyme is exceptionally modeled in the following definition.

5. An inhibition function in biological pathways is modeled by an inhibitor arc.

Definition 4. An enzyme in a biological pathway is modeled by a place, called an enzyme place, as shown in
Figure 4 [18].

1. Enzyme place pi has a self-loop with the same weight connected from and to transition ts. Once an enzyme
place is occupied by a token, the token will return to the place again to maintain the fireable state if the
transition ts is fired.

2. Let tp and td denote a token provider of pi and a sink output transition of pi, respectively, where the firing
of tp represents an enzyme activation reaction, and the firing of td implies a small natural degradation
in a biological pathway. pi holds up token(s) after firing transition tp, and the weights of the arcs satisfy
α(pi, td)� α(pi, ts).

Figure 4. An enzyme place in a Petri net model.

3. Timed Petri Net and Retention-Free Petri Net

Petri nets are extended by assigning a delay time of the firing to each transition to facilitate a
system-level understanding through means of a simulation. Such an extended Petri net is called a
timed Petri net.
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Definition 5. Timed Petri net TPNis defined by TPN = (PN, D), where D is a set of positive numbers
expressing the firing delay times (or delay time for short) of transitions in T. The firing rule of a TPN is
as follows:

1. initially, all of the tokens are in a non-reserved state; once a transition ti is decided to have fired, the tokens
required for firing are changed from the non-reserved state to the reserved state;

2. when the delay time di of ti has passed, ti fires to remove the reserved tokens from the input places of ti and
put non-reserved tokens into the output places of ti.

In a timed Petri net, the firing times of a transition ti per unit of time are called firing frequency fi.
fi represents the maximum firing frequency of ti. The delay time di of ti is given by the reciprocal of fi.

Note that firing frequencies indicate reaction speed data in a biological pathway.

We show here the method of conflict resolution using stochastic decision rules. To resolve the
conflict firing problem, there are three methods that can be adopted: priority, probabilistic choice
and alternate firing [25]. The proposed firing rule given in this paper is to combine a probabilistic
choice and alternate firing. We introduce a stochastic approach to determine the firings for a series of
transitions in conflict (Figure 5), as defined in the following definition.
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Figure 5. An example illustrating a conflict state.

Definition 6. Suppose a place p possesses output transitions, tO1 , tO2 , · · · , tOn , as shown in Figure 5. Then,
the firing rule is as follows [23]:

1. Each unreserved token deposited to input place p is assigned to be reserved by the transition tOj that
satisfies the following expression:

j = arg min
1≤i≤n

δ(i), (1)

where δ(i) is decided by the following condition:

δ(i) =|
(b ci

αi
c)

∑n
k=1(b

ck
αk
c)
− si |; (2)

2. When the number of reserved tokens of tOj is not less than the required token number for the firing,
the firing of tOj is decided;

3. After the delay time dOj of tOj has passed, tOj fires to remove the reserved tokens from the input place of
tOj and deposits unreserved tokens into the output places of tOj .
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In the above expression (2), αj is the arc weight of e(p, tOj); sj is the firing probability of transition
tOj , which represents the proportion of the firing frequency of each transition within the total firing
frequency of the transitions in conflict. Probability sj is assigned to the corresponding transition tOj ,
which is given as a constant in advance according to the event. Variable cj is an accumulated number
of tokens that tOj has reserved so far, and thus, b cj

αj
c represents the number of firing times of transition

tOj from the beginning. Expression (2) is designed to reserve the token to such a transition ti that has

the largest difference between the calculated firing probability b cj
αj
c/ ∑n

k=1b
ck
αk
c and the given firing

probability sj among all transitions in conflict.

Definition 7. [23] With the firing of transition tI , token amounts flowing into place p per unit of time are
called “input token-flow” and are denoted by TFtI ,p. On the other hand, with the firing of transition tO, token
amounts flowing out of place p per unit of time are called “output token-flow” and are denoted by TFp,tO . TFtI ,p

and TFp,tO (shown in Figure 6) are defined by the following equations, respectively:

TFtI ,p = f I β I (3)

TFp,tO = fOαO, (4)

where f I and fO are the firing frequencies of tI and tO, respectively, and β I and αO are the weights of e = (tI , p)
and e = (p, tO), respectively.

Figure 6. Input and output token flows.

Based on this definition, the following proposition holds.

Proposition 1. [23] Let p be a place with input transitions {tIi |tIi∈•p} and output transitions {tOj |tOj∈p•}.
Then, ∑m

i=1 TFtIi
,p and ∑n

j=1 TFp,tOj
are the total input token-flow and the total output token-flow for place p,

respectively. Furthermore, when firing frequency f is at the maximum firing rate, f , input token-flow TFtI ,p and
output token flow TFp,tO become the maximum, FTtI ,p and FTp,tO , respectively. These maximum token-flows
satisfy the following equations.

m

∑
i=1

TFtIi
,p ≤

m

∑
i=1

FTtIi
,p (5)

n

∑
j=1

TFp,tOj
≤

n

∑
j=1

FTp,tOj
(6)

The following requirement is trivial.
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Proposition 2. [23] In a timed Petri net, the total output token-flow is not more than the total input token-flow
for each place p:

m

∑
i=1

TFtIi
,p ≥

n

∑
j=1

TFp,tOj
, (7)

In a signaling pathway, a reaction not only modifies the formation of molecules, as mentioned
above, but also controls the amounts of produced substances. Although the amount of a substance
will change along the signal propagation, it cannot be increased indefinitely; otherwise, an abnormal
accumulation of a substance may cause a crucial problem in the signaling pathway. Based on this
observation, we introduced the notion of a “retention-free” pathway for a timed Petri net. In a
retention-free Petri net, the total token amounts flowed-in and flowed-out for each place per unit of
time are equivalent.

Definition 8. [23] A timed Petri net TPN is called a retention-free Petri net (RFPN) (satisfying Proposition 1)
if the total input token-flow and total output token-flow are equivalent at any place of TPN, that is,

m

∑
i=1

TFtIi
,p =

n

∑
j=1

TFp,tOj
. (8)

In fact, there exists at least one T-invariant in an RFPN, which indicates a firing counting vector
of transitions in a periodic firing sequence [26] that leads back to the marking where it starts. This is
because actually, the firing frequencies of all of the transitions construct a T-invariant.

4. Dependency Relation and Dependent Shrink

The firing frequency of a certain transition can be calculated if the firing frequencies of the
transitions attached to that transition have been determined thus far, i.e., when these transitions are
dependent on each other with respect to the firing frequencies. To provide a clear and precise definition
of this dependency of the transitions, we introduce a new concept called a “dependency relation” for
transitions, which is formalized based on the retention-free concept presented in the previous section.
After that, we propose a method for shrinking a Petri net subnet, induced by the transitions satisfying
a dependency relation, into a single transition. In other words, if a subnet can be shrunk, then the
firing frequency of any transition in the subnet can be deduced based on the firing frequency of a
certain transition inside the subnet.

4.1. Dependency Relation

Definition 9. Let TPN be a timed Petri net and ti and tj be two transitions. Here, ti and tj are said to be
related to each other if and only if the following equation holds:

fi = rij f j, (9)

where fi and f j are the firing frequencies of ti and tj, and rij is a positive rational. This is called a dependency
relation and is denoted by (ti, tj)∈R.

The above equation means if two transitions are related to each other, then firing frequencies are
dependent. Based on this definition, we have the following propositions.

Theorem 1. A dependency relation is an equivalence relation.

Proof. We only need to prove that a dependency relation is reflexive, symmetric and transitive. Let t,
t1, t2 and t3 be transitions of a Petri net. A dependency relation is clearly reflexive and symmetric
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because (1) ft = ft holds and (2) if f1 = r12 f2, then f2 = 1
r12

f1, and vice versa. Suppose f1 = r12 f2 and
f2 = r23 f3 hold, then f1 = r12r23 f3, which means the dependency relation is transitive.

Based on the Definition 9, we have the following proposition for a retention-free Petri net.

Proposition 3. Let PNsiso and PNcon f be two retention-free nets consisting of a place with single input and
single output transitions (called a single-input and single-output structure), and a conflict place with multiple
transitions (called a conflict structure), respectively. (i) In PNsiso, the input transition and output transition
satisfy a dependency relation; (ii) in PNcon f , all output transitions satisfy their dependency relation with
one another.

Proof. (i) Suppose PNsiso is a net, as shown in Figure 7. Because Figure 7 is retention free, the amount
of input and output token flows through place p must be equal, i.e., fiβi = foαo. Thus, the firing
frequency fi can be expressed as fi =

αo
βi

fo. (ii) Without a loss of generality, herein we suppose place p
possesses a single input transition (because we only need to consider the dependency relation of the
output transitions), as shown in Figure 8.

Figure 7. Single-input and single-output structure (PNsiso).

Figure 8. Conflict structure (PNcon f ).
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Since the given firing probabilities of all output transitions, so,1, so,2, · · · , so,n, satisfy:

so,1

so,2
=

fo,1

fo,2

so,1

so,3
=

fo,1

fo,3
(10)

...
so,1

so,n
=

fo,1

fo,n
.

the firing frequencies, fo,2, fo,3, · · · , fo,n, can be expressed through the following equations:

fo,2 =
so,2

so,1
fo,1

fo,3 =
so,3

so,1
fo,1 (11)

...

fo,n =
so,n

so,1
fo,1,

which means that all output transitions satisfy the dependency relations with one another.

The two nets shown above are elementary structures of RFPN, which will be applied in the
following discussion, as well as in our algorithm.

As shown in Theorem 1 above, a dependency relation is an equivalence relation. Hence,
the transition set of a timed Petri net can be divided into independent subsets, i.e., equivalence
classes. In the following subsection, to indicate a block of a retention-free Petri net, in which all
transitions satisfy a dependency relation, we provide a definition of “dependent shrink”.

4.2. Dependent Shrink

Definition 10. Let PN = (T, P, E, α, β) be a retention-free Petri net.

(i) Let Tx be a subset of T, where x (1 ≤ x ≤ |T|) is a positive integer, and all of the transitions in
Tx satisfy a dependency relation. A Petri net induced by Tx is defined as PNx = (Tx, Px, Ex, α, β),
where Px = {p|p∈•t ∪ t•, t∈Tx}, and Ex = {e|e ∈ Tx × Px ∪ Px × Tx}.

(ii) The transformation of PNx by constructing all transitions of Tx and any place p ∈ Px satisfying •p∪ p• ⊂
Tx into a single transition, denoted by tx, is called a dependent shrink. In addition, the resultant net
PN′ = (T′, P′, E′, α, β) transformed from PN is called a dependent shrunk net, where, T′ = T− Tx + tx,
P′ = P− {p|•p ∪ p• ⊂ Tx}, E′ = {e|e ∈ T′ × P′ ∪ P′ × T′}, α and β of tx’s input and output arcs are
decided, such that the input and output token flows of the places, included in •tx ∪ t•x, are kept equivalent
before and after shrinking.

The following lemma shows us that the dependency relation of the transitions does not change
before and after a dependent shrink, i.e., if two transitions are out of the dependency relation, then
they will not satisfy the dependency relation after a dependent shrink; and vice versa.

Lemma 1. Let PN = (T, P, E, α, β) be a retention-free net including a subnet PNx = (Tx, Px, Ex, α, β) of
Figure 9a or Figure 10a and PN′ = (T′, P′, E′, α, β) be its dependent shrunk net by applying a dependent shrink
for PNx, where T′ = T − Tx + tx. Suppose tj, tk∈T − Tx and ty ∈ Tx; then, the following claims hold.

Claim 1: If (tj, tk) ∈ R in PN, then (tj, tk) ∈ R in PN′; otherwise, (tj, tk) 6∈ R in PN′.
Claim 2: If (tj, ty) ∈ R ((tk, ty) ∈ R) in PN, then (tj, tx) ∈ R ((tk, tx) ∈ R) in PN′; otherwise, (tj, tx) 6∈ R

((tk, tx) 6∈ R) in PN′.
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Figure 9. Shrink of a single-input and single-output structure. (a) before shrinking; (b) after shrinking.

Figure 10. Shrink of a conflict and self-loop structure. (a) before shrinking; (b) after shrinking.

Proof. Recall that a single-input and single-output structure (Figure 7) and a conflict structure (Figure 8)
are the elementary structures of RFPN considered in this paper. PNxs surrounded by the bold line in
Figures 9a and 10a are basically the same as in Figures 7 and 8, respectively, but these are extended by
attaching additional places and arcs (pale parts) in order to make them more general. In addition, two
transitions, tj and tk, are appended for the proof of Lemma 1 below.

For the case of Figure 9, p and its input and output transitions (t1 and t2) are shrunk into a single
transition, tx, and the weights of the new input and output arcs are given as α′ = α1 and β′ = β2

β1
α2

,
respectively. On the other hand, for the case of Figure 10, all output transitions of place p are shrunk
into a single transition, tx, and the weights of the new input and output arcs are set to:

α′ =
( n

∑
u=1

so.uαo.u −
k

∑
v=1

sl.vβl.v

)
/so.1

β′1 = so.1β1

β′2 = so.2β2

...

β′n = so.nβn.

Here, α′ > 0 should be satisfied; otherwise, PN is not a retention-free Petri net. For both of these
two cases, the moderated tokens on •tj ∪ t•j and •tk ∪ t•k arising from the firings of t1 and t2 of Figure 9a
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and the firings of to,1, to,2, · · · , and to,n of Figure 10a have no changes before or after shrinking PNx; that
is, the dependency relation between tj and tk is not changed, and Claim 1 therefore holds.

Let us see Claim 2. ty should be the input or output transition of p in Figure 9 and one of the
output transitions of p in Figure 10. Similar to the proof of Claim 1, the moderated tokens on •tj ∪ t•j
and •tk ∪ t•k arising from the firings of t1 and t2 of Figure 9a and the firings of to,1, to,2, · · · , and to,n of
Figure 10a have no changes before or after shrinking PNx. Hence, if (tj, ty) ∈ R (or (tk, ty) ∈ R) in PN,
then (tj, tx) ∈ R (or (tk, tx) ∈ R) in PN′; oppositely, if (tj, tx) ∈ R (or (tk, tx) ∈ R) in PN′, then tj (or tk)
is related to any transition of Figure 9 or Figure 10. Therefore, this lemma holds.

The changes of weights given in the proof of Lemma 1 are also applied in our proposed algorithm.
In the following subsection, the uniqueness of a dependent shrink is proven. This means that if a

retention-free Petri net Q can be transformed into a dependent shrunk net, the order of transitions in
Q for the transformation does not affect the final resultant net.

4.3. Uniqueness on Dependent Shrink

In this section, we introduce the concept of a dependent transition set that is a maximum set
of transitions with a dependency relation and discuss the uniqueness of the resultant net through
dependent shrink for retention-free Petri nets.

Definition 11. Let PN = (T, P, E, α, β) be a retention-free net, t be a transition in T and Tt be a set of all
transitions related to t.

(i) Such a Tt is called a t-dependent transition set.
(ii) A Petri net induced by Tt is called a t-dependent subnet and is denoted by PNt = (Tt, Pt, Et, α, β).

Note that, differing from PNx defined in Definition 10, the transitions included in PNt are not
related to any transitions of T – Tt owing to the fact that Tt is a maximum set of transitions with a
dependency relation (shown in Figure 11). The following lemma is immediate.

Figure 11. Relationships among Tx, Tt and T.

Lemma 2. Let Tt and Tt′ be the transition sets of t-dependent and t’-dependent, respectively. If (t, t′) ∈ R,
then Tt = Tt′ .

Lemma 3. Let Tt be a t-dependent transition set and PNt be its t-dependent subnet of a retention-free Petri net
PN. Then, PNt is a connected subnet.

Proof. Assume that PNt is not connected, i.e., PNt consists of at least two divided nets, PN1 and
PN2. Let us see PN1 = (T1, P1, E1, α, β) and its connection to the other part of PN. There exists a
subset P′1⊂P1 of places that includes all places connecting with the outside transitions (not included
in T1), for instance, To. Thus, these transitions of To are the only ones that connect PN1 to other parts
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of PN, and further, they are not related to any one of Tt ((to, t) 6∈R for to∈To and t∈Tt); otherwise,
To⊂Tt. Because PN1 and PN2 are not connected, any transition of PN2 connecting to a transition of
PN1 should pass through at least one of To, which implies that the transitions of PN2 are not related to
T1, and thus, this contradicts that Tt is a t-dependent transition set.

Theorem 2. Let t be a transition of a retention-free Petri net PN = (T, P, E, α, β), Tt be a t-dependent
transition set, PNt = (Tt, Pt, Et, α, β) be a t-dependent subnet, PN′ = (T′, P′, E′, α, β) be a net by shrinking
PNt and tt be a shrunken transition of PNt. For ti, tj 6∈Tt, (ti, tt) 6∈R and (tj, tt) 6∈R are satisfied in PN′. Further,
if (ti, tj)∈R in PN, then (ti, tj)∈R in PN′, and vice versa.

Proof. There exists a subset P′t⊂Pt of places that includes all places connecting with the outside
transitions (not included in Tt), for example, To. Thus, these transitions of To are only those that
connect PNt to other parts of PN, and further, they are not related to any of Tt ((to, t) 6∈R for to∈To

and t∈Tt); otherwise, To⊂Tt. After shrinking PNt, P′t and tt remain in PN′ = (T′, P′, E′, α, β), and of
course, (to, tt) 6∈R holds in PN′ for to∈To. Further, any transition t′ included in T′ − {tt} connecting
to tt should pass through at least one of To, which means that (ti, tt) 6∈R and (tj, tt) 6∈R hold for
ti, tj 6∈Tt. Furthermore, shrinking PNt does not destroy the dependency relation for any transitions
of To, as can be seen in Figures 12 and 13 and, thus, for the transitions of T′ − To − {tt}. Therefore,
this theorem holds.

Figure 12. Before shrinking PNt.

Figure 13. After shrinking PNt.

According to Theorem 2, if we find all dependent subnets and shrink them individually into
single transitions, then all of these transitions are representative of the equivalence classes because a
dependency relation is an equivalence relation. The following corollary is immediate.
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Corollary 1. Suppose a retention-free Petri net PN consists of k subnets, PNt1 , PNt2 , · · · , PNtk , each of which
is a dependent subnet. Not depending on the order of dependent shrink for PNt1 , PNt2 , · · · , PNtk , a unique
structure of a resultant net consisting of k transitions can be obtained.

From Lemma 1 and Theorem 2, we can simply obtain the following result.

Corollary 2. Iterating a dependent shrink for the cases shown in Figures 9 and 10, a unique resultant net can
be obtained.

5. Dependent Shrink Algorithm and Case Study

In this section, we propose the dependent shrink algorithm based on the discussion in the last
section and apply this algorithm to the IL-3 signaling pathway Petri net model (shown in Figure 15),
which is transformed from the IL-3 phenomenon model (shown in Figure 14) obtained from the
website [27], as a case study. Note that IL-3 is a glycoprotein and is known to be involved in the
immune response [28–30].

Figure 14. IL-3 signaling pathway [27].

5.1. Outline of Shrink Process

The outline of the dependent shrink process can be briefly described as follows:
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Step 1: Shrinking of self-loop structure:
A place randomly selected from a Petri net is stored in a queue after the conversion of the
self-loops and the structures of conflict (as shown in Figure 10).

Step 2: Shrink of conflict structure:
If a place picked up from the queue has a self-loop or a transition of one-input and one-output
(as shown in Figure 9), this place is shrunk.

Step 3: Changing weight of the input arc:
If a shrunk Petri net has a place with multiple input transitions, then enqueue and continue to
Step 2. This procedure is repeated until the queue becomes empty or the number of places with
multiple input transitions equals the length of the queue.

The variables used in the algorithm are as follows:

• PN0 is a given signaling pathway Petri net model constituted by T0, P0, and E0.
• N is a variable that stores the Petri net after dependent shrink, constituted by T, P and E.
• Q is a queue.
• X is a set of places initially set as a given place set, P0.
• f is a flag by which a dependent shrink pattern is determined.
• c is a counter, which counts the number of places in Q with multiple input transitions.

5.2. Dependent Shrink Algorithm

The following algorithm is used to repeatedly shrink the structures of Figures 9 and 10 to find
transitions with an interdependent firing frequency.

Algorithm 1 Dependent Shrink
Input: PN0 = (T0, P0, E0)

Output: Shrunk Petri net N = (T, P, E)
Main(PN0)

1◦T ← T0, P← P0, E← E0, N ← (T, P, E)
2◦X ← P, Q← φ, c← 0
3◦while (X 6= φ)

Pull an element x from X(X ← X− {x})
Enqueue(Q, x)
Shrink1(N, x)

4◦Shrink2(N, Q, c)
Shrink1(N, x)
1◦if (|•x ∩ x•| ≥ 1) then

f ← 1
Arcweight(N, x, f )

2◦if (|x•| ≥ 2) then
f ← 2
Arcweight(N, x, f )

Shrink2(N, Q, c)
1◦while (|Q| ≥ 1)

x ← Dequeue(Q)

if (|•x ∩ x•| ≥ 1) then
f ← 1
Enqueue(Q, x)
c← 0
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Algorithm 1 Cont.
else if (|•x| = |x•| = 1) then

f ← 3
c← 0

else if (|•x| ≥ 2) then
f ← 4
Enqueue(Q, x)
c← c + 1

if ( f 6= 4) then
Arcweight(N, x, f )

if (c = |Q|) then
Break

Arcweight(N, x, f )
1◦if ( f = 1) then

∀t′ ∈ •x ∩ x•

α(x, t′) = α(x, t′)− β(t′, x)
if (α(x, t′) < 0) then

β(t′, x) = |α(x, t′)|
E← E− {(x, t′)}

else if (α(x, t′) > 0) then
E← E− {(t′, x)}

else if (α(x, t′) = 0) then
E← E− {(t′, x), (x, t′)}

2◦else if ( f = 2) then
T ← T ∪ {t′}
E← E ∪ {(x, t′)} ∪ {(u, t′)|u ∈ •z, z ∈ x•} ∪ {(t′, v)|v ∈ z•, z ∈ x•}
Choose z′ ∈ x•.
∀z ∈ x• − {t′}

α(x, t′) = α(x, t′) + s(z) ∗ α(x, z)
∀v ∈ z•, z ∈ x•

β(t′, v) = s(z) ∗ β(z, v)
∀u ∈ •z, z ∈ x•

α(u, t′) = s(z) ∗ α(u, z)/s(z′)
α(x, t′) = α(x, t′)/s(z′)
T ← T − {z|z ∈ x• − {t′}}

3◦else if ( f = 3) then
T ← T ∪ {t′}
Let zi, zo be {zi} = •x, {zo} = x• (due to |•x| = |x•| = 1).
E← E ∪ {(u, t′)|u ∈ •zi ∪ •zo} ∪ {(t′, v)|v ∈ z•i ∪ z•o}

∀u ∈ •zi
α(u, t′) = α(u, zi)

∀u ∈ zi
•

β(t′, u) = β(zi, u)
∀v ∈ •zo

α(v, t′) = β(zi, x) ∗ α(v, zo)/α(x, zo)

∀v ∈ zo
•

β(t′, v) = β(zi, x) ∗ β(zo, v)/α(x, zo)

T ← T − {zi|zi ∈ •x} − {zo|zo ∈ x•}
P← X− {x}
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The Algorithm 1 will terminate when all places are shrunk, i.e., a single transition remains,
or becomes ones with multiple input transitions and a single output transition. The time complexity is
O(|P||E|). As a result, given with a retention-free Petri net, this algorithm gives a smaller shrunk net,
in which a transition may represent a class of ones with a dependency relation.

5.3. Case Study

Here, we give an example showing an application of our proposed algorithm. Since the algorithm
has not been implemented, here we manually apply it. The algorithm is applied to the IL-3 Petri
net model (see Figure 15a), obtained from the website [27]. As a result, the original IL-3 Petri net
model shown in Figure 15a is shrunk into Figure 15c. This means that the firing frequencies of all
transitions in Figure 15a are dependent on one another. In the intermediate shrunk net (see Figure 15b),
by assuming that the firing frequency fi of the input transition ti is one, and the weights of the input
and output arcs are 1

2 and one, respectively, then the firing frequency fo of output transition to is 1
2 . In

this way, we can calculate all firing frequencies in the IL-3 Petri net model if the firing frequency of one
transition is known in this model.

Figure 15. Shrinking processes of the IL-3 Petri net model. (a) Petri net model of IL-3; (b) intermediate
shrunk net; (c) final shrunk net.
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That is, all of the reaction speed data of the IL-3 Petri net model are dependent on one another,
and thus, if one reaction speed datum is available, all of the others can be derived from it.

We have two ways to determine reaction speed data in biological pathway, i.e., firing frequencies.
One is to find firing frequency relationships between transitions from the intermediate shrunk nets
generated during the execution of the Algorithm 1, in turn from the final net to the original net.

In the intermediate shrunk net (see Figure 15b), by assuming the firing frequency fi of the
input transition ti to be available (say one), then the firing frequency fo of output transition to is 1

2 .
Recursively, we can derive all of the firing frequencies in the IL-3 Petri net model.

Another way is to establish a series of linear equations for all of the places according to
retention-freeness, Equation (8), and to solve these equations to finally get the solutions with the
form fnonvalid = rnonvalid,valid fvalid. Here, fnonvalid, fvalid are the firing frequencies corresponding to
non-valid and valid reaction speed data.

Suppose ti is only one transition whose corresponding speed data are valid; we can derive the
firing frequencies for all of the other transitions of the IL-3 Petri net model in any one of two ways
as follows:

fi = f1 = f2 = · · · = f28 = 1

f29 = f30 = · · · = f50 = fo =
1
2

.
(12)

In addition to IL-3, we also apply our algorithm to the endocytosis Petri net model and give
the shrunk result as can be found in the Supplementary Materials, in which, IL-3 and endocytosis
respectively consist of 43 places, 54 transitions and 109 arcs and 24 places, 34 transitions and 70 arcs.
Moreover, the System Biology Markup Language (SBML) [31] and Petri Net Markup Language
(PNML) [32] files of those Petri net models can also be obtained from the Supplementary Materials.

5.4. Discussion on the Resultant Structure from the Algorithm

As mentioned, when the Algorithm 1 terminates, there are two possible cases: (1) the resultant
net is a single transition; (2) the resultant net is such that all places possess a single output transition
and multiple input transitions.

Case (1) indicates that all transitions of the given net PN satisfy a dependency relation, and they
comprise an equivalence class, that is, if the firing frequency of any one of the transitions is decided,
then the frequencies of all of the others are automatically decided as well.

Case (2) may be further divided into: (i) the remaining net consisting of only such transitions
that do not satisfy dependency relations with one another; and (ii) some of the transitions satisfying a
dependency relation, but not having been shrunk into a single transition.

Case (2) (i) indicates that all transitions in the remaining net are independent, and each is a
representative of an equivalence class, as can be illustrated in Figure 16. In this Figure 16a, each
transition set is rounded by a line, and the transitions included in each set satisfy a dependency
relation with one another. Applying dependent shrink, the transformed net is obtained as shown in
Figure 16b. Further, the equivalence classes of PN represented by t1, t2, t3, t7, t8, t9, t10 are shown in
Figure 16c.

Case (2) (ii) implies that the remaining net includes a subnet that consists of transitions that all
have a dependent relation, but cannot be shrunk into a single transition by shrinking the single-input
and single-output structure (Figure 7) or the conflict structure (Figure 8). PN′t2

, shown in Figure 17,
is such a subnet, where each transition has at least one input place with one output, which means
|P′t2
| ≥ |T′t2

| in PN′t2
. To find such a subnet, we should establish a series of linear equations for all places

according to the retention-freeness in which the input and output token flows are equal and solve these
equations. Because |P′t2

| ≥ |T′t2
| in PN′t2

, the number of equations is more than that of the variables
(firing frequencies of the transitions). Thus, if there are exactly |T′t2

| − 1 linear independent equations,
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then all of the transitions satisfy a dependency relation. A detailed discussion of this remains as a
future issue.

Figure 16. Shrink example of Petri net model and its equivalence classes. (a) transitions surrounded
by a line satisfies a dependent relation; (b) transformed net by applying dependent shrink;
(c) equivalence classes.

Figure 17. Example structure that cannot be shrunk into a single transition.

6. Conclusions

Despite the recent rapid progress in high throughput measurements of biological data, it
is still difficult to gather all reaction speed data in the biological pathways. Particularly for
signaling pathways, owing to their complex structure, including protein formations and enzyme
reactions, computational methods are essential to estimate as much reaction data as possible from
biologically-valid data. In this paper, we presented an algorithm to shrink the transitions in a timed
Petri net model into a smaller number of transitions based on their dependency with respect to the
firing frequency and, equally, their amount of delay.
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We have first introduced a new concept, called the dependency relation, over a set of transitions
of a Petri net model representing a signaling pathway, which is in fact an equivalence relation over
transitions. Through a structural analysis, we obtained several properties, one important result of
which is that shrinking a connected subnet, induced by transitions with a dependency relation, into a
transition never affects other parts of a Petri net. Based on these results, we designed an Algorithm 1
with time complexity O(|P||E|) to reduce the Petri net size by applying a dependent shrink process for
two elementary structures, i.e., a “single-input and single-output structure” and a “conflict structure”,
in order to efficiently find a transition set with a dependency relation. A case study was conducted by
applying our algorithm to the signaling pathway Petri net model of IL-3, and as a result, IL-3 finally
becomes a single transition, which means that all reaction speeds of IL-3 are dependent on one another
and that measuring one reaction speed can help in deriving all other speeds.

Our proposed method can be applied not only to signaling pathways, but also to other biological
pathways in which retention-freeness holds, for example to metabolic pathways. If, in a timed Petri net
model constructed from such a biological pathway, there exists a transition violating retention-freeness,
then some discrepancy should happen in the biological pathway, i.e., missing interaction and/or
extra interaction, which will be caused by mutations or alternations to the pathway. Such a biological
inconsistency is expected to be found with our technique.

We have also pointed out that there may remain some subnets with a dependency relation in
the resultant net after applying Algorithm 1 because only a dependent shrink of a “single-input and
single-output structure” and a “conflict structure” are adopted. We indicated that this can be resolved
by solving a series of linear equations for such a subnet without taking up too much computation time
because the size of the subnet should be much smaller compared with the original net. As future work,
we are planning to: (1) develop a method to find such a subnet that includes only the places possessing
a single-output and multiple-input transitions with a dependency relation; (2) design an algorithm to
find the transitions with a dependency relation from the solution of a series of the prior mentioned
linear equations; (3) extend our method to a stochastic Petri net by taking into account probabilistic
firing delay times.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4893/10/1/4/s1,
Figure S1: Phenomenon model of the endocytosis signaling pathway, which is obtained from Petri net pathways
(http://genome.ib.sci.yamaguchi-u.ac.jp/pnp/), Figure S2: Original endocytosis Petri net model, to which
Algorithm 1 is to be applied, Figure S3: An intermediate net is obtained by shrinking all of the self-loops related
to transitions, t2, t7, t8, t11, t14, t21, t22 and t26, and all of the conflict structures related to transition sets, {t2, t3},
{t7, t8, t11, t14}, {t8, t10}, {t11, t13}, {t16, t18}, {t11, t22, t23}, {t21, t22}, {t26, t28} and {t26, t30}. As a result, t3, t7, t8,
t10, t13, t14, t18, t21, t22, t23, t28 and t30 are shrunk, Figure S4: An intermediate net is obtained by processing
single-input single-output structure related to places, Rab5a/GTP, ErbB1, active-SPRY2, Grb2-2, Grb2/c-Cbl,
active-SPRY2/c-Cbl, EGFR-2, SHP1 and SHP2, and as a result, t1, t5, t16, t19, t25, t27 and t29 are shrunk, Figure S5:
The resultant nets of the final and one step before, XML S1: IL-3, XML S2: endocytosis, PNML S1: IL-3, PNML
S2: endocytosis.
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