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Abstract: Sentiment analysis has played a primary role in text classification. It is an undoubted fact 
that some years ago, textual information was spreading in manageable rates; however, nowadays, 
such information has overcome even the most ambiguous expectations and constantly grows within 
seconds. It is therefore quite complex to cope with the vast amount of textual data particularly if we 
also take the incremental production speed into account. Social media, e-commerce, news articles, 
comments and opinions are broadcasted on a daily basis. A rational solution, in order to handle the 
abundance of data, would be to build automated information processing systems, for analyzing and 
extracting meaningful patterns from text. The present paper focuses on sentiment analysis applied 
in Greek texts. Thus far, there is no wide availability of natural language processing tools for 
Modern Greek. Hence, a thorough analysis of Greek, from the lexical to the syntactical level, is 
difficult to perform. This paper attempts a different approach, based on the proven capabilities of 
gradient boosting, a well-known technique for dealing with high-dimensional data. The main 
rationale is that since English has dominated the area of preprocessing tools and there are also quite 
reliable translation services, we could exploit them to transform Greek tokens into English, thus 
assuring the precision of the translation, since the translation of large texts is not always reliable and 
meaningful. The new feature set of English tokens is augmented with the original set of Greek, 
consequently producing a high dimensional dataset that poses certain difficulties for any traditional 
classifier. Accordingly, we apply gradient boosting machines, an ensemble algorithm that can learn 
with different loss functions providing the ability to work efficiently with high dimensional data. 
Moreover, for the task at hand, we deal with a class imbalance issues since the distribution of 
sentiments in real-world applications often displays issues of inequality. For example, in political 
forums or electronic discussions about immigration or religion, negative comments overwhelm the 
positive ones. The class imbalance problem was confronted using a hybrid technique that performs 
a variation of under-sampling the majority class and over-sampling the minority class, respectively. 
Experimental results, considering different settings, such as translation of tokens against translation 
of sentences, consideration of limited Greek text preprocessing and omission of the translation 
phase, demonstrated that the proposed gradient boosting framework can effectively cope with both 
high-dimensional and imbalanced datasets and performs significantly better than a plethora of 
traditional machine learning classification approaches in terms of precision and recall measures. 

Keywords: gradient boosting machines; sentiment analysis; high-dimensional data; Modern Greek 
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1. Introduction 

Undoubtedly, the way that machines and humans search, retrieve and manage information 
changes at a high rate. The potential information resources have increased because of the advent of 
Web 2.0 technologies. User-generated content is available from a large pool of sources, such as online 
newspapers, blogs, e-commerce sites, social media, etc. The quantity of information is continuously 
increasing in every domain. Initially, it was online retailers, such as Amazon, that identified possible 
profits by exploiting users’ opinions. However, nowadays, almost everyone has realized that quality 
of services, marketing and maximization of sales cannot be achieved without considering the textual 
content that is generated by Internet users. Therefore, the task of identifying relevant information 
from the vast amount of human communication information over the Internet is of utmost 
importance for robust sentiment analysis. In fact, the existence of opinion data has resulted in the 
development of Web Opinion Mining (WOM) [1], as a new concept in web intelligence. WOM focuses 
on extracting, analyzing and combining web data about user thoughts. The analysis of users’ opinions 
is substantial because they provide the elements that determine how people feel about a topic of 
interest and know how it was received by the market. In general, traditional sentiment analysis 
mining techniques apply to social media content, as well; however, there are certain factors that make 
Web 2.0 data more complicated and difficult to parse. An interesting study about the identification 
of such factors was made by Maynard et al. [2], in which they exposed important features that pose 
certain difficulties to traditional approaches when dealing with social media streams. The key 
difference lies in the fact that users are not passive information consumers, but are also prolific 
content creators. Social media can be categorized on a diverse spectrum, based on the type of 
connection amongst users, how information is shared and how users interact with the media streams:  

• Interest-graph media [3], such as Twitter, encourage users to form connections with others, 
based on shared interests, regardless of whether they know the other person in real life. 
Connections do not always need to be reciprocated. Shared information comes in the form of a 
stream of messages in reverse chronological order. 

• Professional Networking Services (PNS), such as LinkedIn, aim to provide an introduction 
service in the context of work, where connecting to a person implies that you vouch for that 
person to a certain extent and would recommend them as a work contact for others. Typically, 
professional information is shared, and PNS tend to attract older professionals [4]. 

• Content sharing and discussion services, such as blogs, video sharing (e.g., YouTube, Vimeo), 
slide sharing (e.g., SlideShare) and user discussion forums (e.g., CNET). Blogs usually contain 
longer contributions. Readers might comment on these contributions, and some blog sites create 
a time stream of blog articles for followers to read. Many blog sites also advertise automatically 
new blog posts through their users’ Facebook and Twitter accounts.  

The following challenging features are also recognized by researchers and classified as openings 
for the development of new semantic technology and text mining approaches, which will be better 
suited to social media streams: 

• Short messages (microtexts): Twitter and most Facebook messages are very short (140 characters 
for tweets). Many semantic-based methods reviewed below supplement these with extra 
information and context coming from embedded URLs and hashtags. For instance, in the work 
of [5], the authors augment tweets by linking them to contemporaneous news articles, whereas 
in [6], online hashtag glossaries are exploited to augment tweets. 

• Noisy content: social media content often has unusual spelling (e.g., 2moro), irregular 
capitalization (e.g., all capital or all lowercase letters), emoticons (e.g., :-P) and idiosyncratic 
abbreviations (e.g., ROFL for “Rolling On Floor Laughing”, ZOMG for “Zombies Oh My 
God”). Spelling and capitalization normalization methods have been developed [7], coupled 
with studies of location-based linguistic variations in shortening styles in microtexts [8]. 
Emoticons are used as strong sentiment indicators in opinion mining algorithms. 
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The Modern Greek language poses additional complications to sentiment analysis since the 
majority of preprocessing tools for Greek, such as the Part-of-Speech (POS) tagger, shallow syntactic 
parsers and polarity lexica, are not freely available. In the current work, we deal with modeling a 
sentiment analysis framework for Modern Greek, based on a simple, yet functional and effective idea. 
We propose an alternative approach that capitalizes on the power of existing induction techniques 
while enriching the language of representation, namely exploring new feature spaces.  

We bypass the need for extensive preprocessing tools and utilize a freely available translation 
API that is provided by Google®, in order to augment the feature set of the training data. 
Nevertheless, since automatic translation of large sentences is often reported as portraying low 
accuracy, mainly due to the large degree of ambiguity, especially in the case of Modern Greek, we 
followed a simple approach, translating each Greek token individually, a process that rarely makes 
errors. The resulting feature set portrayed, as expected, an approximate doubling of the original size, 
which also poses certain difficulties to the majority of classification algorithms. Hence, we 
experimented with an ensemble classification algorithm known as Gradient Boosting Machines 
(GBM), which is theoretically proven to be able to cope with a large number of features [9]. According 
to the referenced work, “a possible explanation why boosting performs well in the presence of  
high-dimensional data is that it does variable selection (assuming the base learner does variable 
selection) and it assigns variable amount of degrees of freedom to the selected predictor variables or 
terms”. Moreover, apart from the high-dimensional nature of our task at hand, a class imbalance 
issue appeared since the distribution of sentiment in Web 2.0 resources often portrays signs of 
imbalance. Imbalanced datasets correspond to domains where there are many more instances of some 
classes than others. For example, there are frequent occasions in political or religion discussions about 
a given topic over social media that generally present a skewed polarity distribution. In order to 
confront that phenomenon, a hybrid technique that performs a modification over a former  
technique [10] was applied. More specifically, we applied under-sampling to the instances that 
belong to the majority class and over-sampling to the minority class, respectively. 

We experimented with numerous well-known algorithms using the initial Greek-only feature 
set (obtained upon preprocessing with basic filters, such as tokenization and stemming), as well as 
the enhanced translated one and also some basic feature reduction techniques, such as principal 
component analysis [11] and feature selection. Through extensive experimental evaluations, we 
found that GBM are superior to any other implementation. Additionally, when coping with the class 
imbalance issue, experimental results justify the use of the bootstrapping method since traditional 
algorithms favor the majority class in their predictions. GBM was again the best choice in the latter 
case, i.e., the imbalanced dataset. 

This paper is organized as follows: Section 2 deals with related work on this domain, while 
Section 3 provides brief insight on GBM. Section 4 discusses the main rationale for using the 
translation of Greek terms as a feature generation technique. Section 5 describes the data formulation 
and manipulation steps, along with the experimental setup process, and finally, Section 6 presents 
the outcomes of empirical experimental evaluations. Section 7 concludes with some revision remarks 
about the contribution of this article and its main findings.  

2. Related Work 

Throughout recent years, a vast number of articles studying different types of sentiment analysis 
in English documents has been observed. Examples of such types include objectivity and subjectivity 
detection, opinion identification, polarity classification, entity or aspect-based sentiment 
classification, etc. Detailed insights into the aforementioned approaches can be found in survey 
papers authored by Pang and Lee [12], Liu and Zhang [13], as well as Mohammad [14]. However, 
only a few studies address the problem of sentiment analysis in Greek. In the following paragraphs, 
the related work is subdivided into a brief outline on current methods for sentiment analysis with 
emphasis on social media content, followed by relevant research on Greek texts and, finally, 
discussing the use of resources from another language, i.e., multilingual sentiment analysis.  
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2.1. Sentiment Analysis and Social Media 

When dealing with information services, social events and e-commerce, the human urge to 
populate thoughts has resulted in the great popularity of opinionated textual content. For example, 
taking the fact that the most common type of message on Twitter is about “me now” [15], it is evident 
that users frequently externalize their current state of mind, their emotions and their mood.  
Bollen et al. [16] argued that users express both their own mood in tweets about themselves and more 
generally in messages about other subjects. Additionally, many users, upon reading an article or 
buying a product, feel the need to share their opinion online about this [17]. We can safely say that a 
great part of information generated, but not limited, by specific resources is consumed and 
commented on positively or negatively in Web 2.0 content. In the same article (i.e., [17]), it is 
estimated that about 19% of microblog messages include a brand name, and 20% contains sentiment. 

The research of [12] focused on more traditional ways of automatic sentiment analysis 
techniques. We can categorize sentiment analysis approaches into two classes: the techniques that are 
based on some polarity lexica (e.g., [18]) and the methods that are based on machine learning  
(e.g., [19]). In the former case, pre-compiled terms have been collected and annotated with an a priori 
sentiment score, which can be aggregated in order to extract the sentiment of a document or a 
sentence. Moghaddam and Popowich [20] constitute the polarity of product reviews by identifying 
the polarity of the adjectives that appear in them, with a reported accuracy of about 10% higher than 
traditional machine learning techniques. Nevertheless, such relatively high-precision techniques 
often fail to generalize when shifted to other, new domains or text formats, because they are not 
flexible regarding the ambiguity of sentiment terms. A significant number of lexicon-based methods 
has portrayed the benefits of contextual information [21,22] and has also indicated specific context 
words with a high impact on the polarity of ambiguous terms [23]. A frequent drawback of such 
solutions is the time-consuming and painstaking procedure of forming these polarity dictionaries of 
sentiment terms, despite the fact that there exist solutions in the form of distributed techniques. 

The latter class of sentiment analysis methods, that of machine learning, operates by extracting 
syntactic and linguistic features [24,25] from text corpora that have been manually annotated as 
regards their sentiment. Subsequently, classification algorithms attempt to construct computational 
models of the separation boundary between the positive and negative sentiment. Certainly, there is 
research that performs a combination of these two trends (e.g., [25]). The machine learning techniques 
can be divided into supervised approaches like naive Bayes, decision trees, Support Vector Machines 
(SVM) ([26,27]), and unsupervised approaches [28], like pattern-logic classification according to a 
lexicon. It should be mentioned that in [29], a naive Bayes algorithm was found to perform better 
than many other typical classifiers.  

Pak and Paroubek [24] aimed to classify random tweets by building a binary classifier, which 
used n-grams and POS features. Their model was trained on instances that had been annotated 
according to the existence of positive and negative emoticons (i.e., pictorial representations of a facial 
expression using punctuation marks, numbers and letters). Similar methods have been also 
suggested by [30], which also used unigrams, bigrams and POS features, though the former proved 
through experimental analysis that the distribution of certain POS tags varies between positive and 
negative posts. One of the reasons for the relative lack of linguistic techniques for opinion mining on 
social media is most likely due to the inherent difficulties in applying standard Natural Language 
Processing (NLP) techniques on low quality texts, something that machine learning techniques can, 
to some extent, overcome with sufficient training data. A characteristic example that demonstrates 
the above is that the Stanford Name Entity Recognizer (NER) drops from a 90.8% F-measure to merely 
45.88% when applied to a set of tweets [31]. 

Recent advances in the domain introduce the use of semantics as an attempt to enhance existing 
features with semantic ones. By using linked data, ontologies and various lexical online resources, 
studies, such as [32–34], portray the advantages of having a semantic framework for identifying 
opinion holders and building sentiment scoring algorithms on its top. Note however that in order to 
include high-level semantics in sentiment analysis projects, lexical resources such as SentiWordNet, 
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YAGO (Yet Another Great Ontology) ConceptNet, etc., are required, being for now mostly available 
in English.  

2.2. Sentiment Analysis for Greek Texts 

Greek is a language with limited, freely-available, linguistic resources. Therefore, most research 
on sentiment analysis for Greek relies on handcrafted sentiment lexica. For example, the authors  
of [35] construct an emotional sentiment lexicon for Greek and apply it on a Twitter dataset, created 
by [36]. The entries of this sentiment lexicon were collected through crawling the electronic version 
of the Greek dictionary by Triantafyllides [37]. The work of [38] also describes the use of a manual 
sentiment lexicon for Greek, containing about 27,000 types of positive words and 41,000 types of 
negative words. The authors also presented an open-source tool that inflects words in a  
semi-automatic manner. Upon creation of the lexicon, they used a simple bag-of-words approach that 
aggregated the sentiment score over all of the words within a document. A set of 1800 evaluations 
from the Greek version of TripAdvisor was used, and SVM was applied as the classification method. 

A commercial software for polarity detection for entities and sentiment analysis, called 
“OpinionBuster”, is presented in [39]. They presented a name entity recognition module that has 
been trained to locate entities from the reputation management domain, such as political parties, 
products of particular vendors and their competitors and perform sentiment analysis using Hidden 
Markov Models (HMM). Their corpus consisted of about 1300 RSS feeds from Greek political 
newspapers (Kathimerini and Real News). In [40], sentiment analysis was again performed on 
Twitter data, considering two milestones during the 2012 Greek elections, i.e., one week before and 
one week after. The goal of this work was to study the alignment between web and actual political 
sentiment in a bi-directional manner: the impact/reflection of the tweets’ sentiment on the elections, 
as well as the impact of the elections’ results on web sentiment and its shift around such a major 
political event. The authors examined the sentiment tagging in a supervised environment. Their 
hypothesis was focused on the positive vs. negative distinction, using statistical techniques such as 
count and frequency distributions. The alignment between actual political results and web sentiment 
in both directions was investigated and confirmed. 

Finally, in [41], a framework for the lexicon-grammar of verb and noun predicates denoting 
emotion is presented, followed by its transformation into grammatical rules. The authors discuss the 
lack of significant resources and NLP preprocessing tools and, towards this direction, propose the 
enriching, re-purposing and re-using of already available Language Resources (LR) for the 
identification of emotion expressions in texts.  

2.3. Multilingual Sentiment Analysis 

Sentiment analysis research has predominantly been applied on English. Approaches to 
improve sentiment analysis in a resource-poor focus language in a multilingual manner include 
either: (a) the translation of resources, such as sentiment labeled corpora and sentiment lexicons, from 
English into the focus language, and use them as additional resources in the focus-language 
sentiment analysis system; or (b) the translation of the focus language text into a resource-rich 
language, such as English, and apply a powerful sentiment analysis system on the translation. 

Initial study on multilingual sentiment analysis has primarily addressed mapping sentiment 
resources from English into morphologically complex languages, i.e., the former direction (a). 
Mihalcea et al. [42] used English resources to automatically generate a Romanian subjectivity lexicon 
using an English-Romanian dictionary. The work of [43] investigated both (a) and (b) for Arabic. 
More specifically, they conducted several experiments by either using translated English polarity 
lexica into Arabic texts or freely-available machine translation engines and manual translations for 
converting Arabic to English in order to subsequently apply sentiment analysis. 

The work of Politopoulou and Maragoudakis [27] was the first to introduce the idea of  
machine-translated aid towards sentiment analysis of Greek texts. In their approach, they translated 
the whole document, which led to significant deterioration of the original meaning, probably due to 
the noisy content (the instances were collected by a social media platform) and the early versions of 
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the Greek-to-English machine translation engines. Balahur and Turchi [44] investigated the 
performance of statistical sentiment analysis on machine-translated texts. Opinion-bearing English 
phrases from the New York Times dataset were fed into an English sentiment analysis system that 
portrayed a prediction accuracy of approximately 68%. Following, the dataset was automatically 
translated into German, Spanish and French using publicly available machine-translation APIs, such 
as Google, Bing and Moses. The translated test sets were subsequently manually corrected for errors. 
Upon corrections for German, Spanish and French, a sentiment analysis system was trained on the 
translated training set for that language and tested on the translated-and-corrected test set. The 
authors observed that these German, Spanish and French sentiment analysis systems performed 
similar to the initial English sentiment classifier. There also exists research on using sentiment 
analysis to improve machine translation, such as the work by Chen and Zhu [45], but that is beyond 
the scope of the proposed work. 

3. Gradient Boosting Machines 

3.1. Boosting Methods Overview 

The main characteristic of “boosting” is the conversion of a set of weak learners to a strong and 
robust classifier. A weak learner is practically any prediction model with a relatively poor 
performance (e.g., in terms of accuracy) that leads to unsafe conclusions, thus making it unusable due 
to the high rate of misclassification error. To convert a weak learner to a strong one, the predictions 
of a number of independent weak learners have to be combined. This combination is accomplished 
by taking the majority vote of every prediction of all weak learners as the final prediction. Another 
way to produce a strong learner from weak ones is to use the weighted average. A weak learner is 
added iteratively to the ensemble until the ensemble provides the correct classification. The most 
common representatives of the boosting family are Adaptive Boosting (AdaBoost), Gradient Boosting 
(GBM) and XGBoost (eXtreme Gradient Boost). These types serve as the base for a large number of 
boosting variations. 

3.2. How the Gradient Boosting Algorithm Works 

The common boosting techniques, like AdaBoost, rely on simple averaging of models in the 
ensemble. The main idea of boosting is to add new models to the ensemble sequentially. At each 
iteration, a new weak, base learner model is trained with respect to the error of the whole ensemble 
learnt so far. In the case of gradient boosting, the learning method successively fits new models to 
deliver a more accurate estimate of the class variable. Every new model is correlated with the negative 
gradient of the loss function of the system and tends to minimize it. This materializes by using the 
gradient descent method.  

3.3. Gradient Descent Method 

The gradient descent is an optimization algorithm that finds the local minimum of a function 
using steps proportional to the negative gradient of the function. Suppose there is a multi-variable 
function F(x), defined and differentiable in a neighborhood of point a. F(x) decreases fastest if one 
goes from a in the direction of the negative gradient of F at a, i.e., ∇ ( ). For any point b where  = − ∇ ( ), if γ is small enough, it turns out that F(a) ≥ F(b). Therefore, if we consider a random 
starting point x0 for a local minimum of F and apply the previous formula to a sequence of points, x0, 
x1, …, xn, such that xn+1 = xn − γn∇F(xn) n ≥ 0, we obtain ( )  ≥  ( )  ≥  ( )  ≥  …, and the 
sequence converges to the desired local minimum. This method is applicable to both linear and  
non-linear systems. 

3.4. Application of the Gradient Descent Process to the Error Function 

Before applying the gradient descent process to an error function, one should express the 
estimating function of a system F for an expected loss function g. For a given dataset in the form of 
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Xi, Yi (i = 1, … n), Xi is a variable with k-dimensions and Yi is a response with continuous or discrete 
values (in the case of continuous values, the problem is characterized as regression, in the case of 
discrete values as classification). Let us assume for reasons of simplicity that Y is univariate. From 
the function: F: κ→ and expected loss g, the aim is to minimize the expected loss [g(Y,F(X))],  

g(., .) :  X +. ( ) = ( ) ( , ( ))   

As mentioned earlier, F and g are the estimation and the loss function, respectively. The function 
F expresses the correlation of X, Y. To make sure that the method will work correctly, the loss function 
g should be smooth and convex in the second argument. The loss function depends on the domain 
with which we have to cope. The features of the system (e.g., if the system has outliers or it is high 
dimensional) pose a significant impact on the decision of how the machine learning task should be 
considered. In most of the cases, the loss function belongs to one of the following [9]: 

(a) Gaussian L2 
(b) Laplace L1  
(c) Huber with δ specified 
(d) Quantile with α specified 
(e) Binominal 
(f) AdaBoost 
(g) Loss function for survival models 
(h) Loss function counts data 
(i) Custom loss function 

In case the response of the system is continuous, we try (a) to (d) from the above list; in case the 
response is categorical, we try € or (f). To the extent of our knowledge, the three remaining loss 
functions are currently not supported by any open-source implementation of GBM.  
The following figure (Figure 1) illustrates two continuous loss functions:  

(a) L2 squared loss function with generic format: ( , ) =   ( − )  and  

(b) Huber loss function with generic format: 

( , ) , = 12 ( − ) , | − | ≤1 | − | − 2 , | − | >  (1) 

for the case (I) δ = 1, (II) δ = 0.5 and (III) δ = 0.25.  

  
(a) (b)

Figure 1. (a) Continuous loss function L2 squared; (b) Huber loss function. 
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3.5. Regularization for Base Learners 

One of the most powerful characteristics that GBM has is the ability to use different types of base 
learners, like linear models, smooth models, decision trees, Μarkov models, etc. A list that categorizes 
the base learners is presented below: 

1. Linear models: ordinary linear regression, ridge penalized linear regression and random effects. 
2. Smooth models: P-splines, radial basis functions. 
3. Decision trees: decision tree stumps, decision trees with arbitrary interaction depth. 
4. Other cases of models: Markov random fields, custom base learner functions, wavelets. 

This feature provides the ability of one GBM to encompass more than one base learners. In 
practice, this means that at the same time for the system we work on, we can have one function that 
includes a combination of base learners, e.g., decision trees and linear models. Therefore, it is feasible 
that complex models are created. At this point, we should mention that regardless of what base 
learners will be used in order to produce a satisfactory model, the regularization part is critical. There 
are explicit techniques that can be applied, which depend on the particular case. These techniques 
include, but are not limited to, subsampling, shrinkage and early stopping. Especially in early 
stopping, it prevents the model from overfitting. The fine-tuning process should definitely be a part 
of the model creation process. Additionally, GBM can cope with high-dimensional data because of 
the ability to create sparse models. This advantage is very useful in the case of sentiment analysis. 
Nevertheless, the flexibility of the algorithm has some objective disadvantages. GBM creates models 
by doing a great number of iterations, thus requiring plentiful resources in processing power and 
memory consumption, because every model is stored in memory. 

3.6. Variable Importance 

Previously, we had categorized the GBM algorithm as an ensemble algorithm. Like every 
ensemble algorithm, GBM is also capable of calculating the importance of each variable. An internal 
mechanism provides the rate at every single feature. From this rate is produced a list with all of the 
features with their relative importance. The order of variable importance can be used as a tool for 
exploratory data analysis and domain knowledge extraction, especially in cases for which the system 
is very complex. 

4. Translation as a Feature Generation Method 

In text mining, the traditional Bag Of Words (BOW) approach is inherently restricted to model 
pieces of textual information that are explicitly mentioned in the documents, provided that the same 
vocabulary is consistently used. Specifically, this approach has no access to domain knowledge 
possessed by humans and is not capable of dealing with facts and terms not mentioned in the training 
set in a robust manner. We will borrow an example mentioned in [46], in order to exemplify the 
disadvantages of BOW. Consider Document #15264 in Reuters-21578, which is one of the most 
commonly-used datasets in research about text categorization. This document describes a joint 
mining venture by a consortium of companies, belonging to the category “copper”. By examining the 
document, one can clearly observe that it mainly mentions the mutual share holdings of the 
companies involved (Teck Corporation, Cominco and Lornex Mining) and only briefly reports that 
the aim of the venture is mining copper. As a result, three popular classifiers, such as SVM, k-NN 
and decision trees, failed to classify the document correctly.  

A possible solution to the aforementioned problem could involve the consideration of additional 
features, with the anticipation that these will be more informative than the existing ones. This strategy 
is not uncommon in machine learning and is referred as feature generation [47]. The motivation in 
feature generation is to search for or produce new features that describe the target concept better than 
the ones supplied with the training instances. Works by [48,49] described feature generation 
algorithms that led to substantial improvements in classification. In text mining, feature generation 
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has been applied in terms of finding concepts of words either from WordNet [50] or from Open 
Directory and Wikipedia [51].  

Our approach is also based on feature generation, but instead of finding synonyms or 
hypernyms through WordNet, we apply machine translation over Greek tokens. Certainly, this 
approach augments the total number of features, which will likely intensify the “curse of 
dimensionality” issue. Nevertheless, there exist feature selection algorithms, either inherent in 
classifiers, such as GBM or SVM, or individual, such as Pearson correlation. As already mentioned, 
we apply GBM, which can measure the influence of features by measuring the effect of each split on 
a variable in a decision tree to the log likelihood of the whole ensemble across all trees.  

A research question emerged from our decision to utilize the translation of the Greek texts into 
English, i.e., whether to translate at the sentence or at the word level. By experimenting with both 
approaches over a small sample of the dataset and also by inspecting various instances, we observed 
that the noisy nature of such documents set insurmountable obstacles to the translation, resulting in 
very poor outcomes. An illustrative example, demonstrating the fact that using the Google translation 
API at the sentence level does not always give better results than translating at the word level, 
especially for content that is populated in Web 2.0 platforms, such as in our case, is provided below. 
Table 1 presents an initial negative comment about the former prime minister of Greece, as posted on 
the web. Furthermore, we provide its meaning in English and, finally, the outcome of the translation 
engine. One can clearly evaluate the translation performance at the sentence level over the general 
meaning; therefore, it is evident that in noisy environments, such as social media content, considering 
the full translation would not significantly aid the feature generation process compared to taking 
each token separately into account.  

Table 1. Dealing with machine translation at the sentence level on a real example from  
our database. 

Original Greek Text Meaning (in English) English Translation as Extracted 
from Google Translate ® 

στην περιπτωση του σαμαρα, ισχυει 
η ρηση, το μη χειρον, 
βελτιστον!..ομως δεν ηταν ουτε 
αυτος αξιος μιας ελλαδας...μονο και 
μονο απο το υφακι του εχασε, το 
στυλακι, εγω, εγω, εγω εκανα, 
αμετρητες φορες ελεγε εγω, 
εγωπαθης και εγωισταρος ..συν το 
οτι κυνηγησε τοσο 
αντισυνταγματικα ενα κομμα 
ολοκληρο, κατα τη γνωμη μου 
πολυς κοσμος ειδικα δεξιοι τον 
μισησαν απο αυτο 

In the case of Samaras (note: former 
PM of Greece) the famous saying 
“choose the lesser of two evils” 
applies! But he was also unworthy of 
Greece, he lost popularity only by his 
attitude and his style, countless times 
he was saying “I”, he is an egomaniac 
and a great selfish person, plus that he 
prosecuted in an un-constitutional 
manner a political party, according to 
my opinion, a lot of people, 
particularly those that belong to the 
right political party hated him for this. 

in the case of samarium apply the 
dictum, the non-chiral, Best! .. But was 
not he nor worthy of a ... Of Greece 
just from the yfaki missed the stylaki, 
he, I, I I did, it said countless times 
ego, egomaniac and egoistaros ..syn in 
that hunt both unconstitutional a 
party whole, kata my opinion, a lot of 
people especially hated him right 
from this 

5. Experimental Setup 

5.1. Data Collection 

In the present study, the corpus was retrieved from user opinions posted in online Greek 
newspaper articles. These articles were posted at the online portal of the “Proto Thema” newspaper, 
which is the top selling Sunday paper in Greece, exceeding 100,000 prints each Sunday. The thematic 
areas of the articles varied from politics, society, finance and sports. Seven hundred forty instances 
were collected and annotated by two individuals, reaching a 98% inter-annotation agreement level. 
The only restriction was that each selected comment could be clearly classified as negative or positive. 
The initial format of the corpus was about 35% to 65% with regards to the analogy of positive and 
negative. It was very difficult to retain the balance since there were topics that most comments were 
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biased mostly to the negative class (e.g., in Greek articles about migration and the economic crisis). 
However, our aim was to study the behavior of GBM to sentiment analysis in normal circumstances 
and in extreme ones, such as the imbalanced sets. Therefore, apart from the original corpus A, four 
additional datasets were derived from it, namely:  

B. A mixed dataset, which consisted of the original Greek comments plus the English  
token augmentation. 

C. A translated dataset, i.e., the original set upon translation in English and removal of Greek 
tokens. The reason for incorporating this set is to prove that the main approach of adding English 
translations performs better than the traditional approach of just translating the text into English. 

D. An imbalanced to “positives” dataset, derived from the original Greek comments plus the 
English translation, but with removing most of the “negative” instances. The proportion was 
kept at about 95% positives and 5% negatives. 

E. An imbalanced to “negatives” dataset, which consisted of the original Greek comments plus the 
English translation, having removed most of the “positive” cases. The proportion was also about 
95% negatives and 5% positives. 

5.2. Data Preprocessing 

In text mining, the initial step is usually the transformation of free text into a structured vector 
representation, able to be analyzed by most of the machine learning algorithms. Since the collected 
data were not in the vector form we need them to be, a certain number of preprocessing steps needed 
to be carried out. The articles contained URL addresses that had been removed using an HTML tag 
identifier. The following steps describe the whole process. 

(a) Tokenization: All stop-words have been removed, and all letters have been lowercased. 
(b) Stemming: for the Greek set (denoted as A), an implementation of the [52] stemmer was applied.  
(c) Translation: Each Greek token was translated by using the Google® Translator API. 
(d) Creation of the document-term matrix: The number of rows of the matrix was equal to the 

number of the instances, and the number of columns was equal to the distinct number of Greek 
tokens plus the number of English tokens, as translated in Step c including the translation in the 
case of balanced data, more specifically 740 articles with translation, 260 positive and 480 
negative. As previously explained, for the cases of Datasets D and E, i.e., the “positive” 
imbalanced and “negative” imbalanced sets, 5% of each class was kept within the document 
collection. On each cell of the document-term matrix, the value of the tf-idf weight of each single 
term was provided from the following formula: 

− ( ) = ( ) ᐧ ( ) + 1   

where: 

• m: is the total number of terms 
• N(term): is a function that returns the number of documents in which the term appears. 

(e) Reduce the dimensionality via Principal Component Analysis (PCA). PCA is a technique that 
reduces dimensionality by performing the transformation of possibly correlated variables to a 
fully new dataset with linearly uncorrelated variables, called principal components. Each 
principal component encodes variance starting from the first one, which is guaranteed to have 
the largest variance, meaning that it holds the biggest impact within data, compared to the other 
principal components, which also contain variance information in descending order of 
appearance. All of the principal components are actually the eigenvectors of the covariance 
matrix, which means that they are orthogonal. This was an optional step that aimed at alleviating 
the data sparsity problem and assisting traditional classifiers, such as SVM, decision trees, and 
naive Bayes. This step was not applied in the case of experimenting with GBM, since it is 
mathematically proven that GBM can cope with the large number of attributes.  
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(f) In order to assist classifiers, such as decision trees and naive Bayes, which are significantly 
influenced by high-dimensional vectors, another Feature Selection (FS) technique was 
applied apart from PCA, i.e., weighting each feature using the information gain criterion [53] 
and retaining the top-k of them. In the Experimental Results section, we describe the process 
of finding the optimal parameters for our classifiers, as well as the optimal number of 
principal components and the number k for the feature selection step. 

The dimensionality (in terms of columns, i.e., features) for Datasets A and C, the original Greek 
set of opinions and their English translations upon the application of tokenization and stemming 
reached 7765 (it was about 11% more when stemming was not applied), while the number of features 
for Datasets B, D and E was 13,671.  

5.3. Dealing with the Class Imbalance Problem 

A common phenomenon in real-world applications, such as the one at hand, class imbalance 
problems often deteriorate the performance of traditional classifiers. By studying the current state of 
the art in the field, we have followed a hybrid approach that performs oversampling of the minority 
class based on the SMOTE (Synthetic Minority Oversampling TEchnique) [10] algorithm and  
under-sampling of the majority class using the Tomek links score to identify noisy and borderline 
examples. SMOTE is based on the idea that each example of the minority class is synthetically  
re-generated using its k-NN graph instead of a randomized sampling with replacement. The Tomek 
link [51] method can be viewed as the means for guided under-sampling, where the observations 
from the majority class are removed. 

5.4. Evaluation Criteria and Performance 

The performance of each method has been measured by using accuracy, precision and recall. 
Accuracy: ; precision: ; recall: ; where ,  are true positive and true negative; 

these are the correct positive and correct negative predictions, respectively. ,  are false positive 

and false negative and are the wrongly positive and wrongly negative predictions, respectively. A 

10-fold cross-validation approach has been used in order to evaluate the performance for every 

classifier. 

The above flowchart (Figure 2) depicts the formation process of each dataset and the 
experimental evaluation procedure. As shown in the image, the original corpus is treated at the 
beginning with some basic preprocessing steps, while the idea of applying the English translation to 
the original set is depicted in the second row of the chart. Based on this augmentation, the mixed 
dataset is created. Furthermore, since we need to evaluate the proposed methodology in real-world 
scenarios, where it is very common that one class dominates the other in distribution ratios, we have 
proceeded to the generation of two, highly imbalanced sets per each class label. Finally, for all 
described datasets, the PCA dimensionality reduction and the FS technique were optionally applied, 
to assist the traditional classifiers in recovering from data sparsity. 
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Figure 2. Methodology flowchart. FS, Feature Selection. 

5.5. Classification Benchmark 

In order to investigate the performance of the proposed GBM method and evaluate it against 
other, well-known classifiers that have been previously applied in sentiment analysis tasks with 
success, as explained in the Related Work section, the following classifiers have been incorporated: 
decision trees, naive Bayes, support vector machines and deep neural network learning (using 
recurrent neural networks). In the case of decision trees, naive Bayes and SVM, we have 
experimented using two different data representation techniques, namely the original tf-idf vector 
representation of the document-term matrix and the reduced dataset of the PCA transformation or the 
feature selection stage.  

6. Experimental Results 

The datasets we used as shown in Figure 2 were:  

(a) The original dataset, which contains only the Greek tokens. 
(b) The mixed dataset, which contains Greek tokens and their translation. 
(c) The translated dataset (no Greek tokens). 
(d) The negative imbalanced dataset, which was derived from the mixed dataset removing 95% of 

the positives. 
(e) The positive imbalanced dataset, which was derived from the mixed dataset removing 95% of 

the negatives. 

The underlying idea in these datasets is to approximate realistic conditions in opinion mining 
and sentiment analysis systems. The imbalanced datasets have been dealt with using the  
under-sampling and over-sampling technique mentioned above. Each of the aforementioned datasets 
also underwent the PCA data dimensionality technique and the feature weighting step using 
information gain. PCA and FS were applied to all used classifiers (decision trees, naive Bayes and 
support vector machines), except GBM. 

The experiments were carried out on a rack server, with 2 Intel Xeon E5-2650/2 GHz 8-core 
processors, with 64 GB of RAM, running under Linux (CentOS). The RapidMiner® framework was 
used throughout the experimental evaluations. In the cases of GBM and deep learning, the H2O Open 
Source Fast Scalable Machine Learning API was called within RapidMiner. Since these algorithms 
are highly dependent on their parameters, optimization of GBM, deep learning, SVM, as well as the 
optimal number of principal components and, finally, the top-k features in the FS step was carried 
out using a grid search over numerous different parameter settings, upon evaluation on a held-out 
set and having the harmonic mean of precision and recall, named the F-measure, as the performance 
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criterion during the optimization search. In order to reduce the training time, for the cases of PCA 
and FS, we experimented with five different parameter settings. We asked the PCA algorithm to 
retain five thresholds of variance, starting from 20% and climaxing at 60% using 10% incremental 
steps. Furthermore, if the FS weighting process, we set five different top-k values of features to be 
retained, i.e., 100, 250, 500, 750 and 1000. For the technical details of the optimization operators, please 
refer to the RapidMiner documentation (http://docs.rapidminer.com/studio/operators/ 
modeling/optimization/parameters/optimize_parameters_grid.html), namely the “Optimize 
Parameters/Grid” operator. Since the following paragraphs describe experiments on a different 
dataset each time, the optimal parameters found at each set will be tabulated. 

6.1. Experiment A 

The initial experiment considered the original dataset with GBM against the other algorithms 
used in the benchmark, with and without the PCA and FS reduction. Table 2 tabulates the best 
outcomes for Dataset A, i.e., the original set of the Greek tokens only. These scores correspond to the 
PCA transformation, keeping 30% of the original variance, i.e., approximately 250 principal 
components. The best numbers per performance metric are shown in boldface.  

Table 2. Performance of GBM and other benchmarking methods for Dataset A: original. GBM, 
Gradient Boosting Machine. 

Dataset Α: 
Original 

Accurac
y 

Precision 
(+) 

Recall 
(+) 

Precision (−) Recall (−) 

Decision Trees 68.42% 59.12% 62.86% 75.76% 79.54% 
SVM 77.82% 80.10% 67.60% 79.20% 87.40% 

Naive Bayes 69.12% 58.40% 64.30% 76.30% 72.50% 
Deep Learning 72.00% 67.50% 74.80% 82.40% 78.00% 

GBM 84.20% 82.40% 77.90% 86.30% 88.30%

As observed, the original set displays quite satisfactory results using almost any algorithm. GBM 
is the most powerful method, outperforming all other methods in precision and recall of both classes, 
followed by SVM. GBM was found to outperform all others in all metrics by a significant difference 
that reached almost 12% when compared to deep learning. For reasons of space, we have not included 
the correspondent table when utilizing feature selection; however, we must note that FS was quite 
close to PCA and, thus, not proficient at significantly improving the performance of the classifiers. 
When incorporating FS, the results were slightly worse than the ones found in Table 2 by a varying 
factor of 1.5% to 6%, for various top-k settings. Table 3 presents the optimal parameters of the 
classification algorithms for the aforementioned results of Table 2. 

Table 3. Parameter values, upon the completion of the parameter tuning process for Experiment A. 

Algorithm Parameters
Decision Trees Criterion: Gini Index; Maximal Depth: 60; Confidence: 0.3; Minimal Leaf Size: 12 

SVM Kernel Type: polynomial; Degree: 3; C: 1.35; Epsilon: 10−4 
Naive Bayes No parameters to optimize 

Deep Learning Activation: Tanh; Hidden Layers: 3; Loss Function: Quadratic; Epochs: 30; 
GBM Loss Function: Ada-boost; Number of Trees: 120; Max-depth: 4; Learning rate: 0.05 

6.2. Experiment B 

The second experiment dealt with the incorporation of Dataset B, i.e., the mixed dataset, using 
the translation technique. Table 4 tabulates the performance metrics per each algorithm. These figures 
were found to be the greatest when utilizing PCA transformation, retaining 30% of the variance of 
the mixed set. 
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Table 4. Performance of GBM against other benchmarking methods for Dataset B: Mixed. 

Dataset B: Mixed Accuracy Precision (+) Recall (+) Precision (−) Recall (−)
Decision Trees 70.50% 63.23% 66.60% 77.15% 86.50% 

SVM 81.35% 83.50% 68.50% 83.00% 91.80% 
Naive Bayes 71.80% 62.35% 67.27% 79.34% 75.06% 

Deep Learning 75.70% 67.90% 81.30% 86.60% 78.50% 
GBM 87.85% 84.66% 83.30% 91.30% 91.75%

An examination of the fourth table reveals that the methodology of including additional features 
improves the classification outcome for every algorithm. However, the improvement is clearly bigger 
when one uses methods for performing some sort of feature selection, such as GBM and deep 
learning. For the former, we also observe that it has reached almost 88% in accuracy, and 
simultaneously, it retains high precision and recall values for both classes, while in other methods, 
usually the recall of the positive or negative class often varies from the other metrics. For example, in 
deep learning, the positive precision is 67.9%, while the recall reaches 81.3%. In other words, the 
algorithm attempted to fit almost all positive examples, but in this process, it was not able to 
generalize, thus labeling some negative examples as positives. Results were slightly worse when 
utilizing the FS process, with the case of keeping the top-750 features being approximately 2% to 3% 
lower than PCA. 

Figure 3 contains a graph depicting the improvement of the inclusion of the proposed technique 
with the translation of Greek tokens. As explained before, GBM and deep learning present the best 
improvement, reaching almost 7% better outcomes than when considering the original dataset. An 
interesting observation is that the mixed dataset aids all other methodologies. This might sound 
peculiar since doubling the initial feature set means additional load for any classifier; however, note 
that the translation is not a simple doubling of the size of vectors, since it encodes semantic relations 
between each token and the corresponding class distribution, making the decision boundaries easier 
to recognize. 

 
Figure 3. Improvement when considering the mixed dataset, in terms of accuracy, precision and recall 
per each class label, over the original dataset. 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

Accuracy Precision (+) Recall (+) Precision (-) Recall (-)

Improvement between Mixed and Original Sets

Decision Trees SVM Naïve Bayes Deep Learning GBM



Algorithms 2017, 10, 34  15 of 21 

In analogy with the previous experimental scenario, we tabulate the optimal hyper-parameters 
for the involved algorithms in the following Table 5. 

Table 5. Parameter values, upon completion of the parameter tuning process for Experiment B. 

Algorithm Parameters
Decision Trees Criterion: Gini Index; Maximal Depth: 40; Confidence: 0.25; Minimal Leaf Size: 20 

SVM Kernel Type: polynomial; Degree: 2; C: 3.9; Epsilon: 2 × 10 −4 
Naive Bayes No parameters to optimize 

Deep Learning Activation: Rectifier; Hidden Layers: 2; Loss Function: Quadratic; Epochs: 20; 
GBM Loss Function: Ada-boost; Number of Trees: 100; Max-depth: 6; Learning rate: 0.35 

6.3. Experiment C 

The third experiment dealt with the inclusion of Dataset C, i.e., the translated dataset, without 
any Greek tokens. Table 6 tabulates the performance outcomes per classifier. The best setting was 
found to be achieved when considering the PCA transformation, retaining 40% of the variance of the 
initial Dataset C. 

Table 6. Performance of GBM against other benchmarking methods for Dataset B: mixed. 

Dataset B: Mixed Accuracy Precision (+) Recall (+) Precision (−) Recall (−)
Decision Trees 69.20% 59.68% 62.90% 75.88% 78.22% 

SVM 76.58% 79.40% 68.30% 78.74% 86.90% 
Naive Bayes 69.65% 58.58% 65.25% 76.75% 73.00% 

Deep Learning 72.10% 68.12% 75.30% 82.60% 77.90% 
GBM 83.90% 82.10% 78.15% 86.47% 88.20%

A closer look at the results reveals that the translated dataset is slightly better than the original 
one (i.e., the Greek texts only), but with a minor improvement of about 0.5% to 0.9%. Furthermore, a 
comparison of the table above with the outcomes of the mixed Dataset B shows that the proposed 
methodology of augmenting the initial set with the English translations is the most beneficial in terms 
of precision and recall metrics. Therefore, one could claim that a simple translation of Greek into 
English without considering both languages results in lower classification performance. 
Additionally, even in this case, GBM performs noticeably better that any other classifier. Results were 
slightly worse when utilizing the FS process, with the case of keeping the top-500 features being 
approximately 1.5% to 2.7% lower than PCA. 

As with the previous cases, we tabulate the optimal hyper-parameters for the involved 
algorithms in the following Table 7. 

Table 7. Parameter values, upon completion of the parameter tuning process for Experiment C. 

Algorithm Parameters
Decision Trees Criterion: Gini Index; Maximal Depth: 50; Confidence: 0.3; Minimal Leaf Size: 30 

SVM Kernel Type: polynomial; Degree: 2; C: 2.4; Epsilon: 2 × 10−4 
Naive Bayes No parameters to optimize 

Deep Learning Activation: Tanh; Hidden Layers: 2; Loss Function: Quadratic; Epochs: 40; 
GBM Loss Function: Ada-boost; Number of Trees: 120; Max-depth: 5; Learning rate: 0.3 

6.4. Experiment D 

The fourth experiment was about assessing the influence of class imbalance on GBM, as well as 
on the other set of classifiers. For that reason, we considered both imbalanced sets, namely the  
C positive imbalanced and the D negative imbalanced set. In order to demonstrate that the proposed 
strategy of oversampling the minority class and under-sampling the majority is actually beneficial, 
we first tabulate the performance metric without using it and subsequently when including it.  
Table 8 arranges the outcomes of the experimental run on Dataset C positive imbalanced, without 
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any handling of the class imbalance issue. Again, these outcomes were obtained when utilizing the 
PCA method, for 20% of the initial variance.  

Table 8. Performance of GBM against other benchmarking methods for Dataset C positive imbalanced 
without any measures for the class imbalance problem. 

Dataset C: Imbalanced + Accuracy Precision (+) Recall (+) Precision (−) Recall (−)
Decision Trees 96.21% 2.50% 16.97% 98.02% 98.22% 

SVM 61.5% 5.2% 74.1% 98.3% 63.8% 
Naive Bayes 77.75% 9.1% 65.7% 98.8% 74.3% 

Deep Learning 75.15% 8.50% 69.20% 99.5% 76.53% 
GBM 88.20% 21.5% 75.1% 99.6% 97.9%

An initial observation is that in this case, accuracy is actually not informative since it may appear 
high, but notice that the minority class label displays very poor results, meaning that almost all 
positive instances were incorrectly classified. Even though GBM again outperforms all other 
approaches, the 20% precision in the positive class is certainly not desirable. Thus, the following 
Figure 4 illustrates the results when considering the measures explained earlier, for dealing with  
class imbalance. 

 
Figure 4. Evaluation scores of all classifiers against the positive imbalanced set upon taking measures 
for the class imbalance problem. 

The improvement of the positive class precision and recall is evident. From the initial range of 
2% to 20% for the precision metric, upon applying the measures we discussed earlier, we can observe 
that GBM has reached almost 67.5% precision and 65% recall. The same behavior is also apparent for 
other classifiers, meaning that the measures paid off, since the minority class is not confronted  
with success.  

Table 9 tabulates the outcomes of the experimental run on Dataset D negative imbalanced, 
without any handling of the class imbalance issue. 
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Table 9. Performance of GBM against other benchmarking methods for Dataset D negative 
imbalanced without any measures for the class imbalance problem. 

Dataset D: Imbalanced − Accuracy Precision (+) Recall (+) Precision (−) Recall (−)
Decision Trees 77.23% 95.20% 79.9% 16.9% 43.30% 

SVM 62.25% 95.94% 56.43% 11.8% 65.20% 
Naive Bayes 56.33% 90.79% 58.13% 6.46% 33.10% 

Deep Learning 71.80% 98.00% 73.45% 17.33% 79.50% 
GBM 72.15% 98.7% 74.15% 19.9% 83.00%

As seen from the above table, the minority class (which is now the negative sentiment) also 
suffers from deteriorated metrics, both in precision and recall. It is therefore evident that in real-world 
sentiment analysis tasks, where class imbalance is a common phenomenon, even the most 
sophisticated classifier and even considering advanced feature selection techniques cannot guarantee 
the creation of a robust prediction model. As with the previous dataset, Figure 5 represents the 
outcome of the evaluation, this time by considering the sub-sampling measures for class imbalance. 

 

 
Figure 5. Evaluation scores of all classifiers against the negative imbalanced set upon taking measures 
for the class imbalance problem. 

The improvement in the negative class (both precision and recall) is apparent when compared 
to the previous table. Notice that precision was initially varying from 6.5% to 19.9%, and now, it has 
reached almost 58.5%. Finally, we should mention that GBM was constantly found to be the most 
robust classification method, in all forms of datasets, with and without measures for the class 
imbalance problem. The parameters for the third experiment, either for the positive or the negative 
imbalanced sets, are tabulated below, on Table 10. 

Table 10. Parameter values, upon completion of the parameter tuning process for Experiment D. 

Algorithm Parameters
Decision Trees Criterion: Gain Ratio; Maximal Depth: 30; Confidence: 0.2; Minimal Leaf Size: 4 

SVM Kernel Type: radial; kernel gamma: 1.8; C:0.5; Epsilon: 4 × 10−4 
Naive Bayes No parameters to optimize 

Deep Learning Activation: Rectifier; Hidden Layers: 2; Loss Function: Huber; Epochs: 50 
GBM Loss Function: Ada-boost; Number of Trees: 60; Max-depth: 4; Learning rate: 0.25 
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7. Conclusions 

The presented research, which is an extension of [54], studied the use of machine learning in 
sentiment analysis tasks, particularly in situations where the text is given in a language with a 
relatively minimal set of linguistic analysis gazetteers and modules, such as the POS tagger, syntactic 
shallow parsers, etc. Modern Greek has its place to this category of under-resourced languages, and 
the present work collected real-world sentiment data, obtained from Web 2.0 platforms, and followed 
an idea of using machine translation of Greek tokens as a feature generation step. More specifically, 
instead of utilizing a hand-crafted polarity lexicon for Greek, which would have insufficient impact 
on the accuracy of the predictions due to the noisy social media linguistic style, we proposed a 
method that considers the translation of each Greek token as an additional input feature. Even though 
this process may appear to bring additional effort and complexity to the majority of classification 
algorithms, the use of gradient boosting machines, a robust ensemble method that can handle sparsity 
in high-dimensional data, appeared to be valuable for the task at hand, outperforming a family of  
well-known methods for sentiment analysis. Even when confronted with other state of the art 
classifiers, such as deep neural networks (from the family of recurrent neural networks), the proposed 
method demonstrated superior performance. Moreover, since sentiment data in real cases present a 
high level of class imbalance between the positive and the negative label, we applied sophisticated 
sampling methods for not allowing the bias of the classifiers towards the majority class. Yet again, 
GBM was found to be the superior solution in terms of precision and recall per each class label. In the 
future, we are oriented towards using semantic features, such as topic models, to further improve the 
sentiment analysis models. 
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