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Abstract: In this paper we are presenting a method using fuzzy logic for dynamic parameter
adaptation in the imperialist competitive algorithm, which is usually known by its acronym ICA.
The ICA algorithm was initially studied in its original form to find out how it works and what
parameters have more effect upon its results. Based on this study, several designs of fuzzy systems
for dynamic adjustment of the ICA parameters are proposed. The experiments were performed on
the basis of solving complex optimization problems, particularly applied to benchmark mathematical
functions. A comparison of the original imperialist competitive algorithm and our proposed fuzzy
imperialist competitive algorithm was performed. In addition, the fuzzy ICA was compared with
another metaheuristic using a statistical test to measure the advantage of the proposed fuzzy approach
for dynamic parameter adaptation.
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1. Introduction

Swarm intelligence techniques have gained popularity in recent decades because of their capacity
to locate partially optimal solutions for combinatorial optimization problems. These have been applied
in various areas, such as engineering, economics and industry, etc., and these problems benefit from
the use of swarm intelligence techniques because they are usually very hard to solve accurately since
there is no precise algorithm to solve them [1,2].

Swarm intelligence techniques are approximate metaheuristics that include a wide range of
smart algorithms normally inspired in natural processes, such as artificial honey bee (AHB), genetic
algorithm (GA), cuckoo search (CS), and gravitational search algorithm (GSA) [3].

The imperialist competitive algorithm (ICA), was proposed in 2007 by Atashpaz-Gargari and
Lucas. ICA was originated on the idea of imperialism and in this process stronger countries try to
colonize the weakest countries and make them part of their colonies [4]. This algorithm has been
currently used in different industrial applications [5].

ICA was initially used in continuous optimization problems, but now it has been utilized on
many complex optimization problems such as flowlines scheduling problems (FSP), traveling salesman
problem (TSP), assembly line balancing problem (ALBP), and facility line design problem (FLP) [1].

In the recent literature, there are some articles where the imperialist competitive algorithm has
been studied, such as the work on an imperialist competitive algorithm to optimize artificial neural
networks for UCAV global path planning [6], where the competitive imperialist algorithm is used
to train a neural network with which it is possible to reduce uncertainty and avoid falling into local
minimum. Another paper is that of a hybrid imperialist competitive algorithm for minimizing make
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span in a multi-processor open shop [1]. In this case, a new linear programming model is proposed
for programming problems of a multiprocessor store to minimize the make span, in which a hybrid
imperialist competitive algorithm (ICA) with the genetic algorithm (GA) is used. Another work is
the application of an imperialist competitive algorithm to the design of a linear induction motor [7].
In this paper, the competitive imperialist algorithm is used to design a low speed linear induction
motor to improve efficiency with a high power factor. Finally, there is also a paper on the Imperialist
Competitive Algorithm for Solving a Dynamic Cell Formation Problem with Production Planning [8].
This article uses the competitive imperialist algorithm to optimize the planning, production and
reconfiguration costs in the cell formation with production planning.

The imperialist competitive algorithm has been used in different applications and in different
branches of engineering, but there are some aspects that can be explored to improve its performance,
like the hybridization of the imperialist competitive algorithm with different metaheuristics, such as
GA, PSO and other population based metaheuristics [3,9,10]. Since we can use the ICA algorithm as
a starting point to create an initial solution or use the algorithm as a tool to promote exploration or
exploitation. One aspect to be taken into account is to use the competitive imperialist algorithm in
parallel to help accelerate the search and to achieve higher quality in the possible solutions. Another
important alternative is to perform the adjustment of the ICA algorithm parameters to improve the
algorithm efficiency as is the idea presented in this research.

After analyzing the existing literature, it has been observed that until now there are no works
where the dynamic adjustment of the parameters has been done using fuzzy logic and very few where
the imperialist competitive algorithm for the minimization of mathematical functions has been used.
We conclude that realizing the dynamic adjustment of the parameters in the imperialist competitive
algorithm utilizing fuzzy logic to carry out the adjustment of the parameters that influences the
operation of the algorithm, which could help to improve performance and provide tools to address the
uncertainty generated during operation of the algorithm.

The study of the metaheuristic is realized to observe the efficiency of the imperialist competitive
algorithm (ICA) when used in optimization problems [11,12], having the original ICA algorithm as
a basis for modifying the algorithm in dynamically performing adaptation of parameters. In this case,
this has been proven to be a good idea in other metaheuristics, which utilize adaptation of parameters
along the iterations to help improve the results obtained with respect to when static or fixed parameters
are utilized.

To realize this modification utilizing fuzzy logic [13,14], we continued to the application of the
algorithm for benchmark mathematical functions [10]. In this case the idea is to observe the results of
the ICA algorithm and it is expected to obtain good or better results than with the original algorithm
and other metaheuristics. In this regard, statistical tests were conducted to compare the results of the
original algorithm, the modified fuzzy ICA and other metaheuristics.

The article is organized as shown below: in Section 2 the methodology of the original Imperialist
Competitive algorithm (ICA) is explained, that is, the equations used for assimilation, the power of
empires and each of the algorithm parameters, an explanation is also given on how the parameters
can be changed throughout the iterations. Section 3 presents the methodology that was followed
for modifying the ICA algorithm using fuzzy logic. In Section 4 the results obtained with the ICA
algorithm and the fuzzy imperialist competitive algorithm (FICA) are presented. In Section 5 the
results of the comparison between fuzzy imperialist competitive algorithm (FICA) and the original
ICA algorithm are presented. In Section 6 we show the statistical test performed between the fuzzy
imperialist competitive algorithm (FICA) and fuzzy Cuckoo Search (FCS) and finally Section 7 describes
the conclusions.

2. Imperialist Competitive Algorithm

This section provides a description of the original imperialist competitive algorithm that was
proposed by Atashpaz-Gargari and Lucas, the corresponding equations, and the flowchart used to
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understand its operation [15]. In the field of metaheuristics, ICA is based on political and human
social progress, unlike other evolutionary metaheuristic algorithms, based on behaviors of animals or
physical phenomena [16,17].

Figure 1 shows the flowchart of the imperialist competitive algorithm. Like other evolutionary or
population based algorithms, ICA starts with an initial population. The best countries are selected as
imperialist countries and the rest form the imperialist colonies. All colonies of the initial population
are divided among the imperialists countries based on of their power [18].

After dividing all the colonies among the imperialists, the colonies begin the movement towards
their imperialist countries. The total power of all the empires depend on the power of the imperialist
countries and the power of their colonies. This fact is defined with the total power of an empire by the
power of the imperialist country plus a percentage of the average power of their colonies [15].

When the imperialist competition between the empires starts, any empire that cannot remain in
this competition and cannot augment its power will be removed from the imperialist competition. The
imperialist competition will result in an increment in the power of the most powerful empires and a
decrement in the power of the weaker empires. The weakest empires will lose their power partially
and, ultimately, will collapse one by one. All countries will eventually become a state in which there is
only one empire in the entire world and all remaining countries are colonies of that empire [19,20].
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The equations for the formation of empires (Initialization) are the following [21]:

Country = [p1, p2, ..., pNvar] (1)

Cost = f (Country) = f (p1, p2, ..., pn) (2)



Algorithms 2017, 10, 18 4 of 19

NcoI = Npop − Nimp (3)

Cn = max
i
{ci} − cn (4)

pn =
Cn

∑
Nimp
i=1 Ci

(5)

NCn = Round{pnNcol} (6)

In Equation (1) Country represents a country, Nvar is the number of variables of interest and pi
is the value of i-th variable, Equation (2) represents the cost of a country, Equation (3) is necessary
to obtain the number of colonies of the population, Equation (4) is used to obtain the normalized
cost of each imperialist, where cn is the n-th imperialist’s cost, and Cn is the normalized cost of n-th
imperialist, Equation (5) obtains the power of each imperialist where pn is the power of n-th imperialist
and Equation (6) represents the number of colonies that can possess that imperialist.

The equations for moving the colonies towards their imperialist country (assimilation) are [15]:

x ∼ U(0,βd) (7)

θ ∼ U(−γ,γ) (8)

Equation (7) represents a colony that moves a distance x towards its imperialist, where β is
a number between 1 and 2 and d represents the distance among the colony and its imperialist,
Equation (8) helps us to search for different positions around the imperialist. In which γ is a parameter
where a large value estimates a global search and a small value impacts the local search.

The Equation for the full power of an empire is as follows [21,22]:

TCn = Cost(imp) + ξmean{Cost(Col)} (9)

This equation represents the total cost of n-th empire and ξ is a number between 0 and 1.
Where with a small value of ξ, we have a greater influence of the imperialist power to determine the
total power of the empire, and a large value of ξ, has a greater influence on the average power of the
colonies to calculate the total power of the empire.

The equations for the imperialist competition are the following [21]:

NTCn = max
i
{TCi} − TCn (10)

ppn =
NTCn

∑
Nimp
i=1 NTCi

where ∑
Nimp
i=1 ppi = 1 (11)

Equation (10) starts with the imperialist competition where the normalized total cost is calculated
and in Equation (11) we provide the probability of possessing a colony. The main steps of the algorithm
are shown below in the pseudocode [23,24].

2.1. Pseudocode ICA

1. Initialize the empires (Equations (1)–(6)).

Country = [p1, p2, ..., pNvar]
Cost = f (Country) = f (p1, p2, ..., pn)
NcoI = Npop − Nimp

Cn = max
i
{ci} − cn

pn = Cn

∑
Nimp
i=1 Ci

NCn = Round{pnNcol}
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2. Move all colonies toward their imperialist country (Assimilating Equations (7) and (8)).

x ∼ U(0,βd)
θ ∼ U(−γ,γ)

3. If there is a colony with has less cost than the imperialist country in an empire, exchange the
locations of the colony and the imperialist country.

4. Calculate total cost of each empire (Equation (9)).

TCn = Cost(imp) + ξmean{Cost(Col)}

5. Select the weaker colony from the weaker empire and pass it to the empire that has more
possibility to possess it. (The imperialistic competition Equations (10) and (11)).

NTCn = max
i
{TCi} − TCn

ppn = NTCn

∑
Nimp
i=1 NTCi

6. Delete the weakest empires.
7. If only one empire remains, stop, if not return to step 2.

2.2. Mathematical Functions

In this section, the mathematical functions utilized in the tests to measure the performance
of the ICA algorithm for the dynamic adjustment of its parameters are listed below. In the field
of metaheuristics used for optimization problems it is usual to consider mathematical functions
to measure their performance, as it is used in this paper. In this case, the idea is to measure
an improvement of an optimization algorithm known as ICA, where the aim is to use dynamic
parameters [13,25]:

Figure 2 shows the plot of the sphere function, Figure 3 shows the quartic function, Figure 4
illustrates the plot of the Rosenbrock function, Figure 5 shows the Rastrigin function, and the Griewank
function is presented in Figure 6 and finally in Figure 7 shows the plot of the Ackley function. All the
mathematical functions that are used are accompanied by their respective equation and the search
space in which they work as shown below [16,26].

• Sphere
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f (x) =
nx

∑
j=1

x2
j (12)

Search space xj ∈ [−5.12, 5.12] and f ∗(x) = 0.0
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ix4
i (13)

Search space xi ∈ [−1.28, 1.28] and f ∗(x) = 0.0
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f (x) =
nx

∑
j=1

(x2
j − 10 cos(2πxj) + 10) (15)

Search space xj ∈ [−5.12, 5.12] and f ∗(x) = 0.0

• Griewank
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3. Proposal Methodology

The Imperialist competitive algorithm is a search technique that takes as inspiration the theory
of imperialism, where the most powerful countries intent to make a colony of other countries and
currently been utilized to resolve complex optimization problems. A metaheuristic algorithm named
Fuzzy imperialist competitive algorithm (FICA) with dynamic adjustment of parameters used on the
optimization of benchmark mathematical functions is proposed in this article. The main idea is that
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fuzzy logic will help in modeling the uncertainty in finding the appropriate parameter values during
the execution of the algorithm and in this way improve performance of the algorithm.

The main objective of our proposal is to obtain the optimal values of the parameters with the
help of fuzzy systems to increase performance of the ICA algorithm during execution. The fuzzy
systems [13] will dynamically adjust the β and ξ parameters as shown below in Figure 8.
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For the decades of the algorithm, we did perform an analysis and decided to utilize a percentage
of decades with respect to the total number of decades, that is, when the algorithm starts the decades
will be considered to have a linguistic value of “low”, and when most of the decades have passed will
be considered “high” or close to 100%. This notion is presented below [27]:

Decades =
Current Decade

Total Number Of Decades
(18)

This paper proposes and explains three fuzzy systems where the experiments were conducted.
We have various fuzzy systems for obtaining the β parameter, the ξ parameter and a fuzzy system for
the combination between β and ξ parameters.

The key issue is how to correctly define the fuzzy systems. In this regard, the fuzzy systems
shown in Figures 9–11 are fuzzy systems of Mamdani type with the input defined as the decades and
with one output variable, the first is with the β parameter, the second with the ξ parameter and the
third one with a combination of β and ξ.
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The Fuzzy systems have the output variables shown in Figures 13 and 14, and are β and
ξ, respectively, and in the same way that the input variables are granulated into three triangular
membership functions tagged as Low, Medium and High.
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For the design of the rules of the fuzzy systems, it was determined that in the initial decades the
ICA algorithm begins to explore and when approaching the end eventually exploits. All the rules were
designed taking the idea that they are in increasing fashion as shown below:

The rules of the fuzzy system for β are:

1. If (Decades is Low) then (β is Low).
2. If (Decades is Middle) then (β is Medium).
3. If (Decades is Alto) then (β is High).

The rules of the fuzzy system for ξ are:

1. If (Decades is Low) then (ξ is Low).
2. If (Decades is Middle) then (ξ is Medium).
3. If (Decades is Alto) then (ξ is High).

To design the rules of the fuzzy system combining β and ξ, we decided (based on previous
experimentation) to use β in increase over the decades and ξ that was in decrement as shown below:

1. If (Decades is Low) then (β is Low) and (ξ is High).
2. If (Decades is Medium) then (β is Medium) and (ξ is Medium).
3. If (Decades is High) then (β is High) and (ξ is Low).
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4. Simulation Results with the Fuzzy Systems of the Imperialist Competitive Algorithm for
Benchmark Mathematical Functions

In this section the imperialist competitive algorithm (ICA) [28,29] is tested with 6 mathematical
functions with 30 dimensions for each of the β, ξ parameters and a combination of β and ξ and the
results that were obtained by the ICA algorithm and our fuzzy ICA proposal are shown in separate
tables for each function. All tables show the average, worst and best values obtained after 30 executions
for algorithm from 1000 to 5000 decades.

The parameters utilized in the imperialist competitive algorithm [30] and the fuzzy imperialist
competitive algorithms are:

• Dimensions: 30
• No. Countries: 200
• No. Imperialists: 10
• Revolution rate: 0.2

Table 1 shows the results of executing 30 times the proposed ICA algorithm with dynamic
adaptation the β and ξ parameters, where we find the average, best and worst results obtained for the
sphere function.

Table 1. Sphere function.

Sphere Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 3.11 × 10−31 7.70 × 10−28 4.59 × 10−31 3.35 × 10−27

Worst 7.51 × 10−20 1.71 × 10−24 6.39 × 10−18 7.98 × 10−22

Mean 2.51 × 10−21 2.28 × 10−25 2.50 × 10−19 6.37 × 10−23

2000
Best 1.68 × 10−61 1.94 × 10−57 5.05 × 10−62 1.26 × 10−56

Worst 3.55 × 10−48 9.63 × 10−51 3.62 × 10−27 3.91 × 10−49

Mean 1.76 × 10−49 5.08 × 10−52 1.21 × 10−28 2.59 × 1050

3000
Best 6.42 × 10−90 3.66 × 10−87 3.56 × 10−90 2.14 × 10−85

Worst 1.33 × 10−52 4.04 × 10−76 7.56 × 10−25 7.24 × 10−75

Mean 4.43 × 10−54 1.53 × 10−77 2.52 × 10−26 2.86 × 10−76

4000
Best 1.66 × 10−123 3.27 × 10−110 1.19 × 10−122 3.05 × 10−110

Worst 1.67 × 10−71 2.21 × 10−97 1.15 × 10−47 9.98 × 10−97

Mean 5.56 × 10−73 9.51 × 10−99 3.84 × 10−49 3.34 × 10−98

5000
Best 3.25 × 10−154 7.20 × 10−138 8.53 × 10−154 7.05 × 10−133

Worst 4.50 × 10−121 4.24 × 10−20 9.90 × 10−16 2.55 × 10−116

Mean 1.50 × 10−122 1.42 × 10−21 3.30 × 10−17 1.68 × 10−117

Table 2 shows the results of running 30 times the proposed ICA algorithm with dynamic
adaptation of the β and ξ parameters, where we find the average, best and worst results obtained for
the quartic function.

Table 2. Quartic function.

Quartic Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 4.03 × 10−55 7.48 × 10−45 1.85 × 10−55 9.33 × 10−44

Worst 2.93 × 10−39 8.69 × 10−38 6.59 × 10−41 1.28 × 10−35

Mean 9.76 × 10−41 2.97 × 10−39 2.39 × 10−42 8.43 × 10−37

2000
Best 2.34 × 10−113 2.00 × 10−95 4.70 × 10−108 1.87 × 10−92

Worst 1.32 × 10−87 5.40 × 10−85 3.72 × 10−89 8.94 × 10−82

Mean 4.39 × 10−89 1.85 × 10−86 1.26 × 10−90 3.61 × 10−83
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Table 2. Cont.

Quartic Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

3000
Best 9.62 × 10−168 1.77 × 10−141 8.50 × 10−169 2.74 × 10−140

Worst 5.57 × 10−147 1.48 × 10−128 4.20 × 10−148 1.26 × 10−123

Mean 2.14 × 10−148 4.98 × 10−130 1.75 × 10−149 4.24 × 10−125

4000
Best 5.26 × 10−223 8.31 × 10−190 1.54 × 10−231 3.06 × 10−181

Worst 1.35 × 10−195 3.00 × 10−161 6.16 × 10−196 1.58 × 10−163

Mean 4.52 × 10−197 1.00 × 10−162 2.05 × 10−197 5.59 × 10−165

5000
Best 9.13 × 10−281 2.93 × 10−234 6.39 × 10−282 1.16 × 10−237

Worst 1.51 × 10−240 1.95 × 10−195 2.50 × 10−245 7.92 × 10−199

Mean 5.44 × 10−242 6.52 × 10−197 8.34 × 10−247 2.71 × 10−200

Table 3 shows the results of executing 30 times the proposed ICA algorithm with dynamic
adaptation the β and ξ parameters, where we find the average, best and worst results obtained for the
Rosenbrock function.

Table 3. Rosenbrock function.

Rosenbrock Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 1.2316226 2.4035099 2.8943449 1.741879

Worst 20.229215 26.258041 26.428196 24.244927
Mean 18.32843 17.302077 18.708605 17.302317

2000
Best 0.0182118 0.0019663 0.0309808 0.0212138

Worst 19.389756 15.862588 19.380454 19.806802
Mean 10.702829 9.026535 10.575362 11.571011

3000
Best 9.35 × 10−6 0.0154982 2.24 × 10−6 0.0907321

Worst 13.231482 10.229455 13.023777 15.778142
Mean 5.0096391 3.5266455 5.1161619 7.0405932

4000
Best 1.26E-07 7.56 × 10−5 6.79 × 10−7 0.0030788

Worst 7.2442467 4.5619828 12.048154 5.1284706
Mean 2.518922 0.8121844 2.5097263 1.8056573

5000
Best 8.87 × 10−7 2.49 × 10−5 7.28 × 10−9 0.0089079

Worst 9.102693 4.0085791 10.12155 4.1014126
Mean 2.0320047 1.0782768 1.5795989 0.6206618

Table 4 summarizes the results of running 30 times the proposed ICA algorithm with dynamic
adaptation the β and ξ parameters, where we find the average, best and worst results obtained for the
Rastrigin function.

Table 4. Rastrigin function.

Rastrigin Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 77.60654371 33.89704822 101.485221 61.40540354

Worst 166.3705786 157.4160653 174.25906 151.2330801
Mean 131.0164965 95.8100497 125.297209 108.721887

2000
Best 66.66206493 3.542874325 46.762995 4.320732599

Worst 156.421058 115.4147346 153.222524 117.6886745
Mean 116.4624694 55.9547262 115.942776 52.6112894

3000
Best 38.80334777 4.001886266 51.7377346 0.065497359

Worst 149.3852153 98.57159506 159.192274 134.3184949
Mean 100.2171148 103.0026754 97.9436946 61.0832188
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Table 4. Cont.

Rastrigin Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

4000
Best 54.72265233 52.73263809 39.7980992 47.75788823

Worst 156.2075185 144.4814676 134.389914 135.4559257
Mean 101.1418009 90.6758531 99.6304181 94.61300534

5000
Best 66.73304166 36.81341449 75.6164833 53.7274902

Worst 156.2788002 146.4002774 144.339083 138.369496
Mean 101.0967699 93.80047281 109.224593 91.73710009

Table 5 shows the results of executing the proposed ICA algorithm 30 times with dynamic
adaptation of the β and ξ parameters, where we find the average, best and worst results obtained for
the Griewank function.

Table 5. Griewank function.

Griewank Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 5.37 × 10−6 0.00044923 0.00180682 0.00152579

Worst 1.02242034 1.03634946 1.02883464 1.03790429
Mean 0.35910253 0.50333873 0.41852252 0.31999397

2000
Best 5.70 × 10−6 0.00112137 0.00063138 0.00013872

Worst 1.04181924 1.04220393 1.05562693 1.02499176
Mean 0.34491885 0.4949299 0.36873076 0.28444478

3000
Best 0.00021101 0.00250878 0.00568237 0.01177726

Worst 0.8733779 1.04327883 1.03165716 1.02931357
Mean 0.25614264 0.50039122 0.4444043 0.30456505

4000
Best 0.01693866 0.00080968 0.00021682 8.37 × 10−5

Worst 1.02590811 1.03539577 1.04268116 1.02265887
Mean 0.46998072 0.46775839 0.33053626 0.28910338

5000
Best 0.00052846 0.00659022 9.13 × 10−5 0.00086851

Worst 1.03574438 1.03888314 1.03172748 1.02819675
Mean 0.53988701 0.66356327 0.29744525 0.34420119

Table 6 shows the results of executing 30 times the proposed ICA algorithm with dynamic
adaptation the β and ξ parameters, where we find the average, best and worst results obtained for the
Ackley function.

Table 6. Ackley function.

Ackley Function

Decades ICA
β Inc ξ Inc β Inc–ξ Dec

1–2 0–1 1–2 and 0–1

1000
Best 0.04282997 0.1818607 0.98406118 0.20184042

Worst 9.59713997 7.80621452 9.90372665 10.6229277
Mean 5.00997147 4.6910324 5.53751731 4.67171762

2000
Best 1.62876913 0.06634036 1.16270802 0.15545381

Worst 8.25352738 6.99145708 10.2785221 9.83562472
Mean 5.03586405 2.91434453 5.28942225 4.73526718

3000
Best 0.07369281 0.17195685 0.01459694 1.40667014

Worst 9.65566678 4.63766418 10.5080894 9.66222211
Mean 5.62259386 2.91120991 4.86681416 5.48898051

4000
Best 0.01183355 0.03355728 0.44424216 0.14476083

Worst 8.68429605 5.65397345 11.1485964 10.5471553
Mean 4.69447289 2.37875375 5.18774309 4.97000206

5000
Best 0.07598449 0.00936163 1.39061542 0.01190486

Worst 9.98139202 6.69937633 8.39877466 9.53387625
Mean 5.25589516 3.2539677 5.137672 4.17327678
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5. Statistical Comparison for ICA and FICA with β Increasing

The statistical test was performed between the ICA algorithm and the FICA algorithm with
dynamic adjustment of the β parameter with the range from 1 to 2, and the experiments correspond to
the results obtained in tests for the ICA and FICA algorithms. Each algorithm was applied separately
to each of the mathematical functions, 6 functions were used for the algorithms and 30 experiments
were realized. Table 7 contains the average and standard deviation obtained after 30 executions for
algorithm with 1000 decades. The values of parameters utilized in the fuzzy imperialist competitive
algorithm and the ICA Algorithm [24,31] are the following:

• No. of Countries: 200.
• No. of Imperialists: 10.
• Revolution Rate: 0.2.
• β: 1.4.
• ξ: 0.02.
• Dimensions: 30.
• Simulations: 30.
• Decades: 1000.

Table 7 shows the performance of the FICA algorithm with dynamic adjustment of the β parameter
and the ICA algorithm for 30 times we find the mean and standard deviation results.

The statistical test used for the comparison is the Wilcoxon test [32] that is commonly utilized to
analyze data, where its parameters are shown in Table 8.

Table 7. Comparison with ICA and FICA with increasing β.

Function ICA FICA

Sphere Mean 2.51 × 10−21 2.27 × 10−25

S.D. 1.37 × 10−20 4.17 × 10−25

Quartic Mean 9.75 × 10−41 2.96 × 10−39

S.D. 5.34 × 10−40 1.58 × 10−38

Griewank
Mean 0.3591025 0.5033387
S.D. 0.3903724 0.3845768

Rosenbrock
Mean 18.32843 17.302077
S.D. 5.6853778 5.9223444

Rastrigin Mean 131.0165 95.81005
S.D. 22.167742 29.295518

Ackley Mean 5.0099715 4.6910324
S.D. 2.2992776 1.8764895

Table 8. Parameters for the statistical test.

Function No.
F1 F2

Difference
Abs

(Difference) Rank
Signed

Rank (−)
Signed

Rank (+)ICA FICA(β)

Spherical 1 2.51 × 10−21 2.27 × 10−25 2.51 × 10−21 2.51 × 10−21 2 2
Quartic 2 9.75 × 10−41 2.96 × 10−39 −2.86 × 10−39 2.86 × 10−39 1 1

Griewank 3 0.35910253 0.50333873 −0.14423619 0.14423619 3 3
Rosenbrock 4 18.3284301 17.3020772 1.02635282 1.02635282 5 5
Rastrigin 5 131.016497 95.8100497 35.2064469 35.2064469 6 6
Ackley 6 5.00997147 4.6910324 0.31893908 0.31893908 4 4

The null hypothesis tells us that the average of the results obtained by the fuzzy imperialist
competitive algorithm is equal to the average of the ICA algorithm, and the alternative hypothesis
states that the average of the results obtained by the fuzzy imperialist competitive algorithm is different
to the average performance of the ICA algorithm.
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To test the hypothesis, the absolute values
∣∣Zi
∣∣ . . .

∣∣Zn
∣∣ are ordered and assigned its range on

Rank, the order of these values are from lowest to highest, Sign (+) column indicates the values are
positive and Sign (−) column indicates the values are negative.

The equation used in the statistical test is:

W+ = ∑
≈i>0

Ri (19)

The sum of the ranges Ri corresponding to the positive values of Zi.
W+ represent the value of the sum of the positive ranks, W− is the value of the sum of the negative

ranks, W represent the differences among two samples, and the value of the W0 represents the value
for a two-tailed test in the table utilizing 30 samples.

The test of Wilcoxon to evaluate is the one shown below
If W ≤W0
Then fail to reject H0

Table 9 shows a statistical test performed for two methods with a confidence level of 95% and
a value of W = 4 and W0 = 1. The results obtained from the statistical test are as follows: for the fuzzy
imperialist competitive algorithm, it fails to reject H0 the null hypothesis, therefore the alternative
hypothesis is rejected, which means that the average performance of the fuzzy imperialist competitive
algorithm is not significantly different to the average performance of the ICA algorithm.

Table 9. Parameters for the statistical test.

W− W+ W Level Significance m = Degrees of Freedom W0 = Wα, m

4 17 4 0.05 6 1

6. Result of the Experiments and Statistical Test of the Fuzzy Imperialist Competitive Algorithm
(FICA) and Fuzzy Cuckoo Search (FCS)

In this section the fuzzy imperialist competitive algorithm (FICA) and the Fuzzy Cuckoo search
Algorithm (FCS) are compared with 5 mathematical functions with 16 dimensions for the β parameter
and a combination of β-ξ and the Pa parameter the in the Fuzzy Cuckoo search (FCS). The results
obtained with the FICA algorithm and the FCS are shown in separate tables for each function.
The tables contain the average values obtained after 50 executions for algorithm with decades 2000
and 2000 iterations respectively.

The parameters used in the fuzzy imperialist competitive algorithm and the FCS Algorithm [33]
are the following:

• No. of Countries: 200 (FICA).
• No. of Imperialists: 10 (FICA).
• Revolution Rate: 0.2 (FICA).
• Dimensions: 16.
• Simulations: 50.
• Decades: 2000.
• Population: 25 nests (FCS).
• β: 1.5 (FCS).

Table 10 shows the results of the algorithm FICA and the FCS algorithm executed 50 times,
dynamically adapting the β, ξ and Pa parameters, and we show the average of the results obtained.
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Table 10. Comparison with FICA and Fuzzy Cuckoo Search (FCS) (pa).

Function
β Inc ξ Inc β Inc–ξ Dec FCS

1–2 0–1 1–2 and 0–1 Pa

Spherical 5.16 × 10−130 1.06 × 10−164 1.93 × 10−128 2.23 × 10−40

Griewank 9.02 × 10−2 2.90 × 10−1 1.68 × 10−1 6.06 × 10−12

Rosenbrock 1.68 × 10−1 1.67 × 10−1 2.89 × 10−2 2.39 × 10−5

Rastrigin 7.2952 23.8532 7.3277 11.6309
Ackley 4.5930 4.2932 3.5919 7.47 × 10−14

The statistical test that was used for the comparison is the Wilcoxon paired test and the data and
parameters are shown in Tables 11–14.

Table 11. Parameters for the statistical test for FICA (β) and FCS (pa).

F1 F2

Function No. FCS (pa) [33] FICA (β) Difference Abs
(Difference) Rank Signed

Rank (−)
Signed

Rank (+)

Spherical 1 2.23 × 10−40 5.16 × 10−130 2.23 × 10−40 2.23 × 10−40 1 1
Griewank 3 6.06 × 10−12 9.02 × 10−2 −0.09025 0.09025 2 2
Rosenbrock 4 2.39 × 10−5 1.68 × 10−1 −0.1686561 0.1686561 3 3
Rastrigin 5 11.6309 7.2952 4.3357 4.3357 4 4
Ackley 6 7.47 × 10−14 4.593 −4.593 4.593 5 5

The null hypothesis tells us that the average of the results obtained by the FICA (β) algorithm
is equal to the average of the FCS (pa) algorithm and the alternative hypothesis states that the
average of the obtained by the FICA (β) algorithm is different to the average performance of the FCS
(pa) algorithm.

Table 12 shows a statistical test performed for two methods with a confidence level of 95% and
a value of W = 5 and W0 = 1. The results obtained from the statistical test are as follows: for the
FICA algorithm, it fails to reject H0 the null hypothesis and the alternative hypothesis is rejected,
which means that the average performance of the FICA algorithm is not significantly different to the
performance of the FCS (pa) algorithm.

Table 12. Parameters for the statistical test.

W− W+ W Level Significance m = Degrees of Freedom W0 = Wα, m

5 10 5 0.05 5 1

Table 13. Parameters for the statistical test for FICA combination (β-ξ) and FCS (pa).

Function No.
F1 F2

Difference
Abs

(Difference) Rank
Signed

Rank (−)
Signed

Rank (+)FCS (pa) [33] FICA(β-ξ)

Spherical 1 2.23 × 10−40 1.93 × 10−128 2.23 × 10−40 2.23 × 10−40 1 1
Griewank 3 6.06 × 10−12 1.68 × 10−1 −0.1687 0.1687 3 −3
Rosenbrock 4 2.39 × 10−5 2.89 × 10−2 −0.0289451 0.0289451 2 −2
Rastrigin 5 11.6309 7.3277 4.3032 4.3032 5 5
Ackley 6 7.47 × 10−14 3.5919 −3.5919 3.5919 4 4

The null hypothesis tells us that the average of the results obtained by the FICA combination (β-ξ)
algorithm is equal to the average of the FCS (pa) algorithm and the alternative hypothesis states that
the average of the results obtained by the FICA combination (β-ξ) algorithm is different to the average
performance of the FCS (pa) algorithm.

Table 14 shows a statistical test performed for two methods with a confidence level of 95% and
a value of W = 5 and W0 = 1. The results obtained from the statistical test are as follows: for the FICA
combination (β-ξ) algorithm, it fails to reject H0 the null hypothesis and the alternative hypothesis is
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rejected, which means that the average performance of the FICA combination (β-ξ) algorithm is not
significantly different to the average performance of the FCS (pa) algorithm.

Table 14. Parameters for the statistical test.

W− W+ W Level Significance m = Degrees of Freedom W0 = Wα, m

5 10 5 0.05 5 1

7. Conclusions

The ICA algorithm is a newly developed method based on the theory of socio-political
developments, which can be used for both linear and nonlinear functions. Recently, the parameters of
metaheuristic algorithms have mostly been chosen by trial and error, which is why we decided to carry
out a modification to the ICA algorithm to achieve better performance than the original algorithm and
improve convergence, in this way avoiding getting stuck in local optima.

This research presents a modification of the imperialist competitive algorithm to enable dynamic
adaptation of parameters utilizing fuzzy logic, this in order that the fuzzy system dynamically moves
the ICA algorithm parameters. Firstly, the ICA algorithm was analyzed and each of the parameters
used in processing, and then experiments with different ranges and possible values that each parameter
could take were analyzed and then the algorithm was applied to Benchmark mathematical functions
in order to optimize such functions and after that for comparing with other existing metaheuristic
methods and in this way measure how good our method is.

We designed different fuzzy systems to independently move each of the parameters of the ICA
algorithm, since by these parameters the exploitation and exploration of the algorithm are dynamically
controlled. We designed and implemented different fuzzy system combinations between parameters
and every one of the modifications was applied to the benchmark mathematical functions.

Finally, after analyzing the results of each of the proposals, we conclude that the fuzzy imperialist
competitive algorithm is better than the original algorithm on average; however, we cannot affirm
this statistically since our statistical test yield shows that the results are very close. In addition,
it was not possible to significantly improve the results of the fuzzy Cuckoo search algorithm and we
only managed to improve on some of the reference functions using the dynamic adjustment of the
parameters individually, because with the proposed approach it was not possible to get significantly
better results.

After studying the original imperialist competitive algorithm and making the modification using
fuzzy logic to dynamically adjust the parameters, we can conclude that the ICA algorithm is good for
solving complex optimization problems, in which we can even achieve better results by applying the
following actions, which can be considered as future work:

• Use different numbers of dimensions.
• Optimize the rules on the combined method to see if better results are achieved.
• Use different inputs in the fuzzy system.
• Change the fuzzy systems to be of type-2 to better model uncertainty.
• Apply the different methods to control problems.
• Perform hybridization with other metaheuristic algorithms for improving the ICA algorithm.
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