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Abstract: This paper presents a kernel fuzzy clustering with a novel differential harmony search
algorithm to coordinate with the diversion scheduling scheme classification. First, we employed
a self-adaptive solution generation strategy and differential evolution-based population update
strategy to improve the classical harmony search. Second, we applied the differential harmony search
algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally,
the combination of the kernel fuzzy clustering and the differential harmony search is applied for
water diversion scheduling in East Lake. A comparison of the proposed method with other methods
has been carried out. The results show that the kernel clustering with the differential harmony search
algorithm has good performance to cooperate with the water diversion scheduling problems.
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1. Introduction

Metaheuristics are designed to find, generate, or select a heuristic that provides a good solution
to an optimization problem [1]. By searching over a large set of feasible solutions, metaheuristics can
often find good solutions with less computational effort [2]. There has been a widespread usage of
metaheuristics and their applications in artificial intelligence, e.g., transit network design problems [3],
sewer pipe networks [4], water distribution systems [5], sizing optimization of truss structures [6],
ordinary differential equations [7], and so forth. Using metaheuristic algorithms, complex problems
are not far from finding their solutions [7]. Metaheuristics are good at finding near-optimal solutions
to numerical real-valued problems [8].

Harmony search (HS) is a new phenomenon-mimicking algorithm, proposed by Geem in 2001 [9].
It is a relatively recent metaheuristic method based on musical performances. In the HS algorithm,
a new solution is generated by pitch adjustment and random selection. HS has the ability to deal with
discontinuous optimization problems, as well as continuous problems. Comparing with other artificial
intelligent algorithms such as the genetic algorithm and its variants, the HS algorithm requires fewer
parameters and these parameters are easy to set. Moreover, HS can overcome the drawback of GA’s
building block theory. The advantages of HS have resulted in much interest in recent years, and HS
has been widely applied in many fields, such as email classification [10], single machine scheduling
problems [11], and so on.

Although HS has its advantages, i.e., it is good at identifying the high-performance regions of
the solution space at a reasonable time, it gets into trouble in performing local searches for numerical
applications [12]. In order to improve the optimization ability, different variants of HS have been
developed. Mahdavi et al. presented an improved harmony search algorithm (IHS) which changes
the parameters dynamically with the generation number [12]. The IHS algorithm presents a strategy
of parameter adjustment which improves the performances of HS algorithm. However, the user
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needs to specify the new parameters, which are not easy to set, and it still performs local searches for
some numerical applications. Other modifications, such as the global-best harmony search algorithm
(GHS) [13] and chaotic harmony search algorithms (CHS) [14], have shown better performance than the
classical HS, but they still have their own shortcomings. The GHS algorithm generates new harmonies
using the variable from the best harmony. However, the algorithm cannot be adopted when the
variables have different value ranges. This drawback limits the scope of the application of this method.
The CHS generates new solutions following the chaotic map, but simulations show that CHS still
suffers from a local optimum when dealing with some numerical applications.

Fuzzy clustering is a class of algorithms for cluster analysis which determine the affinities of
samples using mathematical methods. It divides samples into classes or clusters so that items in
the same class are as similar as possible, while items in different classes are dissimilar. It is a useful
technique for analyzing statistical data in multi-dimensional space.

Fuzzy clustering has gained a significant level of interest for its ability to classify the samples which
are multi-attributed and difficult to analyze. In recent years, there have been a large number of studies
on fuzzy clustering. Fuzzy c-means clustering (FCM) [14] and fuzzy k-means clustering (FKM) [15] are
widely used to categorize similar data into clusters. The kernel fuzzy clustering algorithm (KFC) [16]
and the weighted fuzzy kernel-clustering algorithm (WFKCA) [17] are also efficient ways for cluster
analysis. Research has shown that WFKCA has good convergence properties and the prototypes
obtained can be well represented in the original space. However, these clustering methods have the
same problem: the iterative solution is not the optimal solution. In order to overcome this drawback,
in this paper, we combine the KFC with the HS algorithm to help the KFC perform better.

Although the modifications of HS have shown a better performance than the classical HS, the
performances still need improvement. In this paper, we proposed a new differential harmony search
algorithm (DHS), and applied it to kernel fuzzy clustering. A comparison of the proposed method with
other methods has been carried out. Finally, the proposed method is applied to the water diversion
scheduling assessment in East Lake, which is a new study in the East Lake Ecological Water Network
Project. The water diversion scheduling tries to divert water from the Yangtze River to the East Lake
Network, aiming to improve water quality in the sub-lakes. Using a hydrodynamic simulation model
and a water quality model, the quality of the lakes at the end of the water diversion can be simulated.
In order to obtain a better improvement of the water quality and reduce the economic cost, the water
diversion scheme must be carefully developed. The diversion scheduling in the East Lake Network
is a multi-objective problem, however, multi-objective evolutionary algorithms cannot be adopted
because the water quality simulation is time-consuming. Thus, we made some typical schemes in the
feasible range, and obtain the scheme results by the water quality model. The purpose of the kernel
clustering with differential harmony search method is to classify the results in order to find out the
schemes which perform better than others.

This paper is organized as follows: Section 2 presents an overview of the harmony search
algorithm and kernel fuzzy clustering; Section 3 describes the modification and the combination
of kernel fuzzy clustering and the differential harmony search algorithm; Section 4 discusses the
computational results; and Section 5 provides the summary of this paper.

2. Harmony Search and Kernel Fuzzy Clustering

2.1. Harmony Search Algorithm

Harmony search (HS) is a phenomenon-mimicking algorithm inspired by the improvisation
process of musicians proposed by Geem in 2001 [9]. The method is a population-based evolutionary
algorithm and it is a simple and effective solution to find a result which optimizes an objective function.
Parameters of the harmony search algorithm usually include harmony memory size (hms), harmony
memory considering rate (hmcr), pitch adjustment rate (par), and fret width (fw).
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The main steps of the classical harmony search mainly include memory consideration, pitch
adjustment, and randomization. Details of HS are explained as follows:

Step 1 Initialize algorithm parameters

This step specifies the HS algorithm parameters, including hms, hmcr, par, and fw.

Step 2 Initializing the harmony memory

In HS, each solution is called a harmony. The harmony memory (HM) is equivalent to the
population of other population-based algorithms. In HM, all solution vectors are stored. In this step,
random vectors, as many as hms, are generated following Equation (1):

xj
i = (UBi − LBi) ·U(0, 1) + LBi, i = 1, 2, · · · , D (1)

where LBi and UBi are the lower and upper bounds of the ith variable. D represents the dimensions of
the problem. U(0, 1) is a uniformly-distributed random number between 0 and 1.

Step 3 Improvising a new harmony

In this step, a new harmony x′ = (x′1, x′2, · · · , x′D) is generated based on three rules: memory
consideration, pitch adjustment, and random selection. The procedure is shown in Algorithm 1.

Algorithm 1 Improvisation of a New Harmony

For i = 1 to D do
If U(0, 1) ≤ hmcr then

x′i = xj
i where j is a random integer from (1, 2, · · · , hms)

If U(0, 1) ≤ par then
x′i = x′i + U(−1, 1)× f w

end if
else

x′i = (UBi − LBi) ·U(0, 1) + LBi
end if

end for

Step 4 Update harmony memory

If the new harmony generated in Step 2 is better than the worst harmony stored in HM, replace
the worst harmony with the new harmony.

Step 5 Check the terminal criteria

If the maximum number of improvisations (NI) is reached, then stop the algorithm. Otherwise,
the improvisation will continue by repeating Steps 3 to 4.

2.2. Kernel Fuzzy Clustering

In the past decade, several studies on the kernel fuzzy clustering method (KFC) have been
conducted [18,19]. A kernel method means using kernel functions to map the original sample data to a
higher-dimensional space without ever computing the coordinates of the data in that space. The kernel
method takes advantage of the fact that dot products in the kernel space can be expressed by a Mercer
kernel K, given by K(x, y) ≡ Φ(x)TΦ(y), where x, y ∈ Rd [20].
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Suppose the sample dataset is given as X = {X1, X2, ..., Xn}, and each sample has K attributes
Xi = {Xi1, Xi2, ..., XiK}. Firstly, the original sample data is normalized following Equation (2):

xjk =
Xjk − Xmin

k

Xmax
k − Xmin

k
(2)

The purpose of kernel fuzzy clustering is to minimize the following objective function:

J =
C

∑
i=1

N

∑
j=1

um
ij ||Φ

(
x′j
)
−Φ

(
v′i
)
||2 (3)

x′j = diag(w) · xj (4)

v′i = diag(w) · vi (5)

Constraints are:
C

∑
i=0

uij = 1, 1 ≤ i ≤ N (6)

K

∑
k=1

wk = 1 (7)

where C is the number of clusters, N is the number of samples, K is the number of features,
vi = [vi1, vi2, . . . , viL] is the ith cluster center, uij is the membership of xi in class i,
w = [w1, w2, · · · , wK]

T is the feature-weight vector, and m is coefficient, m > 1.
According to the relevant literature [17,20,21], Equation (3) is simplified as:

J = 2
C

∑
i=1

N

∑
j=1

um
ij

(
1− K

(
x′j, v′i

))
(8)

where K(x, x′) is a Mercer kernel function. In this paper, the (Gaussian) radial basis function (RBF)
kernel is adopted:

K
(
x, x′

)
= exp

(
−
||x− x′ ||22

2σ2

)
(9)

The clustering center and membership matrix is:

uij =

 C

∑
r=1

1− K
(

x′j, v′i
)

1− K
(

x′j, v′i
)
−

1
m−1

(10)

vi =

N
∑

j=1
uij · K

(
x′j, v′i

)
· xj

N
∑

j=1
uij · K

(
xj
′, vi
′) (11)

3. DHS-KFC

3.1. Differential Harmony Search Algorithm

The harmony search (HS) algorithm tries to replace the worst item in the harmony memory (HM)
if the generated harmony is better. However, some local optimums in HM have the probability of
remaining unchanged for a long time. Additionally, the guide from the best harmony can also improve
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the local search ability of the algorithm. In this section, a novel modification of the harmony search
algorithm, named differential harmony search (DHS), is proposed to help the algorithm converge faster.

In the proposed method, the harmonies in the HM which meet the specific conditions will be
changed following the differential evolution strategy. Moreover, the new generated harmonies will
consider the best vector.

3.1.1. A Self-Adaptive Solution Generation Strategy

The purpose of this strategy is to improve the local search ability of the algorithm. In the
pitch adjustment step, the classical HS changes the random harmony selected from HM by small
perturbations. Different from classical HS, the pitch adjustment in DHS will consider the best vector,
as follows:

x′i =

{
x′i + f w ·U(−1, 1) , u(0, 1) < 1

N ∪ u(0, 1) < cr

xbest
i + f w ·U(−1, 1) , otherwise

(12)

where cr is the crossover probability; it generally varies from 0 to 1. Through a large number of
numerical simulations, we obtain the conclusion that the suitable range of cr is [0.4, 0.9].

In this paper, the parameter cr is dynamically adjusted following Equation (13). When cr is
smaller, the new harmony has a higher probability to use the value coming from the best vector, which
means that the convergence speed will be faster; when cr is larger, the harmonies will retain their
own diversity. Overall, using this strategy, the algorithm will have better local search ability in the
early stage.

cr = 0.4 +
CI

2×NI
(13)

where CI is the current iteration, and NI is the maximum iteration.

3.1.2. A Differential Evolution-Based Population Update Strategy

The purpose of this strategy is to help the algorithm avoid from local convergence. When updating
HM with the new harmony, some local optimums in HM have the probability of remaining unchanged
for a long time. In DHS, if the harmony in HM remains unchanged for several iterations (sc = 20), it
will be replaced with a new harmony using the differential evolution strategy shown in Equation (14):

x′i =

{
xi + f w ·

(
x′′i − x′′′i

)
, u(0, 1) < 1

N ∪ u(0, 1) < cr

xi , otherwise
(14)

where x′′i and x′′′i are random stored values from HM. Using the dynamic parameter cr, the harmonies
have higher probability of variation in the later stage.

3.1.3. Implementation of DHS

The DHS algorithm consists of five steps, as follows:

Step 1 Initialize the algorithm parameters

This step specifies parameters, including harmony memory size (hms), harmony memory
considering rate (hmcr), pitch adjustment rate (par), fret width (fw), and memory keep iteration (sc).

Step 2 Initialize the harmony memory

This step is consistent with the basic harmony search algorithm. New random vectors
(x1, . . . , xhms), as many as hms, are generated following Equation (15):

xj
i = (UBi − LBi) ·U(0, 1) + LBi, i = 1, 2, . . . , D (15)

Then each vector will be evaluated by the objective function and stored in the HM.
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Step 3 Improvising a new harmony

In this step, a new random vector x′ = (x′1, x′2, . . . , x′D) is generated considering the self-adaptive
solution generation strategy. The procedure is shown in Algorithm 2.

Algorithm 2 Improvisation of a New Harmony of DHS

for i = 1, · · · , n do
if (U(0, 1) ≤ hmcr) then

x′i = xj
i , where j ∼ U(1, hms)

if (U(0, 1) < par) then
shi f t = U(−1, 1)× f w× (UBi − LBi)

if (U(0, 1) < 1
N

∣∣∣∣∣∣U(0, 1) < cr ) then

x′i = xbest
i + shi f t

else
x′i = x′ i + shi f t

end if
end if

else
x′i = LBi + U(0, 1)× (UBi − LBi)

end if
end for

Step 4 Update the harmony memory

If the vector generated in Step 3 is better than the worst vector in HM, replace the worst vector
with the generated vector.

If the vector in HM remains unchanged for several iterations (sc = 20), replace it with a new vector
generated, following Equation (14), if the new vector is better.

The procedure of step 4 is shown in Algorithm 3.

Algorithm 3 Update the Harmony Memory

if ( f (x′) < f
(
xworst)) then

Replace xworst with x′

Set f lag(worst) = 0
end if
for r = 1, · · · , hms do

f lag(r) = f lag(r) + 1
if ( f lag(r) > sc) then

for i = 1, · · · , n do

if (U(0, 1) < 1
N

∣∣∣∣∣∣U(0, 1) < cr ) then

shi f t = U(−1, 1)×
(
xr1

i − xr2
i
)
, ∀r1, r2 = 1, 2, · · · , hms and r1 6= r2

x′′i = xr
i + shi f t

else
x′′i = xr

i
end if

end for
if ( f (x′′ ) < f (xr)) then

Replace xr with x′′

end if
end if

end for
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Step 5 Check the stop criterion

Repeat Step 3 to Step 4 until the termination criterion is satisfied. In this paper, the termination
criterion is the maximum number of evaluations.

3.2. DHS-KFC

In this paper, we use the proposed DHS to search the optimal result of the kernel fuzzy clustering
(KFC). When DHS is applied to KFC, we must define the optimization variables. In this paper,
the cluster center v = {v1, · · · , vn} is chosen as the optimization variables. The weight matrix
w = [w1, · · · , wK]

T is given by the experts using a method which determines the relative importance
of attributes, such as Fuzzy Analytic Hierarchy Process (FAHP) [22]. The membership matrix
u = {u1, · · · , un} can be obtained by Equation (10). The objective function of KFC is shown as:

J =
C

∑
i=1

N

∑
j=1

um
ij ||Φ

(
x′j
)
−Φ

(
v′i
)
||2 (16)

The DHS algorithm will find the optimized result which minimizes the objective function.
The procedure is described as follows (Figure 1):

Step 1 initialize the parameters of the harmony search algorithm, initialize the harmony memory.
Step 2 initialize the parameters of the KFC, maximum generation N, and the weight matrix w, set

the initial value of the cluster center matrix v0 to a randomly-generated matrix. Then the
membership matrix u0 can be obtained from Equation (10).

Step 3 generate a new solution vector based on the harmony search algorithm.
Step 4 obtain the cluster center matrix vn from the solution vector, calculate the membership matrix

un based on Equation (10), and then calculate Jn based on Equation (16).
Step 5 compare Jn with Jn−1. If Jn remains unchanged until 10 iterations, and go to Step 7.
Step 6 set the current iteration n = n + 1. If n > N go to Step 7, otherwise go to Step 3.
Step 7 classify the samples based on their membership.
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4. Experiments

4.1. Numerical Experiments of DHS

4.1.1. Benchmark Function Tests

To evaluate the performance of the proposed DHS, we chose several famous typical benchmark
functions, shown in Table 1. These functions are tested by simulating the HS, IHS, GHS, CHS, and
the proposed DHS algorithms. Of the functions in Table 1, the Ackley function, Griewank function,
Rastrigin function, and Rosenbrock function are multimodal functions. The Sphere function and
Schwefel 2.22 function are unimodal functions.

Table 1. Test functions.

Function Formula Search Domain Optimum

Ackley function
f (x1, · · · , xn) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ e + 20

−40 ≤ xi ≤ 40 f (0, · · · , 0) = 0

Griewank function
f (x1, · · · , xn) = 1 + 1

4000

n
∑

i=1
x2

i

−
n
∏
i=1

cos
(

xi√
i

) −600 ≤ xi ≤ 600 f (0, · · · , 0) = 0

Rastrigin function
f (x1, · · · , xn) = An

+
n
∑

i=1

[
x2

i − A cos(2πxi)
] A = 10

−5.12 ≤ xi ≤ 5.12 f (0, · · · , 0) = 0

Rosenbrock
function

f (x1, · · · , xn) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
] −∞ ≤ xi ≤ ∞ f (1, · · · , 1) = 0

Sphere function f (x1, · · · , xn) =
n
∑

i=1
x2

i −5.12 < xi < 5.12 f (0, · · · , 0) = 0

Schwefel 2.22
function

f (x1, · · · , xn) =
n
∑

i=1
|xi|+

n
∏
i=0
|xi| −10 < xi < 10 f (0, · · · , 0) = 0

Parameters of the algorithms are shown in Table 2. All of the experiments are performed using
a computer with 3.80 GHz AMD Athlon x4 760k with 8 GB RAM. The source code is compiled with
Java SE8.

Table 2. Parameters of the algorithms.

Algorithm hms hmcr par fw NI

HS 50 0.9 0.3 0.005 100,000
IHS 50 0.9 Max: 0.5 Min: 0.1 Max: 0.01 Min: 0.001 100,000
GHS 50 0.9 0.3 0.005 100,000
CHS 50 0.9 0.3 0.005 100,000
DHS 50 0.9 0.3 0.005 100,000

We evaluated the optimization algorithms based on 10 dimensional versions of the benchmark
functions. The maximum evaluation count (NI) is set to 100,000. Each function is tested 100 times for
each algorithm.

Table 3 shows the maximum, minimum, means, and standard deviation of errors of the algorithms
on each benchmark function. Table 4 shows the distribution of the results simulated by the algorithms.
As demonstrated in Tables 3 and 4, it is clear that DHS outperforms the other variants of HS in almost
all of the functions except the Rosenbrock function. In these cases, the minimum, maximum, means,
and standard deviations obtained by DHS are smaller than the results obtained by HS and its variants.
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When dealing with the Rosenbrock function, the global minimum of the Rosenbrock function is inside
a long, narrow, parabolic-shaped flat valley, meaning that convergence to the global minimum is
difficult. Although the minimum of GHS is smaller than DHS, the maximum, mean, and standard
deviation show that DHS is more stable than GHS.

Table 3. Errors of test results of the algorithms.

Function HS IHS GHS CHS DHS

Ackley
function

Mean 8.49 × 10−3 6.16 × 10−3 3.95 × 10−3 1.12 × 10−2 1.57 × 10−13

Min 3.29 × 10−3 2.44 × 10−3 1.35 × 10−5 3.56 × 10−3 4.57 × 10−14

Max 1.62 × 10−2 1.16 × 10−2 2.10 × 10−2 2.54 × 10−2 4.69 × 10−13

Stdv 2.43 × 10−3 1.67 × 10−3 3.48 × 10−3 3.79 × 10−3 6.78 × 10−14

Griewank
function

Mean 1.58 × 10−2 1.46 × 10−2 5.00 × 10−4 1.37 × 10−2 5.45 × 10−10

Min 8.62 × 10−5 1.92 × 10−5 1.59 × 10−7 9.62 × 10−5 0
Max 8.13 × 10−2 7.38 × 10−2 1.13 × 10−2 9.15 × 10−2 1.69 × 10−8

Stdv 1.81 × 10−2 1.76 × 10−2 1.24 × 10−3 1.54 × 10−2 2.06 × 10−9

Rastrigin
function

Mean 1.49 × 10−4 8.20 × 10−5 7.44 × 10−5 2.45 × 10−4 1.02 × 10−12

Min 2.66 × 10−5 1.35 × 10−5 1.82 × 10−8 4.33 × 10−5 0
Max 3.30 × 10−4 2.01 × 10−4 1.17 × 10−3 9.92 × 10−4 6.20× 10−11

Stdv 7.13 × 10−5 4.22 × 10−5 1.64 × 10−4 1.42 × 10−4 6.17× 10−12

Rosenbrock
function

Mean 2.10 1.98 1.77 2.32 7.16 × 10−1

Min 5.65 × 10−3 1.00 × 10−2 1.80 × 10−6 1.04 × 10−2 6.22 × 10−4

Max 5.32 5.34 10 8.37 6.08 4.64
Stdv 1.57 1.51 3.10 1.69 9.75 × 10−1

Sphere
function

Mean 7.33 × 10−7 4.30 × 10−7 3.35 × 10−7 1.01 × 10−6 1.85 × 10−28

Min 1.40 × 10−7 1.02 × 10−7 3.00 × 10−14 2.21 × 10−7 2.92 × 10−29

Max 2.03 × 10−6 1.43 × 10−6 3.58 × 10−6 3.55 × 10−6 7.97 × 10−28

Stdv 3.83 × 10−7 2.24 × 10−7 6.13 × 10−7 6.07 × 10−7 1.72 × 10−28

Schwefel
2.22

function

Mean 3.07 × 10−3 2.41 × 10−3 3.23 × 10−3 3.68 × 10−3 3.12 × 10−12

Min 1.29 × 10−3 1.12 × 10−3 1.62 × 10−6 1.23 × 10−3 7.35 × 10−13

Max 5.12 × 10−3 3.91 × 10−3 1.32 × 10−2 6.62 × 10−3 1.33 × 10−11

Stdv 9.05 × 10−4 5.91 × 10−4 2.86 × 10−3 1.08 × 10−3 1.99 × 10−12

Table 4. Distribution of error of the algorithms.

Function Precision HS IHS GHS CHS DHS

Ackley
function

<1 × 10−1 100% 100% 100% 100% 100%
<1 × 10−2 74% 99% 93% 40% 100%
<1 × 10−3 0% 0% 23% 0% 100%
<1 × 10−4 0% 0% 2% 0% 100%
<1 × 10−5 0% 0% 0% 0% 100%
<1 × 10−6 0% 0% 0% 0% 100%
<1 × 10−7 0% 0% 0% 0% 100%

Griewank
function

<1 × 10−1 100% 100% 100% 100% 100%
<1 × 10−2 32% 44% 99% 32% 100%
<1 × 10−3 30% 44% 84% 27% 100%
<1 × 10−4 1% 7% 47% 1% 100%
<1 × 10−5 0% 0% 17% 0% 100%
<1 × 10−6 0% 0% 5% 0% 100%
<1 × 10−7 0% 0% 0% 0% 100%

Rastrigin
function

<1 × 10−1 100% 100% 100% 100% 100%

<1 × 10−2 100% 100% 100% 100% 100%
<1 × 10−3 100% 100% 99% 100% 100%
<1 × 10−4 25% 69% 81% 11% 100%
<1 × 10−5 0% 0% 43% 0% 100%
<1 × 10−6 0% 0% 14% 0% 100%
<1 × 10−7 0% 0% 4% 0% 100%
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Table 4. Cont.

Function Precision HS IHS GHS CHS DHS

Rosenbrock
function

<1 × 10−1 6% 9% 49% 4% 34%
<1 × 10−2 2% 0% 29% 0% 10%
<1 × 10−3 0% 0% 6% 0% 1%
<1 × 10−4 0% 0% 3% 0% 0%
<1 × 10−5 0% 0% 1% 0% 0%
<1 × 10−6 0% 0% 0% 0% 0%
<1 × 10−7 0% 0% 0% 0% 0%

Sphere
function

<1 × 10−1 100% 100% 100% 100% 100%
<1 × 10−2 100% 100% 100% 100% 100%
<1 × 10−3 100% 100% 100% 100% 100%
<1 × 10−4 100% 100% 100% 100% 100%
<1 × 10−5 100% 100% 100% 100% 100%
<1 × 10−6 77% 98% 89% 59% 100%
<1 × 10−7 0% 0% 49% 0% 100%

Schwefel
2.22

function

<1 × 10−1 100% 100% 100% 100% 100%
<1 × 10−2 100% 100% 98% 100% 100%
<1 × 10−3 0% 0% 23% 0% 100%
<1 × 10−4 0% 0% 4% 0% 100%
<1 × 10−5 0% 0% 1% 0% 100%
<1 × 10−6 0% 0% 0% 0% 100%
<1 × 10−7 0% 0% 0% 0% 100%

We choose one typical unimodal function and one multimodal function to test the convergence
speed of the algorithms. Figure 2 shows the convergence of the DHS algorithm compared to the
variants of HS. The results clearly show that the DHS algorithm converges faster than other variants
of HS. Algorithms 2017, 10, 14 11 of 20 
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4.1.2. Sensitivity Analysis of Parameters

In this section, the effect of each parameter in the search process of the DHS algorithm will
be discussed.

Similar with the basic HS, the DHS algorithm has parameters that include hms, hmcr, par,
and fw. The default parameters of DHS are hms = 50, hmcr = 0.9, par = 0.3, fw = 0.005, sc = 20.
The maximum number of evaluations is set to 100,000. Then we change each parameter and test via
the benchmark functions. Each scene runs 50 times. Tables 5–9 show the results of the optimization of
the benchmark functions.

Table 5. The effect of sc on the means and standard deviations.

Function sc = 20 sc = 40 sc = 60 sc = 80 sc = 100

Ackley Mean 9.12 × 10−13 2.81 × 10−11 3.87 × 10−10 3.01 × 10−9 1.33 × 10−8

Stdv 3.38 × 10−13 1.15 × 10−11 1.48 × 10−10 1.18 × 10−9 4.91 × 10−9

Griewank
Mean 4.65 × 10−6 2.63 × 10−5 7.38 × 10−4 3.13 × 10−3 3.80 × 10−3

Stdv 2.91 × 10−5 1.84 × 10−4 3.86 × 10−3 7.26 × 10−3 9.49 × 10−3

Rastrigin Mean 5.97 × 10−15 0 0 0 2.84 × 10−16

Stdv 4.22 × 10−14 0 0 0 2.01 × 10−15

Rosenbrock
Mean 1.32 1.55 1.85 1.49 1.72
Stdv 1.36 1.40 1.64 1.29 1.57

Sphere Mean 7.18 × 10−27 9.36 × 10−24 1.56 × 10−21 9.81 × 10−20 1.92 × 10−18

Stdv 4.38 × 10−27 8.31 × 10−24 9.09 × 10−22 6.95 × 10−20 1.42 × 10−18

Schwefel
2.22

Mean 4.38 × 10−12 3.82 × 10−11 2.53 × 10−10 1.09 × 10−9 3.66 × 10−9

Stdv 1.99 × 10−12 1.76 × 10−11 9.65 × 10−11 4.93 × 10−10 1.64 × 10−9

Table 6. The effect of hms on means and standard deviations.

Function hms = 10 hms = 30 hms = 50 hms = 70 hms = 90

Ackley Mean 1.71 × 10−11 3.11 × 10−15 3.76 × 10−13 1.58 × 10−9 1.68 × 10−7

Stdv 3.45 × 10−13 3.11 × 10−15 1.66 × 10−13 6.43 × 10−10 8.20 × 10−8

Griewank
Mean 6.58 × 10−2 2.47 × 10−4 9.37 × 10−6 4.32 × 10−7 2.64 × 10−5

Stdv 7.93 × 10−2 1.74 × 10−3 6.62 × 10−5 7.10 × 10−7 1.92 × 10−5

Rastrigin Mean 0 0 0 2.72 × 10−6 2.46 × 10−6

Stdv 0 0 0 1.92 × 10−5 1.74 × 10−5

Rosenbrock
Mean 1.94 1.38 8.70 × 10−1 7.11 × 10−1 1.09
Stdv 1.51 1.35 1.14 6.14 × 10−1 6.05 × 10−1

Sphere Mean 1.16 × 10−89 6.20 × 10−43 1.97 × 10−28 1.96 × 10−21 2.62 × 10−17

Stdv 2.96 × 10−89 8.53 × 10−43 1.93 × 10−28 1.36 × 10−21 1.20 × 10−17

Schwefel
2.22

Mean 1.57 × 10−41 9.47 × 10−19 2.92 × 10−12 3.76 × 10−9 2.27 × 10−7

Stdv 4.08 × 10−41 6.63 × 10−19 1.37 × 10−12 1.78 × 10−9 8.24 × 10−8

The results in Table 5 show that the performance of the DHS algorithm will be better if sc is
smaller. The value of sc determines the replacement frequency of the memories in the HM. Results
show that sc values between 10 and 40 are suggested.

In Tables 6 and 7, we found that although values of hms and hmcr have impacts on the optimization
results, but there is no obvious rule for the selection of hms and hmcr. Hms values between 30 and 70
are applicable for most cases, while hmcr values between 0.8 and 0.99 are suggested.

In Table 8, DHS performs better when par values are less than 0.3. In Table 9, we found that the
algorithm is not sensitive to the parameter fw. A value of 0.005 is applicable for most cases.
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Table 7. The effect of hmcr on the means and standard deviations.

Function hmcr = 0.7 hmcr = 0.8 hmcr = 0.9 hmcr = 0.99

Ackley Mean 3.95 × 10−10 5.27 × 10−12 1.73 × 10−13 6.09 × 10−15

Stdv 5.56 × 10−10 2.04 × 10−12 6.69 × 10−14 1.81 × 10−15

Griewank
Mean 9.08 × 10−5 7.97 × 10−7 5.26 × 10−9 2.46 × 10−4

Stdv 1.34 × 10−4 1.13 × 10−6 3.17 × 10−8 1.74 × 10−3

Rastrigin Mean 7.39 × 10−14 5.23 × 10−14 2.58 × 10−8 4.18 × 10−1

Stdv 3.73 × 10−13 3.70 × 10−13 1.82 × 10−7 6.39 × 10−1

Rosenbrock
Mean 7.88 × 10−1 5.49 × 10−1 1.26 1.72
Stdv 4.52 × 10−1 3.80 × 10−1 1.43 1.54

Sphere Mean 8.59 × 10−22 1.09 × 10−25 2.17 × 10−28 7.11 × 10−32

Stdv 5.18 × 10−21 8.31 × 10−26 1.65 × 10−28 6.02 × 10−32

Schwefel 2.22
Mean 3.53 × 10−8 5.96 × 10−10 3.10 × 10−12 1.43 × 10−14

Stdv 1.88 × 10−8 4.04 × 10−10 2.01 × 10−12 6.77 × 10−15

Table 8. The effect of par on the means and standard deviations.

Function par = 0.1 par = 0.3 par = 0.5 par = 0.7 par = 0.9

Ackley Mean 3.04 × 10−15 1.54 × 10−13 5.74 × 10−10 5.64 × 10−9 3.02 × 10−8

Stdv 5.02 × 10−16 6.46 × 10−14 1.21 × 10−9 4.21 × 10−9 4.19 × 10−8

Griewank
Mean 1.03 × 10−3 2.23 × 10−9 3.36 × 10−6 5.70 × 10−5 1.11 × 10−4

Stdv 3.37 × 10−3 1.35 × 10−8 1.06 × 10−5 1.83 × 10−4 2.98 × 10−4

Rastrigin Mean 0 1.64 × 10−7 1.88 × 10−5 8.43 × 10−2 4.59 × 10−1

Stdv 0 1.16 × 10−6 9.86 × 10−5 2.67 × 10−1 6.11 × 10−1

Rosenbrock
Mean 3.36 × 10−1 1.05 1.14 1.89 2.18
Stdv 3.88 × 10−1 1.17 1.35 1.45 1.54

Sphere Mean 1.03 × 10−40 1.82 × 10−28 1.92 × 10−21 2.81 × 10−19 7.43 × 10−19

Stdv 1.08 × 10−40 1.59 × 10−28 4.61 × 10−21 3.63 × 10−19 2.10 × 10−18

Schwefel
2.22

Mean 7.58 × 10−21 2.85 × 10−12 2.21 × 10−8 6.46 × 10−8 7.54 × 10−8

Stdv 5.31 × 10−21 1.62 × 10−12 1.07 × 10−8 2.73 × 10−8 3.71 × 10−8

Table 9. The effect of fw on the means and standard deviations.

Function fw = 0.001 fw = 0.004 fw = 0.007 fw = 0.01

Ackley Mean 3.11 × 10−15 2.97 × 10−15 3.04 × 10−15 2.82 × 10−15

Stdv 0 7.03 × 10−16 5.02 × 10−16 9.74 × 10−16

Griewank
Mean 2.24 × 10−3 2.41 × 10−3 1.24 × 10−3 2.95 × 10−3

Stdv 4.77 × 10−3 5.48 × 10−3 3.73 × 10−3 5.86 × 10−3

Rastrigin Mean 1.90 × 10−5 0 0 0
Stdv 1.34 × 10−4 0 0 0

Rosenbrock
Mean 4.10 × 10−1 3.37 × 10−1 4.42 × 10−1 3.03 × 10−1

Stdv 6.34 × 10−1 5.74 × 10−1 8.63 × 10−1 4.94 × 10−1

Sphere Mean 8.78 × 10−58 2.91 × 10−57 2.44 × 10−56 1.23 × 10−55

Stdv 1.73 × 10−57 4.10 × 10−57 3.88 × 10−56 2.55 × 10−55

Schwefel 2.22
Mean 7.58 × 10−33 2.49 × 10−32 7.39 × 10−32 2.05 × 10−31

Stdv 9.03 × 10−33 1.94 × 10−32 6.15 × 10−32 1.92 × 10−31
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4.2. Numerical Experiments of DHS-KFC

To test the effectiveness of the DHS-KFC method, University of California Irvine (UCI) machine
learning repositories: wine dataset and iris dataset are used here. The iris dataset consists of 50 samples
from each of three species of iris. The wine dataset is the results of a chemical analysis of wines grown
in the same region in Italy but derived from three different cultivars. The method is compared with
the k-means and fuzzy cluster method. Classification results are shown in Table 10. The classification
rates of wine and iris were higher for DHS-KFC than kmeans and fuzzy cluster.

Table 10. Results of the clustering method.

Dataset k-Means Fuzzy Cluster DHS-KFC

Wine data set

Class 1 59 61 63 59
Class 2 71 63 63 70
Class 3 48 54 52 49

Error rates (%) 4.49% 4.49% 0.56%

Iris data set

Class 1 50 50 50 50
Class 2 50 61 60 58
Class 3 50 39 40 42

Error rates (%) 11.33% 12.00% 10.67%

4.3. Case Study

East Lake is the largest scenery-related tourist attraction in Wuhan China, located on the south
bank of the Yangtze River. The East Lake Network covers an area of 436 km2, consisting of East Lake,
Sha Lake, Yangchun Lake, Yanxi Lake, Yandong Lake, and Bei Lake. A map of the East Lake is shown
in Figure 3. In recent years, climate change and human activities have influenced the lakes significantly.
Increasing sewage has led to serious eutrophication. Most of the sub-lakes in the East Lake Network
are highly polluted. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP)
of the lakes are shown in Table 11.
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Table 11. Initial water qualities of the six lakes.

Lake COD (mg/L) TN (mg/L) TP (mg/L)

East Lake 24 2.32 0.196
Sha Lake 50 6.11 0.225

Yangchun Lake 26 1.14 0.085
Yanxi Lake 34 3.82 0.2

Yandong Lake 10 0.7 0.05
Bei Lake 32 3.81 0.122

In recent years, the government has invested 15.8 billion yuan (RMB) to build the Ecological
Water Network Project. The Water Network Connection Project is one of the subprojects; this project
tries to transfer water from the Yangtze River through the diversion channels to improve the water
quality in the lakes. In this project, Water diversion scheduling (WDS) is a new scheduling method
combining with hydrodynamics. Previous works, including a hydrodynamic simulation model
and water quality model, have already been done. Using these models, water quality of the lakes
at the terminal time can be simulated. The purpose of WDS is to find a suitable scheme which
has a better water quality result and lower economic cost. This is a multi-objective problem but,
unfortunately, multi-objective evolutionary algorithms (MOEA) cannot be adopted because the water
quality simulation is time-consuming. After a variety of simulations have been done, several feasible
schemes and their simulation results had been made. However, the difference among the results is
small. Thus, we use cluster analysis to summarize these schemes.

The water diversion scheduling in the East Lake Network is a multi-objective problem. To reduce
the construction cost, the existing diversion channels include Zengjiaxiang, Qingshangang, Jiufengqu,
Luojiagang, and Beihu pumping stations are considered. Water is brought from the Yangtze River to
the East Lake Network through the Zengjiaxiang and Qingshangang channels, while water in the lakes
is drained out through Luojiagang and Beihu pumping stations (Figure 4).Algorithms 2017, 10, 14 15 of 20 
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where I is the water quality index vector including TP, TN, and COD information, which is obtained by
the water quality model. C is the total amount of water, Q is the economic cost, qz is the inflow vector
of the Zengjiaxiang channel, qq is the inflow vector of the Qinshanggang channel, and ql is the outflow
vector of the Luojiagang channel. Then the outflow of Jiufengqu and Beihu pumping stations follows:

qj = qb = qz + qq − ql (18)

The initial water qualities of the six lakes are shown in Table 11. The maximum inflow of the
Qinshangang channel is 30 m3/s, the maximum inflow of the Zengjiaxiang channel is 10 m3/s, the
total diversion time is 30 days. The water quality of Yandong Lake has already reached the standard,
so it is not considered in this paper. The problem of water diversion scheduling is to design the inflow
of Zengjiaxiang, Qinshangang, Luojiaxiang every day, which improves the water quality as much as
possible with minimum cost.

Since the water quality simulation is time-consuming and MOEA cannot be adapted to this
problem, after some pretreatment, we have identified a number of feasible schemes. These feasible
schemes are shown in Table 12. Then we applied these schemes to the water quality model. The water
quality simulation results of the schemes are shown in Table 13. Since the water quality model may
have a certain amount of error, we decided to determine a set of good schemes instead of one scheme.

Table 12. Feasible schemes.

No.
1–5 Days 6–10 Days 11–15 Days 16–20 Days 21–25 Days 26–30 Days

qz qq ql qz qq ql qz qq ql qz qq ql qz qq ql qz qq ql

1 10 0 10 10 30 40 10 30 20 10 30 20 10 30 20 10 30 20
2 10 0 10 10 30 40 5 22.5 13.8 5 22.5 13.8 5 22.5 13.8
3 10 0 10 10 30 40 10 30 40 10 30 20 10 30 20 10 30 20
4 10 0 10 10 30 40 10 30 40 7.5 30 18.8 7.5 30 18.8 7.5 30 18.8
5 10 0 10 10 30 40 10 30 40 5 27.5 16.2 5 27.5 16.2 5 27.5 16.2
6 10 0 10 10 30 40 10 30 40 5 22.5 13.8 5 22.5 13.8 5 22.5 13.8
7 10 0 10 10 30 40 10 30 40 10 30 40 7.5 20 13.8
8 10 0 10 10 25 35 5 25 15 5 25 15 5 25 15 5 25 15
9 10 0 10 10 25 35 10 20 15 10 20 15 10 20 15 10 20 15

10 10 0 10 10 25 35 5 20 12.5 5 20 12.5 5 20 12.5
11 10 0 10 10 25 35 10 25 35 5 25 15 5 25 15
12 10 0 10 10 25 35 10 25 35 10 25 35 7.5 27.5 17.5 7.5 27.5 17.5
13 10 0 10 10 25 35 10 25 35 10 25 35 5 25 15 5 25 15
14 10 0 10 5 30 35 10 22.5 16.2 10 22.5 16.2 10 22.5 16.2
15 10 0 10 5 30 35 5 30 35 7.5 27.5 17.5 7.5 27.5 17.5
16 10 0 10 5 30 35 5 30 35 7.5 27.5 17.5 7.5 27.5 17.5 7.5 27.5 17.5
17 10 0 10 5 30 35 5 30 35 5 30 17.5 5 25 15
18 10 0 10 5 30 35 5 30 35 5 30 35 5 22.5 13.8 5 22.5 13.8
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Table 13. Results of the schemes shown in Table 12.

No.
Sha Lake Yangchun Lake East Lake Yandong Lake Bei Lake

Water Cost
TP TN COD TP TN COD TP TN COD TP TN COD TP TN COD

1 0.108 2.386 17.569 0.066 0.997 10.602 0.16 2.136 19.43 0.198 3.294 30.023 0.165 3.907 32.88 9072 226.8
2 0.126 2.942 22.051 0.066 0.998 10.773 0.172 2.23 20.895 0.2 3.366 30.644 0.161 3.912 32.93 5724 143.1
3 0.108 2.386 17.569 0.066 0.997 10.602 0.161 2.14 19.438 0.2 3.366 30.566 0.161 3.917 32.943 9072 226.8
4 0.115 2.593 19.413 0.066 0.997 10.602 0.162 2.161 19.668 0.2 3.365 30.566 0.161 3.917 32.943 8748 218.7
5 0.12 2.751 20.453 0.066 0.997 10.602 0.165 2.177 19.95 0.2 3.367 30.581 0.161 3.917 32.943 8100 202.5
6 0.12 2.751 20.453 0.066 0.997 10.602 0.168 2.209 20.321 0.2 3.369 30.607 0.161 3.917 32.943 7452 186.3
7 0.116 2.624 19.634 0.066 0.998 10.773 0.168 2.211 20.482 0.202 3.627 32.489 0.144 3.877 32.597 6804 170.1
8 0.123 2.865 21.321 0.066 0.997 10.602 0.17 2.222 20.575 0.199 3.301 30.12 0.165 3.907 32.881 7128 178.2
9 0.108 2.386 17.569 0.066 0.997 10.602 0.168 2.221 20.431 0.2 3.306 30.184 0.165 3.907 32.882 7128 178.2

10 0.126 2.942 22.051 0.066 0.998 10.773 0.175 2.26 21.26 0.2 3.369 30.684 0.161 3.912 32.93 5184 129.6
11 0.122 2.827 21.174 0.066 0.998 10.773 0.17 2.217 20.659 0.201 3.469 31.382 0.155 3.906 32.87 6048 151.2
12 0.113 2.536 18.893 0.066 0.997 10.602 0.165 2.185 19.988 0.201 3.473 31.379 0.156 3.91 32.882 7992 199.8
13 0.117 2.668 19.823 0.066 0.997 10.602 0.167 2.2 20.24 0.201 3.474 31.383 0.156 3.91 32.882 7560 189
14 0.115 2.62 19.627 0.066 0.998 10.773 0.169 2.23 20.719 0.2 3.366 30.648 0.161 3.912 32.93 6156 153.9
15 0.126 2.932 22.261 0.066 0.998 10.773 0.169 2.208 20.578 0.201 3.468 31.368 0.155 3.906 32.87 6480 162
16 0.122 2.818 21.328 0.066 0.997 10.602 0.167 2.203 20.236 0.2 3.367 30.583 0.161 3.917 32.943 7992 199.8
17 0.134 3.204 24.488 0.066 0.998 10.773 0.172 2.207 20.752 0.202 3.627 32.488 0.144 3.877 32.597 6264 156.6
18 0.133 3.137 23.92 0.066 0.997 10.602 0.171 2.22 20.632 0.201 3.473 31.375 0.156 3.91 32.882 7344 183.6
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In this paper, the goal is to use the DHS-KFC method to determine the good schemes. According
to the requirements, we need to divide the schemes into five categories, including excellent, good,
average, fair, and poor. Using the kernel cluster method explained in Section 3, we input the scheme
results shown in Table 13 as the samples for the clustering, including three water quality parameters
(COD, TP, TN) of five lakes, water diversion quantity, and economic cost. The weight vector of water
quality, water diversion quantity, and economic cost is defined in Equation (23) according to the advice
given by experts.

In this case study, the parameter m = 1.7, and the minimum objective function value is 0.225269.
The cluster results are shown in Table 14. The cluster center v, membership matrix u, and weight
vector w are shown as:

w = [0.040.040.040.040.040.040.040.040.04
0.040.040.040.040.040.040.20.2]

(19)

v =


0.077 0.102 0.087 1 0.084 0.001 0.087 0.120 0.030
0.459 0.461 0.417 1 0 0 0.457 0.459 0.388
0.601 0.600 0.660 1 0.979 1 0.784 0.741 0.764
0.761 0.554 0.769 1 0.915 0.916 0.775 0.563 0.696
0.223 0.243 0.230 1 0.032 0.067 0.750 0.669 0.467

0.364 0.198 0.118 0.981 0.846 0.995 1 0.946
0.533 0.307 0.322 0.772 0.883 0.878 0.648 0.645
0.626 0.352 0.391 0.752 0.808 0.953 0.185 0.191
0.937 0.914 1 0 0.107 0 0.313 0.286
0.645 0.098 0 0.88 0.773 1 0.48 0.479



(20)

u =


0.935 0.001 0.973 0.858 0.064 0.010 0.021 0.034 0.028
0.035 0.003 0.015 0.102 0.869 0.842 0.044 0.377 0.125
0.005 0.982 0.002 0.005 0.006 0.006 0.077 0.044 0.018
0.004 0.006 0.001 0.004 0.004 0.003 0.813 0.018 0.008
0.019 0.006 0.007 0.028 0.054 0.137 0.042 0.525 0.819

0.010 0.004 0.127 0.029 0.015 0.013 0.021 0.005 0.059
0.026 0.014 0.697 0.815 0.042 0.044 0.923 0.012 0.525
0.873 0.915 0.019 0.015 0.824 0.780 0.005 0.035 0.106
0.048 0.045 0.017 0.012 0.040 0.115 0.003 0.935 0.084
0.040 0.019 0.137 0.127 0.077 0.047 0.046 0.011 0.223



(21)

Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) model [22,23],
the similarity values of the cluster centers are shown as:

CC =
[

0.950 0.592 0.13 0.052 0.816
]

(22)

The schemes in cluster I are considered better than the others.

Table 14. Results of the proposed method.

No. Classification No. Classification No. Classification

1 I 7 IV 13 II
2 III 8 V 14 III
3 I 9 V 15 III
4 I 10 III 16 II
5 II 11 III 17 IV
6 II 12 II 18 II
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5. Conclusions

The main contributions of this work are (i) a novel modification of the harmony search algorithm
is proposed to deal with the optimization problem; (ii) a kernel fuzzy clustering algorithm with the
harmony search algorithm is proposed; and (iii) the methodology is adopted for a water diversion
scheduling assessment in East Lake.

In order to show the performance of the proposed differential harmony search algorithm, several
tests have been conducted to compare with other methods. Results show that the modification can
effectively improve the convergence of the harmony search algorithm. Finally, the combination of
KFC and DHS is applied to the water diversion scheduling assessment in East Lake. It is efficient in
clustering multi-dimensional data; the result shows that the methodology is reasonable and reliable.
However, simulation results show that DHS still has the drawback of local convergence when dealing
with some functions. Our work in the future will be to overcome this shortcoming.
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