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Abstract: Hydrogels from self-assembling ionic complementary peptides have been receiving a
lot of interest from the scientific community as mimetic of the extracellular matrix that can offer
three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs
or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose
the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a
ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules:
an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP)
motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like
Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase
in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates;
moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the
use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for
cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear
tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties
of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds
obtained by changing their composition, ranging from long, well-defined fibers for conjugates with
adhesion sequences to the compact and dense film for the IGF-1-conjugate.

Keywords: self-assembling peptides; mesenchymal stem cells; bio-transamination; chemoselective
ligation; IGF-1; vitronectin; RGD

1. Introduction

The design of artificial constructs as 3D models, that recapitulate crucial aspects of the native
cellular microenvironment, has been found mandatory to realize in vitro cell culture which overcome
the traditional unnatural 2D paradigm, and, in perspective, valuable substitutes for tissues and organs
compromised by trauma or diseases. The most recent challenge of Tissue Engineering techniques,
indeed, deals with the design of 3D biomaterials able to mimic the complex structural and biochemical
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functions of the Extra Cellular Matrix (ECM). Then, these scaffolds have to be populated with
the recipient cells providing an informative microenvironment mimicking a physiological niche.
The realization of an ECM-like environment is an ambitious goal for the science of biomaterials,
considering its complexity in terms of three-dimensional structure of the constituent structural proteins
(e.g., collagen); the overall nanofibrous structure with peculiar biomechanical features; and the presence
of several adhesive proteins, growth factors, and glycosaminoglycans, each promoting specific cellular
activities and for which the local concentration is finely modulated by a mutual ratio of cell–matrix
interaction. In coping with this challenge, the international research is gradually developing more
and more complex matrices from a structural point of view not neglecting the ability to convey
important biochemical stimuli to the cellular component. In recent years, much attention has been
paid to formulate matrices characterized by a nanofibrous surface that mimics the ECM. In addition
to lithography techniques for nanopatterning and electrospinning, the self-assembly is emerging as
bio-inspired technique. It is well known, in fact, that Nature often uses this strategy to get nano- and
micro-meter structures built from very small molecules by means of intermolecular forces, primarily
consisting in hydrogen bonds and Van der Waals interactions. Self-Assembling Peptides (SAPs) are an
example of such molecules: discovered in 1992 by Zhang, these fragments of the protein Zuotin are
able to form in solution very stable β-sheet structures [1,2]. The β-sheet layers have a hydrophilic face
and a hydrophobic face and can stack each other through ionic interactions and Van der Waals bonds
forming hydrogels (a scheme that describes the self-assembly of the peptides is shown in Figure 1).
There are many conditions that determine and influence the process among them, the concentration
of the peptide in solution, the presence of monovalent positive ions, the pH, the temperature and
time. These hydrogels have been used as scaffolds for the growth of different types of cells [3–7] and a
particular type of self-assembling peptides is marketed with the name of PuraMatrix®. The nanofibrous
matrix, obtained by self-assembly, is characterized by interwoven fibers with length ranging from
several hundred nanometers to a few microns [8]. The beneficial behavior of the cells in SAP scaffolds
is probably due to their nanometric fibrous structure or to their mechanical properties because these
peptides do not bear specific motifs to promote cell adhesion or growth. Another interesting feature of
the hydrogels of self-assembling peptides is their ability to “capture” large quantities of water: more
than 99% of the assembled structure is composed of water, improving transport of oxygen, nutrient
and waste, as well as a realistic transport of soluble factors [9]. Moreover, the low stiffness of the
material ('0.1 kPa) allows cells to penetrate into the SAP hydrogels; the survival of compromised cells
or the cell proliferation and growth within them have also been demonstrated [10,11].

In this study, we report on the design of second-generation peptide hydrogels, formed by a
nanofibrous structure able to reproduce even the wealth of biochemical stimuli typical of the ECM.
At the state of the art, two main possibilities can be explored: (i) to incorporate the bioactive molecules
(carbohydrates, proteins or peptides) into the hydrogels; or (ii) to covalently graft these molecules to
the scaffolds (hydrogels). Both strategies have benefits and drawbacks but only the covalent anchoring
ensures the expected bio-effect while the release of the adhesive peptide from the matrix, in which it is
embedded, determines the opposite, unwanted effect (adhesion inhibition) [12]. Accordingly, we have
chosen the covalent anchoring strategy.

Developing an effective anchoring strategy implies solving a sequence design problem, i.e., how
to get a specific bond between two particular groups in the self-assembling peptide and bioactive
molecule. In fact, the side chains of the SAP and those of bioactive peptides/proteins must remain
available for the self-assembly and for the interaction with cell receptors, respectively. To meet this
need, we used a strategy, known as chemoselective ligation, able to ensure a bio-orthogonal reaction
under mild conditions that does not hinder the protein folding. The use of bio-transamination with
pirydoxal phosphate (PLP) allows the transformation in the ketone or aldehyde of the first amino
acid of peptides/proteins in non-denaturing conditions (Figure 2) [13,14]. The idea that we have
formulated is to build highly interwoven nanofibrous architecture in which the cells can submerge
themselves and experience a 3D protein-like environment providing biochemical stimuli that promote
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their adhesion and growth. Despite synthetic porous scaffolds, which offer a minimalist approach
to the 3D culture of mammalian cells outside the body, SAP hydrogels act as a permissive template,
which have indeed numerous characteristics of the architecture and mechanics of the native cellular
microenvironment [15].
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Figure 1. Scheme of peptide self-assembling. The sequence of the self-assembling peptide used in this
study (called EAK): hydrophobic amino acids are circled in yellow, hydrophilic amino acids are in blue
squares (acid amino acids, negatively charged at neutral pH) or in violet diamonds (basic amino acids,
positively charged at neutral pH).

The use of conjugates between SAPs and bioactive peptides, integrated into the SAP hydrogel
through self-assembling, provides a powerful tool for: (i) decorating the internal part of the hydrogel,
and not only its surface; and (ii) testing various concentrations of bioactive molecules to identify
biologically active concentrations for a particular cellular system. The bioactive sequences chosen for
the study were: (i) a linear peptide of 25 amino acids, henceforth shortly indicated as RGD, containing
4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) sequences, that showed adhesive
properties for osteoblasts, cardiomyocytes, endothelial cells [12,16,17]; (ii) a peptide that mimics
the sequence (351–359) of the human vitronectin that has been shown to promote more and better
adhesion of osteoblasts through a mechanism mediated by proteoglycans and only partially by
integrins [16,18,19]; and (iii) the protein Insulin-like Growth Factor-1 (IGF-1), a growth factor that
dose-dependently stimulated the proliferation of Mesenchymal Stem Cells (MSCs), upregulated the
expression of CXCR4, and accelerated migration [20]. The present study proposes the conjugation
between a complementary ionic peptide of module II (called EAK) [1] and the above mentioned
biologically active molecules. Hydrogels decorated with three concentrations of each conjugate were
tested. The hydrogels were seeded with human bone marrow derived MSCs, due to their plasticity and
high sensitivity to the physico-chemical properties of the substrates on which they are cultured [21];
cellular adhesion and growth were evaluated after one, four and eight days. The morphology of the
functionalized and pristine scaffolds was analyzed by Atomic Force Microscopy, while the effect of
conjugate enrichment on the viscoelastic properties of the scaffolds was determined by small amplitude
oscillatory shear tests.
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Figure 2. Scheme of chemoselective ligation: Step 1, the bio-transamination with pirydoxal phosphate
(PLP) converts the N-terminal Gly in an α-ketoaldehyde; and Step 2, the α-ketoaldehyde reacts with an
oxyamino group for producing an oxime.

2. Materials and Methods

2.1. Materials

The solid support, Rink Amide MBHA resin, was from Novabiochem (Merck KGaA, Darmstadt,
Germany). The Fluorenylmethyloxycarbonyl (Fmoc) protected amino acids were from Novabiochem. The
coupling reagents 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU),
1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate
(HATU), 1-Hydroxybenzotriazole (HOBt) and 3H-[1,2,3]-Triazolo[4,5-b]pyridin-3-ol (HOAt) were
from Advanced Biotech (Seveso, Italy). N,N-diisopropylethylamine (DIEA) and piperidine were from
Biosolve (Leenderweg, Valkenswaard, The Netherlands). 2,4,6-Collidine was from Janssen Chimica
NV (Beerse, Belgium). Triethoxysilane (TES) was from Sigma-Aldrich (Steinheim, Germany). Solvents
such as N,N-dimethylformamide (DMF), trifluoroacetic acid (TFA), N-methyl-2-pyrrolidone (NMP)
and dichloromethane (DCM) were from Biosolve. Increlex (10 mg/mL IGF-1 solution) was from Ipsen
Pharma (Boulogne-Billancourt, France).

2.2. Peptide Synthesis and Conjugate Preparation

2.2.1. EAK

The synthesis of EAK (H-Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys-Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys-NH2)
was carried out on 0.72 mmol/g Rink Amide MBHA resin using Fmoc chemistry by a Syro I
synthesizer [22]. The side chain protecting groups were: OtBu, Glu and Boc, Lys. The loading of the
first amino acid was carried out with a double coupling. The following four insertions were carried
out with single couplings (5 equivalents of Fmoc-amino acid, 5 eq. HBTU, 5 eq. HOBt and 10 eq.
DIEA, for 45 min) and the remaining ones with double couplings. At the end of the synthesis the last
inserted amino acid was Fmoc-deprotected. Crude peptide was detached from the resin and protecting
groups were removed using a 95% TFA, 2.5% TES, 2.5% H2O MilliQ (v:v:v). Purification of the crude
product was performed through reverse phase high performance liquid chromatography (RP-HPLC).
The homogeneity (>99%) of the purified product was obtained by integration of the analytical HPLC
peaks, whereas the identity of each product was ascertained by ElectroSpray Ionization-Time Of Flight
(ESI-TOF, Mariner System 5220, Applied Biosystem, Perkin-Elmer, Analytical Instruments, Norfolk,
CT, USA). Mass data: experimental (exp.) mass = 1614.84 Da; theoretical (theor.) mass = 1614.83 Da.
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2.2.2. Aoa-EAK

The peptide Aoa-EAK (sequence: NH2-O-CH2-CO-Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys-Ala-Glu-
Ala-Glu-Ala-Lys-Ala-Lys-NH2) was synthesized as above reported on Rink Amide MBHA resin
(0.7 mmol/g). The last condensation with BisBoc-Aoa-OH, was a double coupling with 5 eq. HATU,
5 eq. HOAt and 10 eq. 2,4,6-collidine. The peptide was deprotected from the resin and side chain
protecting groups using the mixture 4.75 mL TFA, 0.125 mL TES, and 0.125 mL H2O, for 1.5 h.
The identity and homogeneity of crude peptide was ascertained by mass (exp. mass = 1687.92 Da;
theor. mass = 1687.87 Da, ESI-TOF) and RP-HPLC analyses. This crude peptide was used for the
synthesis of three conjugates with bioactive sequences through chemoselective ligation approach.

2.2.3. G7(GRGDSP)4K

The RGD peptide (sequence: H-Gly-7-aminoheptanoic acid-(Gly-Arg-Gly-Asp-Ser-Pro)4Lys-NH2)
was synthesized by standard Fmoc chemistry using Rink Amide MBHA resin (0.7 mmol/g; scale
0.125 mmoles) and a fully automated peptide synthesizer (Syro I, Multisynthec, Witten, Germany).
The side chain protection employed were: Arg, Pbf; Asp, OtBu; Ser, tBu; and Lys, Boc. The Fmoc
removal was accomplished by two treatments with 40% and 20% piperidine/DMF for 3 min and
12 min, respectively. The coupling reaction was carried out using 5 eq. of Fmoc protected amino acid
and HOBt/HBTU/DIPEA (5 eq. HOBt/HBTU and 10 eq. DPEA; 45 min) in DMF. The loading step
was carried out with a double coupling, the following four couplings were single and the remaining
22 cycles were double. After the Fmoc deprotection the resin was washed with DCM and dried
for 1 h under vacuum. The peptide was cleaved from the solid support with the contemporary
side-chain deprotection using the following mixture: 0.125 mL H2O MilliQ, 0.125 mL TES, and
4.750 mL TFA (90 min, under magnetic stirring). After cleavage, the resin was filtered, the reaction
mixture concentrated and the crude peptide precipitated with cold ethyl ether. Forty milligrams of
crude peptide dissolved in 20 mL of MilliQ water were loaded on Jupiter C18 column (5 µm, 300 Å,
10 × 250 mm, Phenomenex, Torrance, CA, USA) and separated in the following conditions: eluent A,
0.05% TFA in MilliQ water; eluent B, 0.05% TFA in CH3CN; gradient, 0%–6% B in 2 min, then 6%–14%
B in 32 min; flow rate, 4 mL/min; detection at 214 nm.

2.2.4. α-Ketoaldehyde-7-Aminoheptanoicacid-(GRGDSP)4K

The conversion of G7(GRGDSP)4K in α-ketoaldehyde-7-aminoheptanoic acid-(GRGDSP)4K
(sequence: H-CO-CO-NH-(CH2)6-CO-(Gly-Arg-Gly-Asp-Ser-Pro)4Lys-NH2) was obtained by addition
of 23.63 mg of G7(GRGDSP)4K (9.061 × 10−6 moles) to 18.12 mL of 10 mM pyridoxal phosphate (PLP)
in 25 mM sodium phosphate buffer pH 6.5 (181.23 × 10−6 moles PLP; G7(GRGDSP)4K:PLP = 1:20) for
18 h at 37 ◦C. The α-ketoaldehyde-peptide was isolated by RP-HPLC and characterized by analytical
RP-HPLC (conditions: Symmetry Shield C8 column (5 µm, 100 Å, 4.6 × 250 mm, Waters), eluent A:
0.05% TFA in H2O; eluent B: 0.05% TFA in CH3CN; gradient: 0%–25% di B in 25 min, flow rate:
1 mL/min; detector: 214 nm. tR = 16.7 min) and ESI mass spectrometry (theor. mass, 2606.27 Da;
exp. mass, 2606.27 Da, ESI-TOF).

2.2.5. SAP-RGD

The chemoselective ligation between α-ketoaldehyde-7-aminoheptanoic acid-(GRGDSP)4K and
Aoa-EAK produced the conjugate named SAP-RGD. Breafly, 25.894 × 10−6 moles of Aoa-EAK was
added to 2.589 × 10−6 moles of α-ketoaldehyde-7-aminoheptanoic acid-(GRGDSP)4K (ratio: 10:1) in
25.89 mL of H2O MilliQ for 24 h at room temperature. The product was isolated using RP-HPLC in the
following conditions: Jupiter C18 column (5 µm, 300 Å, 10 × 250 mm, Phenomenex); eluent A: 0.05%
TFA in H2O; eluent B: 0.05% TFA in CH3CN; gradient: 0%–5% di B in 2 min, 5%–35% B in 60 min,
then at 80% B for 10 min; flow rate: 4 mL/min; detector: 214 nm. The identity of the product was
confirmed by MALDI mass analysis (theor. mass 4277.61 Da; exp. mass: 4278.54 Da). In analytical
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chromatography (conditions: column: Jupiter C18; flow rate: 1.0 mL/min; eluent A, 0.05% TFA in
H2O MilliQ; eluent B, 0.05% TFA in CH3CN; gradient 0%–35% B in 35 min, detector at 214 nm) the
conjugate SAP-RGD showed a tR = 21.7 min.

2.2.6. G7HVP

The peptide G7HVP (sequence: H-Gly-7-aminoheptanoic acid-Phe-Arg-His-Arg-Asn-Arg-Lys-
Gly-Lys-NH2) was synthesized by standard Fmoc chemistry using Rink Amide MBHA resin
(0.7 mmol/g; scale 0.125 mmoles) and a fully automated peptide synthesizer (Syro I, Multisynthec,
Witten, Germany). The side chain protection employed were: Arg, Pbf; Asn and His, Trt; Tyr, tBu; and
Lys, Boc. The Fmoc removal was accomplished by two treatments with 40% and 20% piperidine/DMF
for 3 min and 12 min, respectively. The coupling reaction was carried out using 5-fold excess of Fmoc
protected amino acid and HOBt/HBTU/DIPEA (5 eq. HOBt/HBTU and 10 eq. DPEA; 45 min) in
DMF. All of the couplings were double. After the Fmoc deprotection the resin was washed with DCM
and dried for 1 h under vacuum. The peptide was cleaved from the solid support with contemporary
side-chain deprotection using the following mixture: 0.125 mL H2O MilliQ, 0.125 mL TES, and 4.750 mL
TFA (90 min, under magnetic stirring). After cleavage, the resin was filtered, the reaction mixture
concentrated and the crude peptide precipitated with cold ethyl ether. Thirty milligrams of crude
peptide dissolved in 15 mL of MilliQ water were loaded on Jupiter C18 (5 µm, 300 Å, 10 × 250 mm,
Phenomenex) and separated in the following conditions: eluent A, 0.05% TFA in MilliQ water; eluent B,
0.05% TFA in CH3CN; gradient, 0%–10% B in 2 min, then 10%–30% B in 40 min; flow rate, 4 mL/min;
detection at 214 nm.

2.2.7. α-Ketoaldehyde-7-Aminoheptanoic Acid-HVP

The conversion of G7HVP in α-ketoaldehyde-7-aminoheptanoic acid-HVP (sequence:
H-CO-CO-NH-(CH2)6-CO-(Phe-Arg-His-Arg-Asn-Arg-Lys-Gly-Lys-NH2) was obtained by addition of
9.96 mg of G7HVP (7.034 × 10−6 moles) to 14.06 mL of 10 mM pyridoxal phosphate (PLP) in 25 mM
sodium phosphate buffer pH 6.5 (1.4068 × 10−4 moles PLP; G7HVP:PLP = 1:20) for 18 h at 37 ◦C.
The chromatogram of purified peptide was obtained in the following conditions: column, Jupiter C18

(5 µm, 300 Å, 4.6 × 250 mm, Phenomenex); injection volume, 20 µL of 1 mg/mL peptide solution; flow
rate, 1 mL/min; eluent A, 0.05% TFA in water; eluent B, 0.05% TFA in CH3CN; gradient, 10%–30%
B in 20 min, detection at 214 nm. The retention time results 12.7 min and the purity grade, 82.6%.
Exp. mass: 1414.7 Da, theor. mass: 1415.6 Da (ESI-TOF).

2.2.8. SAP-HVP

The chemoselective ligation between α-ketoaldehyde-7-aminoheptanoic acid-HVP and Aoa-EAK
produced the conjugate named EAK-HVP. An amount of 14.81 × 10−6 moles of Aoa-EAK was added
to 1.481 × 10−6 moles of α-ketoaldehyde-7-aminoheptanoic acid-HVP (ratio, 10:1) in 14.81 mL of
H2O MilliQ for 24 h at room temperature. The product was isolated using RP-HPLC in the following
conditions: Jupiter C18 column (5 µm, 300 Å, 10 × 250 mm, Phenomenex); eluent A: 0.05% TFA in
H2O; eluent B: 0.05% TFA in CH3CN; gradient: 0%–5% di B in 2 min, 5%–35% B in 60 min, then at
80% B for 10 min; flow rate: 4 mL/min; detector: 214 nm. The identity of the product was confirmed
by ESI mass analysis (theor. mass 3085.54 Da; exp. mass: 3085.64 Da). In analytical chromatography
(conditions: column: Jupiter C18; flow rate: 1 mL/min; eluent A, 0.05% TFA in H2O MilliQ; eluent B,
0.05% TFA in CH3CN; gradient 10%–30% B in 20 min, detector at 214 nm), the conjugate SAP-HVP
showed a tR = 14.8 min.

2.2.9. α-Ketoaldehyde-IGF-1

The conversion of IGF-1 in α-ketoaldehyde-IGF-1 was obtained by addition of 10 mg of IGF-1
(1.307 × 10−6 moles) to 26.3 mL of 100 mM pyridoxal phosphate (PLP) in 25 mM sodium phosphate
buffer pH 6.5 (2.615× 10−3 moles PLP; IGF-1:PLP = 1:2000) for 3 h at 37 ◦C and 1 h at room temperature.



Materials 2016, 9, 727 7 of 18

The chromatogram of purified peptide was obtained in the following conditions: column, Vydac C18

Proteo & Peptide (5 µm, 300 Å, 4.6 × 250 mm, Grace); injection volume, 20 µL of 1 mg/mL peptide
solution; flow rate, 1 mL/min; eluent A, 0.05% TFA in water; eluent B, 0.05% TFA in CH3CN; gradient,
20%–40% B in 40 min, detection at 214 nm. The retention time results 29.4 min and the purity grade is
over 80%. Exp. mass: 7648 Da, theor. mass: 7648 Da (ESI-TOF).

2.2.10. SAP-IGF-1

The chemoselective ligation between α-ketoaldehyde-IGF-1 and Aoa-EAK produced the conjugate
named SAP-IGF-1. An amount of 5.62 × 10−6 moles of Aoa-EAK was added to 0.562 × 10−6 moles
of α-ketoaldehyde-IGF-1 (ratio, 10:1) in 5.62 mL of H2O MilliQ for 24 h at room temperature.
The product was isolated using RP-HPLC in the following conditions: Jupiter C18 column (5 µm, 300 Å,
10 × 250 mm, Phenomenex); eluent A: 0.05% TFA in H2O; eluent B: 0.05% TFA in CH3CN; gradient:
0%–10% di B in 2 min, 10%–50% B in 80 min, then at 80% B for 10 min; flow rate: 4 mL/min; detector:
214 nm. The identity of the product was confirmed by ESI mass analysis (theor. mass 9318.87 Da; exp.
mass: 9319.9 Da). In analytical chromatography (conditions: column: Jupiter C18; flow rate: 1 mL/min;
eluent A, 0.05% TFA in H2O MilliQ; eluent B, 0.05% TFA in CH3CN; gradient 10%–50% B in 40 min,
detector at 214 nm) the conjugate SAP-IGF-1 showed a tR = 24.3 min.

2.3. Decoration of SAP Scaffolds

Hydrogel scaffolds were prepared dissolving 10.03 mg of SAP (EAK) into 10.03 mL of deionized
water (1% w/v; 6.19 mM) and sonicated for 30 min, and then 20 µL of this solution was placed into
each well of cell culture plate. The final concentration of SAP (0.5% w/v) was obtained adding 20 µL
of DMEM to all samples. SAP-RGD, SAP-HVP and SAP-IGF-1 conjugates were used to enrich SAP
scaffolds; three different concentrations were tested for each conjugate: 4 × 10−5 M, 4 × 10−6 M,
4 × 10−7 M.

The scaffold marked with rodhamine (Figure 3) was obtained by using 1% enrichment of purified
rhodamine-SAP conjugate. A lower concentration of SAP (0.15% w/v) was used for AFM samples: the
analysis of fiber features is almost impossible at 0.5% (w/v) for the overlay of several fiber sheets.
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Figure 3. Atomic Force Microscopy (AFM) images of: (a) Self-assembling peptide hydrogel
pristine (SAP) or enriched with conjugates between SAPs and adhesive peptides (called SAP-RGD
and SAP-HVP) or decorated with a conjugate between SAP and Insulin-like Growth factor-1
(called SAP-IGF-1) at 4 × 10−5 M; and (b) SAP-RGD, SAP-HVP and SAP-IGF-1 at 4 × 10−7 M on
mica surface.
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2.4. Atomic Force Microscopy (AFM)

Atomic Force Microscopy (AFM) observations were carried out with the “J scanner” in tapping
mode by using a Nanoscope IIIA-MultiMode AFM (Digital Instruments, Santa Barbara, CA, USA)
under room conditions. The force was maintained at the lowest possible value by a continuous
adjusting of the set point during the imaging phase. Images were recorded using 0.5–2 Ω·cm
phosphorous (n) doped silicon tips mounted on cantilevers with a nominal force constant of 40 N/m,
a resonance frequency of 300 kHz and a tip curvature radius of 10 nm.

2.5. Rheological Analysis: Small Amplitude Oscillatory Shear Tests

The viscoelastic properties of SAP and SAP-IGF-1 were evaluated at 37 ◦C using a rheometer
(Gemini, Bohlin Instruments) with parallel-plate geometry. In particular, to avoid slippage, serrated
parallel plates (15 mm in diameter) were used. Strain sweep tests were first performed to determine
the linear viscoelastic region, and successively small amplitude oscillatory shear tests were carried out.
The frequency was varied from 0.01 to 2 Hz.

In the investigated range of frequency, the storage or elastic modulus (G′) and the loss or viscous
modulus (G”) were evaluated as follows:

G′ =
τ0

γ0
cosδ, (1)

G′′ =
τ0

γ0
sinδ (2)

where τ0 and γ0 are the stress and the strain amplitudes, respectively, and δ is the phase shift between
the input and the output signals.

The results were analyzed using ANOVA followed by Bonferroni post-hoc tests and statistical
differences were set at p < 0.05.

2.6. Biological Assays

2.6.1. Cell Culture

Bone marrow-derived mesenchymal stem cells commercially available (ATCC-PCS-500-012, LGC
Standards) have been used for biological tests. Cells were expanded in Coon’s modified Ham’s F12
enriched with 10% Fetal Bovine Serum (FBS), 1% L-glutamine and 1% penicillin/streptomycin (all from
Sigma-Aldrich), and cultured in incubator at 37 ◦C with a controlled atmosphere of 5% CO2 to allow
gas exchange. The medium was changed twice a week. When the required confluence was reached,
cells were detached with 0.05% Trypsin (Sigma-Aldrich) and counted. Cells were then suspended
in order to obtain a density of 2 million cells/mL. Each gel was generated by adding 20 µL of cell
suspension to 20 µL of peptide (40,000 cells per gel). Gelation was allowed to take place at 37 ◦C for
about 10 min; extra culture medium (150 µL per gel) was then added after 1 h. MSCs were cultured on
plastic dish as 2D control. All experiments were performed in triplicate.

2.6.2. Biological Validation

Cell proliferation was evaluated after one, four or eight days by using a cell viability reagent
(Presto Blue test, Invitrogen, Carlsbad, CA, USA). This assay is based on the ability of the reagent,
a resazurin-based solution, to measure the reducing power of living cells as a measure of their
proliferation. When added to the cells, the reagent is modified by the reducing environment of the
viable cells and turns from blue to red. The assay was added to the culture medium at a concentration
of 10% v/v to each well. Cells-sample constructs were then incubated for 10 min at 37 ◦C in the dark.
The supernatant was removed and its absorbance was quantified by spectrophotometry at 570 and
600 nm. The levels of cell proliferation were expressed as percentage with respect of the control.
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Cellular adhesion and morphology into the samples were verified one week after cell seeding
by fluorescence optical microscopy analysis (Nikon H550L optical microscope), while cell spatial
distribution through the entire 3D gel was investigated by confocal optical microscopy (Leica TCS
SP5 AOBS confocal microscope). For all typologies, samples were fixed with 4% paraformaldehyde
for 1 h and treated with 0.1% Triton X-100 to permeabilize cell membrane. Nuclei were stained with
4,6-Diamidino-2-phenylindole (DAPI) dye (1 µg/mL), actin filaments were stained with Alexa Fluor
488 phalloidin (100 µM), all by Sigma-Aldrich. Alexa Fluor 488 was excited with the 488 nm line of
the Arglaser and its fluorescence was collected in a spectral window of 500 to 530 nm. For DAPI stain
acquisition, 720 nm excitation wavelength and 450–500 nm spectral window emission were used.

To value cell distribution in 3D, we collected z-stacks of 30 µm (maximum thickness of the gels)
after one day from seeding. Each stack was composed of 30 images at 1 µm z-spacing.

Several features characterizing cell morphology were identified and measured both in 3D and
in 2D by using the image analysis software ImageJ (NIH). At least 20 cells were considered for
each hydrogel; images were converted to 8-bit images and an automatic threshold was applied to
discriminate cells (black) from free space (white). The following parameters were then considered and
measured for each cell: area of the cell, perimeter of the cell, major axis and minor axis of the best
fitting ellipse.

2.6.3. Statistical Analysis

Statistical analysis was performed on cell proliferation results (Figures 4 and 5), to evaluate the
differences between: (i) functionalized-hydrogels and SAP control; (ii) hydrogels functionalized with
the same conjugate, but with different concentrations; and (iii) hydrogels functionalized with different
conjugates, at the same concentration.
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3. Results

3.1. Synthesis of Conjugates

The first step of chemoselective ligation approach (Figure 2) was the bio-transamination
reaction. In this paper, we have converted into alpha-ketoaldehyde two adhesive peptides
(G7HVP and G7(GRGDSP)4K) in which the bioactive motif was condensed with the dipeptide G7
(H-Gly-7-amino-heptanoic acid). In a previous study [23], we demonstrated that the bio-transamination
and the following chemoselective ligation via oxime increased their yields by the addition of this spacer
at N-terminus of the peptides. The positive effect of G7 dipeptide was demonstrated for (GRGDSP)4K
sequence in consideration of the same N-terminal residue of this peptide and the G7(GRGDSP)4K
analog. It is well known that the identity of N-terminal residue is important for transamination outcome
and in particular that Ala, Gly, Asp, Gln and Asn residues led to very high conversions [13,14].

3.2. Hydrogel Morphology at the Nanoscale

Figure 3a shows that the process of self-assembly is strikingly different for SAP and the
three different conjugates SAP-HVP, SAP-RGD and SAP-IGF-1 at the different concentration employed
in the work (i.e., 4 × 10−5 M, 4 × 10−6 M and 4 × 10−7 M). In particular, the main effect of conjugates
addition is the inhibition of long fibers, which are in fact observed for SAP, but not for the decorated
hydrogels, at all of the concentrations. In detail, the morphology of the hydrogel structure decorated
with the highest conjugate concentration, 4 × 10−5 M, is deeply different for the three conjugates.
In fact, the SAP-RGD hydrogel is formed by a dense multilayer of interwoven relatively long fibers,
similar to pure SAP, the SAP-HVP hydrogel consists in a sparse dispersion of short nanofibrils, and the
SAP-IGF-1 hydrogel yields a compact and apparently unstructured layer of peptides, showing very
dense interwoven tissue of fibrils and tiny nanopores.
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The concentration basically affects the degree of coverage of the substrate, yielding dense
structures at the highest concentrations, and sparse distributions of fibers or fibrils at the lowest
ones (4 × 10−7 M). In all the cases, evidences of a three-dimensional nanofibrous structure can be seen,
with a two-level system consisting in an underlayer with quite compact networks, narrow and high
cross-linking density fibrils, and an overlayer consisting of less dense networks, with larger fibrils and
larger meshes.

In order to understand the structure of the SAP and SAP-conjugate moieties, the images of the
hydrogel phases at the lowest concentration have been obtained (see Figure 3b). All the hydrogels
obtained at very low concentration show very peculiar common features: the fibers or fibrils are
very similar in lateral width for all the SAP sequences. Figure 4 reports the histogram obtained by
taking the dimensions of several structures per image. The width for all the structures ranges between
12 and 16 nm, depending on the nature of the conjugating groups. These values are very close to the
13.0 ± 2.0 nm measured here for the characteristic long fibers of pure SAP formed at concentration of
4 × 10−5 and 4 × 10−6 M. As the “nominal” length of a fully extended SAP sequence is 5.6 nm, the
experimentally measured value can be interpreted in terms of a side-by-side aggregation mechanism of
two ~6.0 ± 1.0 nm long SAP sequences, giving the width of ~12.0 ± 1.0 nm, and by the further pile-up
of this elementary binary building block in more or less long sequences. The assembling process is
clearly driven by the alternating self-complementary nature of the basic SAP segments, while the
pendant conjugated peptides basically hinder the longitudinal growth of the fibers.

3.3. Rheological Analysis: Small Amplitude Oscillatory Shear Tests

Results from small amplitude shear tests are reported in Figure 5.
In the investigated range of frequency, G′ values were always higher than G” ones for both

SAP and SAP-IGF-1 (4 × 10−5 M). Specifically, with regard to SAP, G′ ranged from 4.7 ± 0.4 Pa to
5.7 ± 0.5 Pa by increasing the frequency from 0.01 to 2 Hz, while SAP-IGF-1 provided G′ values
spanning from 5.0 ± 0.4 Pa to 5.9 ± 0.5 Pa.

However, the presence of IGF-1 did not alter the viscoelastic properties of the SAP (EAK) as no
statistically significant differences were found between SAP and SAP-IGF-1 in the investigated range
of frequency.

3.4. Cell Distribution within the 3D Gels

Cellular distribution through the hydrogels was investigated by confocal microscopy on Day 1.
As shown in Figure 6A,B (zoom), several cells were found adhering to the filament structure of the
material (a single layer is shown as representative image). A projection of images captured through the
entire thickness of the gel is shown in Figure 6C. Nuclei characterized by different colors corresponding
to different levels are clearly observable, meaning that cells successfully colonized the overall hydrogel.
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Figure 6. Mesenchymal Stem Cell (MSC) nuclei (blue, 4’-6-DiAmino-2-PhenylIndole-DAPI) adhering 
to the SAP fibers of the hydrogel (red, Rodhamin) one day after seeding (A,B) (zoom); and (C) the 
nuclei distribution through the entire thickness of the gel (projection). Nuclei with different colors 
are placed at different levels (from 0 µm (purple nuclei) to 30 µm (red nuclei)). 

3.5. Cell Proliferation and Morphology 

By loading an equal number of MSCs, after just one day, we observed an enhanced, statistically 
significant, adhesion and viability of cells in all the functionalized hydrogels if compared to the 
control (non-functionalized peptides based hydrogels); this initial cellular adhesion was also 
sensible to the concentration of the peptides, as reported in Figure 7. Differences in cell proliferation 
among different gel types were also observable: in detail, hydrogels enriched with SAP-HVP 
showed the best results for every concentration here considered (statistically different from 
SAP-RGD and SAP-IGF-1 at 4 × 10−5 M, statistically different from SAP-IGF-1 at 4 × 10−6 M, 
statistically different from SAP-RGD and SAP-IGF-1 at 4 × 10−7 M). 
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3.5. Cell Proliferation and Morphology

By loading an equal number of MSCs, after just one day, we observed an enhanced, statistically
significant, adhesion and viability of cells in all the functionalized hydrogels if compared to the
control (non-functionalized peptides based hydrogels); this initial cellular adhesion was also sensible
to the concentration of the peptides, as reported in Figure 7. Differences in cell proliferation among
different gel types were also observable: in detail, hydrogels enriched with SAP-HVP showed the best
results for every concentration here considered (statistically different from SAP-RGD and SAP-IGF-1 at
4 × 10−5 M, statistically different from SAP-IGF-1 at 4 × 10−6 M, statistically different from SAP-RGD
and SAP-IGF-1 at 4 × 10−7 M).
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After four days, all decorated gels still displayed their ability to support the cellular proliferation,
that was statistically higher than the control (Figure 8A); after eight days, this trend appeared toned
down, even though a general enhancement in cell proliferation in functionalized gels with respect to
the control was maintained, especially in hydrogels functionalized with SAP-IGF-1 (Figure 8B).
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The fluorescence microscopy analysis showed that cells maintained a highly elongated shape and
a pronounced capability of arranging themselves within the hydrogels (Figure 9), probably due to the
“soft” mechanical and excellent chemical properties of the bulk hydrogel. In that context, no particular
differences were noticed in cell morphology among different gel types.
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Figure 9. Fluorescence microscopy images of Mesenchymal Stem Cells (MSCs) within plain hydrogel
(top) or hydrogel enriched with the conjugate called SAP-RGD (left); hydrogel enriched with the
conjugate called SAP-HVP (middle); and hydrogel enriched with the conjugate called SAP-IGF-1
(right). The different conjugate concentration is reported on the left side of the picture. Cells show
highly elongated shape in all hydrogel types (blue: 4′-6-DiAmino-2-PhenylIndole-DAPI-nuclei,
green: Phalloidin-actin filaments). Scale bar is the same as the control for all images.
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This elongated shape was quantified by measuring some cell morphological features both in 3D
(hydrogel) and in 2D (plastic optimized for cell adhesion) as control condition. Results show that MSC
embedded in these SAP hydrogels display values of area, perimeter and circularity (i.e., major and
minor axis) very close to those measured for MSC expanded in established cell culture conditions
(i.e., 2D) (Figure 10); on the other hand, the cells, only when completely immersed in the hydrogel,
can stretch in a three-dimensional “physiological” environment.
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Figure 10. Histogram of Mesenchymal Stem Cells (MSCs) cultured either within 3D Self-Assembling
Peptide (SAP) hydrogels or in 2D. No significant differences were observed by quantifying some
morphological features of cells.

4. Discussion

The structure of the nanofibers at the nanometer level was evaluated by AFM. Each enrichment
with the conjugates amends the hydrogel morphology, which is influenced by both the nature of the
conjugate and its concentration. The most important observation concerns the width of the fibers,
which is ranging in a rather narrow range between 12 and 16 nm; otherwise, the length of the fibers
seems very affected by the addition of the conjugates. Unfortunately, it was not possible to study the
morphological characteristics of the hydrogels using the same concentration of the biological assays and
rheology because, at the concentration 0.5% w/v, an effect of saturation is observed, and consequently
the fibers are not visible. Certainly the growing concentration further modifies the scenario: the
density of fibril networks of EAK16-II on mica increases sharply up to 0.2 mg/mL concentration and
more slowly for higher concentration, whereas the fibril width seems to increase moderately with
concentration [24]. Consequently, a strictly correlation between morphological characterization at
0.15% w/v SAP concentration and biological data obtained at 0.5% w/v SAP concentration is not
possible. In overall, the AFM data are in agreement with recent SEM findings, showing that additional
active motifs appended to SAP backbone do not affect nanofiber structures, which in fact remains
quite similar to the one observed for pure SAP [5,8]. On the other hand, the presence of our conjugates
within the scaffold does not alter the viscoelastic properties of the hydrogels as evident from the
values of G′ and G” obtained for SAP-IGF-1-enriched hydrogel at the maximum concentration tested
(4 × 10−5 M). The result is in agreement with data reported in the work of Jung and coworkers [25].
SAP-IGF-1 was chosen as a model for rheological characterization because it is the conjugate with the
greatest molecular weight among the conjugates synthesized.

MSCs are immunomodulatory, multipotent and fast proliferating and these unique capabilities
mean they can be used for a wide range of treatments including bone, cartilage or myocardium
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regeneration [21]. In cell therapy, the fate of transplanted cells is the critical factor: few of the stem
cells are able to survive [26] and their behavior is deeply affected by the microenvironment where they
are forced to be cultured [27]. The self-assembling peptides (SAP) have been used as scaffolds for cell
delivery: in the article of Cui et al., MSCs mixed with the SAP RAD 16-II resulted more effective to
promote myocardial regeneration in a rat model of myocardial infarction [28]. In addition, SAPs were
also used to promote functional protein delivery [29]. As 3D models for investigating in vitro cell
biology and physiology, alternative to 2D cell cultures, SAP hydrogels have displayed offering to
the cells a permissive template for their migration, proliferation and differentiation. Moreover, they
can incorporate active peptide sequences from desired proteins, allowing the controlled placement of
specific binding domains [30].

Among the factors that stimulate in vitro MSCs migration and proliferation without influencing
their differentiation, there is the insulin-like growth factor 1 (IGF-1) [20]. In the treatment of myocardial
infarction, SAP carrying IGF-1 (SAP and IGF-1 were biotynilated and the streptavidin protein was
used to create a molecular sandwich) was adopted to make cytokine play a long-term therapy role [31].

The conjugates here reported present some peculiarities with respect to similar molecules
described in literature: (i) a spacer (7-amino-heptanoic acid) between the bio-active peptide and
the SAP instead of the Gly spacer, proposed by Taraballi et al. [32] able to improve both the stability
of the scaffold and the adhesion/proliferation of the cells; (ii) a covalent selective bond connecting
the SAP with the bio-active molecule instead of sandwich approaches; (iii) SAP conjugation with
an adhesive peptide carrying 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP)
motifs (GRGDSP is the adhesive motif mapped on fibronectin) instead of the use of peptide with two
Arginine-Glycine-Aspartic Acid (RGD) sequences [33]; and (iv) the first proposed SAP conjugate with
an adhesive peptide mapped on h-vitronectin. Here, we have demonstrated that hydrogels decorated
with the three different conjugates (SAP-HVP, SAP-RGD and SAP-IGF-1) significantly promote MSC
adhesion with respect to SAP hydrogels. In particular, the hydrogel decorated with HVP conjugate
gives the best results at all the concentrations tested: HVP enriched hydrogels resulted significantly
more efficient in the promotion of MSC adhesion in the early times of interaction (Day 1) with respect
to IGF-1 enriched samples, in agreement with HVP nature of adhesion promoter. Moreover, we have
shown that the effect on MSC adhesion seems increase with every conjugate concentration for all
proposed conjugate after one day of in vitro culture. These differences appear toned down after four
and eight days; however, a general enhancement in cell proliferation in functionalized gels with respect
to the control is maintained, especially in hydrogels functionalized with IGF-1 and the observation is
in agreement with the role of growth factor of IGF-1. In literature, some studies demonstrated that
IGF-1 system may stimulate osteoblast-like cells proliferation [34] and differentiation [35]. It has also
shown IGF-1 inducing intracellular signalling activation in MIO-M1 cells and their migration [36].

We have shown the HVP peptides significantly enhance the initial cellular adhesion of human
MSC, better than the RGD sequence. RGD is the principal ligand for the integrin family of adhesion
receptors on fibronectin and vitronectin that include the α5β1 and αvβ3 [37,38]. Integrin receptors
also recognize other protein domains, such as the heparin-binding (HB) sites, that contribute to the cell
adhesion and the formation of the cytoskeleton.

In our hydrogels, cytoskeletal elongation was similar to that typically observed in MSC cultured
in 2D on plastic optimized for cell adhesion: the penetration of the cells in hydrogels, however, ensures
an elongation in three dimensions rather than in two dimensions. The cytoskeletal elongation detected
in our hydrogels is markedly more pronounced with respect to what has been observed in traditional
gel cultures, where cells usually show a packed, round-like shape [39–41]. This fact is symptomatic of
an improved cellular adhesion given by the functionalization of the 3D hydrogels, in addition to their
stiffness [9].

This polarized cytoskeleton orientation suggests a biomimetic cellular interaction with the overall
neighboring matrix, while in 2D cultures only a segment of the cellular membrane can interact with
the ECM and the rest of the cell is exposed to the bulk culture media [9]. Cellular morphology has
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been shown influencing other cellular processes such as proliferation and gene expression [42]. Thus,
a proper design of 3D SAP hydrogels that recapitulate critical mechanical and biochemical cues offers
to the cells, as shown here, a microenvironment facilitating cellular migration and tissue organization.
Moreover, it is worth noting that the presence of the growth factor IGF-1 did not alter the viscoelastic
properties of the SAP as demonstrated by rheological analysis.

In addition, the morphological features of MSCs embedded within gels suggest a mechanobiology
of gels permissive to mass transport and cytoskeleton elongation.

This important feature opens the possibility of using these peptides-based gels as powerful 3D
cell culture models, more realistic than traditional 2D cultures which fail to reproduce some crucial
aspects of cells physiology and morphogenesis in vitro, such as cell–matrix interactions and migration
cell capability [43]. The composition and presentation of specific ligands on a substrate, in addition
to its stiffness, have been also shown to influence MSC differentiation, modulating the expression
of markers associated with neurogenesis, myogenesis or osteogenesis [44]. The study of cells within
a 3D environment will thus lead to advances in areas such as cell therapy, tissue engineering and
fundamental cell biology. Future studies will address the combination of multiple bioactive motifs into
3D SAP hydrogel architecture and to probe conjugate concentrations greater than 4 × 10−5 M, for the
fulfillment of other requirements in biology. In particular, cellular differentiation and metabolomics
studies could be taken into account, especially when specific ligands triggering selective commitments
will be adopted.
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