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Abstract: A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed
by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with
particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure,
sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the
tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are
discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage,
hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined
by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the
PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of
copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at
the hardening stage, the plastic deformation is composed of the structural deformation and the
copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of
sintering joints.
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1. Introduction

Porous metals exhibit high porosity, good capacity for energy absorption, perfect permeability,
superior mechanical properties, and excellent thermal and electric conductivity. With these outstanding
physical and mechanical properties, they have been widely applied to sound absorption [1],
jet noise reduction [2], catalytic applications [3], gas diffusion layers [4], phase change heat transfer,
energy absorption [5], intermediate materials for filtration and separation [6] and bioimplants [7].
Currently, porous metals mainly include porous metal powder sintered materials [8], porous metal
fiber/mesh sintered sheets [9], metal foams [10] and entangled metal wire materials [11]. However,
the porous metals with a single porous structure cannot adequately meet some of the special
requirements of expanded applications. Recently, some composite porous metals have been developed
by different methods, and the relationships between the mechanical properties and the structure of
composite porous metals have attracted well-deserved attention. Jiang et al. [12] produced a graded
porous titanium-magnesium composite via infiltration casting and acid etching, and the compression
properties of this porous metal composite were investigated. Ma et al. [13] fabricated the porous
Cu–Sn–Ti metal with alumina bubble particles, and the mechanical strength of the porous Cu–Sn–Ti
metal was researched. Cay et al. [14] synthesized a porous alumina-reinforced Mg composite through
a powder metallurgical method and investigated the mechanical behavior using compression testing.
Rabiei et al. [15] produced an aluminum–steel composite metal foam via casting, and the modules of
elasticity [16], monotonic compression properties [17] and energy absorption capability [18] of this
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composite foam were also studied. Tang et al. [19] developed a sintered porous metal composite made
of copper foam and copper powders, and the tensile properties of this sintered porous metal composite
were investigated. Ackermann et al. [20] synthesized a dual-scale reticulated porous ceramic using the
foam replication method, and the morphological properties and effective thermal conductivity were
determined in their work.

In this study, a novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is
developed by solid-state sintering of a mixture of the PMFSS and copper powder to obtain a composite
porous structure. The PMFSS acts as a three-dimensional porous skeleton and copper powders with
a spherical shape are used as filling materials. The microstructure of this PMFPSCS is observed by
scanning electron microscopy (SEM) and the sintering density and porosity of the PMFPSCS are
determined. The uniaxial tensile behavior and mechanical properties of the PMFPSCS are investigated
and the deformation and failure mechanisms are discussed based on experimental observations.

2. Results

2.1. Structure Characterization of the PMFPSCS

The characteristics of PMFPSCS sintered at 900 ◦C for 60 min are shown in Figure 1 in which
the porosity of the PMFSS skeleton is 80% and the diameter of copper particles is between 75 and
100 µm. The PMFPSCS consists of a three-dimensional reticulated skeleton, filled copper powders and
irregular micropores. Looking at the longitudinal section and cross section of the sample, a uniform
copper powders distribution is visible, as shown in Figure 1b,c, and the amount of copper powders
is the same statistically in the upper and bottom part of the sample. The pore wall can be fibers,
powders and intercrossing conjunctive points, which exhibit a complex and through-connected porous
structure. The intercrossing conjunctive points may become joint points after being sintered as shown in
Figure 1d,e. Since there is no distinct difference in the pore distribution, the PMFPSCS prepared in this
study is homogenous, which ensures the materials are isotropic and the measurements reproducible.
Obviously, this kind of porous composite materials combines the advantages of porous metal fiber
sintered sheets and porous metal powder sintered materials. Therefore, the PMFPSCS is a promising
capillary wick due to its composite porous structure, which possesses high capillary force as well as
high permeability.
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The sintering density and porosity of the PMFPSCS versus the porosity of the PMFSS skeleton
and the copper particle size are shown as Figure 2 where the PMFPSCS is prepared at a sintering
temperature of 900 ◦C for 60 min. From Figure 2a, it can be found that the sintered density of the
PMFPSCS is 3.25 g/cm3 and the porosity of the PMFPSCS is 63.5% when the porosity of the PMFSS
skeleton is 70%; whereas the sintered density increases to 4.21 g/cm3 and the porosity decreases to
52.8% when the porosity of the PMFSS skeleton increases to 90%. With higher porosity of the PMFSS
skeleton, there is much more space per unit volume for the loose packing of copper particles. In this
way, the mass of the PMFPSCS with a higher porosity of the PMFSS skeleton is larger, leading to
a larger sintering density but a lower porosity of the PMFPSCS. Figure 2b shows the sintering density
of the PMFPSCS decreases while the porosity of the PMFPSCS increases with the increase in size of the
copper particles. Smaller copper particles more easily fill the three-dimensional porous structure of the
PMFSS skeleton. In this case, more copper particles are filled into the PMFSS skeleton with the same
porosity, which leads to a larger sintering density but lower porosity of the PMFPSCS.

It is worth pointing out that, unlike porous copper powder sintered materials, the sintering
density and porosity of the PMFPSCS prepared at different sintering temperatures and sintering
times are almost constant. Though the copper particles inside the PMFSS may shrink during the
sintering process, the volume of the PMFPSCS changed little due to the support of the PMFSS skeleton.
Therefore, the sintering temperature and sintering time have minimal effect on the sintering density
and porosity of the PMFPSCS.
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Figure 2. Sintering density and porosity of the PMFPSCS versus different structure parameters
sintered at 900 ◦C for 60 min: (a) different porosities of the PMFSS skeleton; and (b) different copper
particle sizes.

2.2. Uniaxial Tensile Behavior of the PMFPSCS

The typical uniaxial tensile stress–strain plots of the PMFPSCS sintered at 900 ◦C for 60 min are
shown in Figure 3 where the PMFPSCSs are made of copper particles with 75–100 µm in diameter and
a PMFSS skeleton with a porosity of 70%, 80% and 90%, respectively. Correspondingly, the amounts
of copper powders mixed are 3.08 g, 7.29 g, and 11.93 g. It can be seen from Figure 3 that with the
increase of strain, the PMFPSCS specimen successively experiences an elastics stage, hardening stage
and fracture stage. Compared with other stages, the elastic stage is very short and the strain is only
about 0.05%–0.08%. At the initial elastic stage, the stress–strain relationship meets the linear elastic
Hooke’s law. The Young’s modulus can be estimated from the linear stress–strain relationship as
shown in Figure 4, in which the Young’s modulus of the PMFPSCS is larger than that of the PMFSS.
In addition, by increasing the porosity of the PMFSS, the Young’s modulus of the PMFPSCS increases
with a very small slope if the porosity of the PMFSS is below 80%, henceforth decreasing with a large
slope. After the elastic stage, a long hardening stage follows, which indicates a complex stress–strain
progression. The hardening stage depends on the porosity of the PMFSS, and the strength and
elongation decrease with an increasing in the porosity of the PMFSS. When the porosity of the PMFSS
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is 80%, the strength and elongation of the PMFPSCS are 10.37 MPa and 4.67%; whereas, when the
porosity of the PMFSS is 90%, the strength and elongation of the PMFPSCS are reduced to 6.09 MPa and
1.36%, respectively. However, compared with the PMFSS, the strength and elongation of the PMFPSCS
increase significantly due to the mixing of the copper powders. When the porosity of the PMFSS is
80%, its strength and elongation are only 2.92 MPa and 3.80%, and the strength and elongation of
the PMFSS with a porosity of 90% are 0.72 MPa and 3.12%, respectively. The larger the porosity of
the PMFSS skeleton, the greater is the reinforcement effect of the mixed copper powders. After the
stress reached the maximum value, the PMFPSCS sample begins to fracture. This process can be rapid
because the fibers and sintering joints have already experienced a large deformation and are at their
ultimate stress level. The rapid fracture causes a sharp drop in stress as shown in Figure 3.

Materials 2016, 9, 712 4 of 11 

PMFSS, the strength and elongation of the PMFPSCS increase significantly due to the mixing of the 
copper powders. When the porosity of the PMFSS is 80%, its strength and elongation are only 2.92 
MPa and 3.80%, and the strength and elongation of the PMFSS with a porosity of 90% are 0.72 MPa 
and 3.12%, respectively. The larger the porosity of the PMFSS skeleton, the greater is the 
reinforcement effect of the mixed copper powders. After the stress reached the maximum value, the 
PMFPSCS sample begins to fracture. This process can be rapid because the fibers and sintering 
joints have already experienced a large deformation and are at their ultimate stress level. The rapid 
fracture causes a sharp drop in stress as shown in Figure 3. 

 
Figure 3. Tensile stress–strain plots of the PMFPSCS with a copper size of 75–100 μm and PMFSS 
with different porosities sintered at 900 °C for 60 min. 

 
Figure 4. The Young’s modulus of the PMFPSCS and PMFSS. 

2.3. Effect of the Structural Parameters on the Tensile Properties of the PMFPSCS 

The experiments suggest that the uniaxial tensile properties of the PMFPSCS depend 
significantly on the porosity of the PMFSS and the amounts of mixed copper powder. Revealing the 
relationship between the uniaxial tensile properties and the structural parameters is important when 
tailoring porous structures and mechanical properties. 

The influence of porosity of the PMFSS on the uniaxial tensile properties of the PMFPSCS is 
investigated using specimens with 70%, 75%, 80%, 85% and 90% porosity of the PMFSS skeleton. 
Figure 5 shows the uniaxial tensile strength of the PMFPSCS sintered at 900 °C for 60 min with a 
copper particle size of 75–100 μm, while the amounts of mixed copper powders are 3.08 g, 4.87 g, 
7.29 g, 9.26 g and 11.93 g, respectively. From Figure 5, it can be found that the tensile strength of the 
PMFPSCS ranges from 14.45 MPa to 6.09 MPa. Thus, the uniaxial tensile strength of a PMFPSCS 
depends significantly on the porosity of the PMFSS skeleton and decreases dramatically when the 

Figure 3. Tensile stress–strain plots of the PMFPSCS with a copper size of 75–100 µm and PMFSS with
different porosities sintered at 900 ◦C for 60 min.

Materials 2016, 9, 712 4 of 11 

PMFSS, the strength and elongation of the PMFPSCS increase significantly due to the mixing of the 
copper powders. When the porosity of the PMFSS is 80%, its strength and elongation are only 2.92 
MPa and 3.80%, and the strength and elongation of the PMFSS with a porosity of 90% are 0.72 MPa 
and 3.12%, respectively. The larger the porosity of the PMFSS skeleton, the greater is the 
reinforcement effect of the mixed copper powders. After the stress reached the maximum value, the 
PMFPSCS sample begins to fracture. This process can be rapid because the fibers and sintering 
joints have already experienced a large deformation and are at their ultimate stress level. The rapid 
fracture causes a sharp drop in stress as shown in Figure 3. 

 
Figure 3. Tensile stress–strain plots of the PMFPSCS with a copper size of 75–100 μm and PMFSS 
with different porosities sintered at 900 °C for 60 min. 

 
Figure 4. The Young’s modulus of the PMFPSCS and PMFSS. 

2.3. Effect of the Structural Parameters on the Tensile Properties of the PMFPSCS 

The experiments suggest that the uniaxial tensile properties of the PMFPSCS depend 
significantly on the porosity of the PMFSS and the amounts of mixed copper powder. Revealing the 
relationship between the uniaxial tensile properties and the structural parameters is important when 
tailoring porous structures and mechanical properties. 

The influence of porosity of the PMFSS on the uniaxial tensile properties of the PMFPSCS is 
investigated using specimens with 70%, 75%, 80%, 85% and 90% porosity of the PMFSS skeleton. 
Figure 5 shows the uniaxial tensile strength of the PMFPSCS sintered at 900 °C for 60 min with a 
copper particle size of 75–100 μm, while the amounts of mixed copper powders are 3.08 g, 4.87 g, 
7.29 g, 9.26 g and 11.93 g, respectively. From Figure 5, it can be found that the tensile strength of the 
PMFPSCS ranges from 14.45 MPa to 6.09 MPa. Thus, the uniaxial tensile strength of a PMFPSCS 
depends significantly on the porosity of the PMFSS skeleton and decreases dramatically when the 

Figure 4. The Young’s modulus of the PMFPSCS and PMFSS.

2.3. Effect of the Structural Parameters on the Tensile Properties of the PMFPSCS

The experiments suggest that the uniaxial tensile properties of the PMFPSCS depend significantly
on the porosity of the PMFSS and the amounts of mixed copper powder. Revealing the relationship
between the uniaxial tensile properties and the structural parameters is important when tailoring
porous structures and mechanical properties.

The influence of porosity of the PMFSS on the uniaxial tensile properties of the PMFPSCS is
investigated using specimens with 70%, 75%, 80%, 85% and 90% porosity of the PMFSS skeleton.
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Figure 5 shows the uniaxial tensile strength of the PMFPSCS sintered at 900 ◦C for 60 min with a copper
particle size of 75–100 µm, while the amounts of mixed copper powders are 3.08 g, 4.87 g, 7.29 g, 9.26 g
and 11.93 g, respectively. From Figure 5, it can be found that the tensile strength of the PMFPSCS ranges
from 14.45 MPa to 6.09 MPa. Thus, the uniaxial tensile strength of a PMFPSCS depends significantly
on the porosity of the PMFSS skeleton and decreases dramatically when the porosity of the PMFSS
increases. When the copper particle size remains unchanged, the amount of mixed copper powder
increases with an increase in the porosity of the PMFSS skeleton, resulting in a decrease in the porosity
of the PMFPSCS. Therefore, the uniaxial tensile strength of a PMFPSCS increases with an increase in
the porosity of the PMFPSCS in this case, as shown in Figure 5b. In addition, from Figure 5a, it can
also been seen that the tensile strength of the PMFPSCS is much larger than that of the PMFSS due to
the reinforcement of copper powders.
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As another important structural parameter of the PMFPSCS, the amount of mixed copper powders
can also affect the tensile strength of the PMFPSCS. The specimens are sintered at 900 ◦C for 60 min
with copper particle sizes of 25–50 µm, 50–75 µm, 75–100 µm and 100–125 µm, while the amounts
of mixed copper are 11.05 g, 8.02 g, 7.29 g and 6.13 g, respectively. In the specimens, the porosity
of the PMFSS is 80%. Figure 6 shows the influence of the amount of mixed copper powders on the
tensile strength the PMFPSCS. From Figure 6, it can be found that the tensile strength of the PMFPSCS
increases with an increase in the amount of copper powder when the porosity of the PMFSS remains
unchanged. However, with an increase of the amount of copper powder, the porosity of the PMFPSCS
decreases. In this case, the uniaxial tensile strength of a PMFPSCS decreases with an increase in the
porosity of the PMFPSCS, as shown in Figure 5b.
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2.4. Effect of the Sintering Parameters on the Tensile Properties of the PMFPSCS

The sintering parameters including sintering temperature and sintering time also have
a significant influence on the tensile strength of the PMFPSCS. The influence of the sintering
temperature on the tensile strength of the PMFPSCS is investigated using the specimens prepared at
sintering temperatures of 800 ◦C, 850 ◦C, 900 ◦C, 950 ◦C and 1000 ◦C for 60 min. The porosity of the
PMFSS skeleton is 80% and the copper particle size is 75–100 µm. Figure 7 shows the influence of the
sintering temperature on the tensile strength of the PMFPSCS. From Figure 7, it can be found that
the tensile strength of the PMFPSCS is 5.95 MPa when the sintering temperature is 800 ◦C. However,
the tensile strength of the PMFPSCS increased to 12.11 MPa when the sintering temperature is 1000 ◦C.
With the sintering temperature increasing, the velocity of material migration is accelerated, causing the
sintering joints to grow more quickly, which is helpful to enhance tensile strength.
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Figure 8 presents the relationship between sintering time and tensile strength. In the experiments,
the tested specimens with 80% porosity of the PMFSS skeleton and a copper particle size of 70–100 µm
are prepared at a sintering temperature of 900 ◦C for 30 min, 60 min, 90 min, 120 min and 150 min,
respectively. From Figure 8, it is found that, depending on the sintering time, the tensile strength of
PMFPSCS ranges from 9.30 to 11.62 MPa. The tensile strength of PMFPSCS increases slowly with
an increase in sintering time. It is well known that prolonging the sintering time can promote the
formation and growth of sintering joints since material in the contact regions has enough time to
diffuse, and, therefore, the tensile strength is improved. However, the sintering time has less effect on
the increasing of the tensile strength than the sintering temperature.
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3. Discussion

3.1. Deformation and Failure Mechanism of the PMFPSCS

Though the PMFPSCS exhibits some similarities in tension behavior with other PMFSS [8,21] or
entangled steel wire material [11,22], the PMFPSCS reveals its own tensile behaviors and deformation
mechanisms. The total elastic deformation of the PMFPSCS is caused by the structural elastic
deformation, the elastic deformation of fibers and copper powders sintered together. It is difficult
to evaluate their exact contributions in the total deformation. However, it can be assumed that the
structural elastic deformation is dominant because the elastic modulus of the PMFPSCS (3.70 GPa) is
much smaller than that of the red copper (97.80 GPa). The fibers and copper powders sintered together
undergo elastic deformation only to coordinate the structural deformation. However, the copper
powders sintered inside the PMFSS skeleton become an obstacle to the structural deformation.
Therefore, the Young’s modulus of PMFPSCS is larger than that of the PMFSS, as shown in Figure 4.

As the stress increases, the strain of the PMFPSCS evolves through the structural plastic
deformation as well as the copper fiber plastic deformation. The plastic deformation of copper
powders inside the PMFSS skeleton can be ignored because the sintered copper powder materials are
brittle and frail [19]. The structural plastic deformation causes a more uniform stress distribution along
the cross section of the PMFPSCS. Hence, more copper fibers will be involved in further deformation.
Higher tensile loading is therefore required to maintain the deformation. Thus, a strain–hardening
effect occurs as shown in Figure 3. With the increase of the porosity of the PMFSS, the strain–hardening
effect is weakened because the total plastic deformation of the PMFPSCS is composed of the structural
plastic deformation and the copper fiber plastic deformation, while the sintered copper powders
hinder the plastic deformation. At a late stage of the plastic deformation, some local sintering joints
begin to break and a sharp fluctuation appears in the stress–strain curve. The higher the porosity of
the PMFSS, the more distinct this fluctuation, as shown in Figure 3. When some local sintering joints
are broken, the bearing capacity of the PMFPSCS decreases and the rupture of the PMFPSCS will occur
instantaneously, resulting in a sharp drop in stress, as shown in Figure 3. Figure 9 presents the fracture
morphologies of the PMFPSCS after the uniaxial tensile test. From Figure 9b, it can be seen that a large
amount of copper powder falls off and the reticulated structure becomes loose due to the breaking
of the sintering joints. In addition, it can be concluded from Figure 9c that some fibers in the array
undergo a necking deformation and ductile fracture. The reason for this is that localized stress reaches
the tensile strength of fiber due to stress concentration.
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3.2. Tensile Properties of the PMFPSCS

Based on the observed characteristics of the PMFPSCS, the copper fibers are randomly intertwined
and the copper powders fill in the interspace of the reticulated skeleton. Hence, a three-dimensional
reticulated skeleton forms in which large numbers of conjunctions exist and contribute to the
strength after sintering. The basic connection modes of the PMFPSCS include intersection connection,
cross connection, and reticulation connection, as shown in Figure 10. It can be concluded that the
yielding strength and ultimate strength of the PMFPSCS are determined by the reticulated skeleton
and reinforcement of copper powders. Consequently, the strength of the PMFPSCS is higher than
that of the PMFSS with the same porosity in the PMFSS. With the increase of the PMFSS porosity,
the amount of copper fiber decreases and the amount of mixed copper powder increases. Therefore,
the strength of the PMFPSCS decreases with an increase in the porosity of PMFSS, and, correspondingly,
the reinforcement of copper powders becomes more distinct as shown in Figures 3 and 5. When the
porosity of the PMFSS is constant, the amount of copper powder increases with copper particle size
decreasing. In this case, the strength of the PMFPSCS increases as shown in Figure 6.
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In addition, it is worth pointing out that PMFPSCS of 80% has higher stress than that of 70% at
a strain of 0.2%–5% as shown in Figure 3. From Figure 4, it can be found that the Young’s modulus of
PMFPSCS of 80% is larger than that of 70%. Accordingly, the yielding strength of the PMFPSCS of 80%
is higher than that of 70%. Therefore, at the hardening stage of the PMFPSCS of 80% (with a strain of
0.2%–5%), the PMFPSCS of 80% has higher stress than that of 70%.

4. Experimental Procedures

4.1. Preparation of the PMFPSCS

The preparation of the PMFPSCS includes five processes: copper fiber manufacturing,
segmented copper fiber bedding, pre-sintering, copper powder packing and sintering. During the
manufacturing process of copper fiber, a self-designed multi-tooth tool with a row of tiny teeth with
triangular cross-sections was used to manufacture the copper fiber [23]. Dry cutting experiments
were conducted on precise lathe C6132A (Guangzhou Machine Tool Works, Guangzhou, China).
A high-speed steel tool was used to machine the workpiece with a diameter of 50 mm at cutting
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depth of 0.2 mm, feed of 0.2 mm/r and cutting speed of 16.5 m/min. Subsequently, the copper
fiber produced with an equivalent diameter of 100 µm is segmented into short fibers of 15 mm
in length. The segmented fibers are bedded in a mold cavity layer by layer, both disorderly and
uniformly. After the filling work is accomplished, the packing condition is held by screwing the bolts.
Then, the bedded copper fibers are sintered in an oven-type furnace under hydrogen atmosphere.
The sintering temperature was set as 800 ◦C and the sintering time was 60 min. The heating rate
was kept at 5 ◦C/min before the temperature reached the degree that was 50 ◦C lower than the
final sintering temperature; after that, the heating rate was kept at 1.5 ◦C/min. The pressure of the
hydrogen gas inside the furnace chamber was 0.3 MPa. After the sintering process, the specimens
were cooled to room temperature in the chamber of the furnace. In this way, the PMFSS acting as the
porous skeleton in the PMFPSCS is obtained. Then, the PMFSS was fitted into a mold cavity whose
shape and dimension are the same as the PMFSS specimen and copper powders are filled into the
PMFSS in a loose packing through ultrasonic vibration. Finally, the semi-fished PMFPSCS is sintered
in an oven-type furnace in a hydrogen atmosphere. The sintering temperature was set between 800 ◦C
and 1000 ◦C while the sintering time ranges from 30 min to 150 min. The sintering process is the same
as the pre-sintering process as mentioned previously.

The average porosity of the PMFSS can be calculated by the quality-volume method, as shown in
the following equation:

E(%) = (1 − M1

ρV
)× 100% (1)

where E, M1 and V indicate the porosity, mass (g) and volume (cm3) of the copper fibers, respectively.
ρ is the density (g/cm3) of copper.

After packing the copper powder loosely and when final sintering process is completed,
the volume of specimen changes little due to the protection of the PMFSS skeleton. Hence, the sintering
density of PMFPSCS can be calculated by the following equation:

ρs =
M
V

(2)

where ρs is the sintering density and M is the mass (g) of the PMFPSCS specimen.
The amount of the filled copper powder is determined by the porosity of the PMFSS and copper

particle size, and their relationship is shown in Figure 11. From Figure 11, the amount of filled copper
powder increases with an increase in the porosity of the PMFSS and decreases with an increase in the
size of the copper particles. The effect of the porosity of the PMFSS is more distinct.
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The average porosity of the PMFPSCS can be calculated by the quality-volume method, as shown
in the following equation:

θ(%) = (1 − ρs
ρ
)× 100% = (1 − M

ρV
)× 100% (3)

4.2. Uniaxial Tensile Test of the PMFPSCS

All the tensile tests of PMFPSCS were carried out on a PC-controlled electronic universal
testing machine (RGL-20A, Reger Instrument Co., Ltd., Shenzhen, China) at room temperature
(approximately 25 ◦C). The dimensions of the PMFPSCS specimen were 120 mm in length, 15 mm
in width and 2 mm in thickness. To avoid the deformation of the PMFPSCS network structure in
the clamping process, rubber mats were placed between clamps before tensile testing. After the
clamping, the effective length of specimen is 80 mm. The tensile tests of all specimens were performed
at a constant speed of 1.5 mm/min using displacement control. Strain is defined as the ratio of the
elongation to the initial gauge length of specimen. In order to reduce error, three specimens were
tested for each case and an average value was calculated as the tensile strength and specific tensile
strength of the PMFPSCS specimen.

5. Conclusions

(1) A novel porous metal fiber/powder sintered composite sheet is developed by sintering
a mixture of the PMFSS and copper powders. The PMFPSCS consists of a three-dimensional reticulated
skeleton of metal fiber, sintered copper powers and irregular and through-connect micropores.

(2) The PMFPSCS displays three-stage stress–strain behavior under uniaxial tension, i.e., an elastic
stage, hardening stage and fracture stage. At the initial elastic stage, the structural plastic deformation
of the PMFPSCS is dominant, and at the hardening stage, the plastic deformation is caused by
structural plastic deformation of the PMFPSCS as well as the plastic deformation of copper fibers.
With an increase of the porosity of the PMFSS, the strain–hardening effect becomes weak.

(3) The tensile strength of the PMFPSCS is determined by the tensile strength of the PMFSS and
reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength
of the PMFPSCS decreases, but the reinforcement of copper powders becomes more conspicuous.
The breaking of the sintering joints is the main failure mode of the PMFPSCS.

(4) Both an increase of sintering temperature and sintering time can strengthen the PMFPSCS,
whereas sintering temperature has a more significant effect on the strength of the PMFPSCS than
sintering time.
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