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Abstract: By taking advantage of cellulose, graphene oxide (GO), and the process for crosslinking
using epichlorohydrin (ECH), we propose a simple and novel method to prepare GO/cellulose
hydrogel with good potential to adsorb metal ions. GO nanosheets containing carboxyl and
hydroxyl groups were introduced into the surface of the cellulose hydrogel with retention of
the gel structure and its nanoporous property. Due to the introduction of GO, the GO/cellulose
composite hydrogels exhibited good compressive strength. Adsorption capacity of Cu2+ significantly
increases with an increase in the GO/cellulose ratio and GO/cellulose hydrogel showed high
adsorption rates. The calculated adsorption capacities at equilibrium (qcal

e ) for GO/cellulose hydrogel
(GO:cellulose = 20:100 in weight) was up to 94.34 mg¨g´1, which was much higher than that of
the pristine cellulose hydrogels. Furthermore, GO/cellulose hydrogel exhibited high efficient
regeneration and metal ion recovery, and high adsorption capacity for Zn2+, Fe3+, and Pb2+.
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1. Introduction

Due to the industrialization process, the serious threat of heavy metal ions to the environment
is a particular concern worldwide. Heavy metals are among the most common pollutants found in
wastewater and can be accumulated in the environment and living tissues, causing various diseases
and disordering of living organisms even at a trace level [1]. Thus, it is necessary and urgent to
remove hazardous heavy metals from aqueous solutions. A variety of techniques have been developed,
such as chemical coagulation, ion exchange, chemical oxidation/reduction, membrane separation,
electrochemical techniques, and ultrafiltration [2]. However, these techniques have disadvantages,
such as low efficiency, high cost, and generation of other waste products. Therefore, searching for
more effective adsorbents is of immense interest in wastewater treatment [3].

Bioadsorption is considered to be a potential alternative to conventional technologies for the
adsorption of metal ions from aqueous solutions [1]. A great deal of attention has been diverted
toward the production of bioadsorbents from renewable resources, such as cellulose, starch, lignin,
and agricultural wastes. These bioabsorbents have many advantages over conventional adsorbents,
such as low cost, are biodegradable, eco-friendly, and highly efficient [4]. Especially, the hydrogels
obtained from cellulose have spurred great interest in the adsorption of heavy metal ions from
aqueous solutions, because of their particular physicochemical properties, such as the facility of the
incorporation of different chelating groups into the polymeric networks, the internal porous structure,
are eco-friendly, cost-effective, and have a high specific surface area [5]. Hence, as a typical soft matter,
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cellulose-based hydrogels have wide application in dye removal, adhesion, and ion adsorption [6,7].
The new mixture solvent of NaOH/urea aqueous systems makes it easy to prepare cellulose-based
hydrogel [6]. This solvent has been suggested as an environmentally friendly system [8]. Nevertheless,
most of the hydrogels suffer from a lack of adsorption capacity and mechanical performance. The poor
adsorption and mechanical property of hydrogel has limited its further industrial applications [9].

Recently, some multifunctional hybrid materials based on GO, such as GO/ethylenediamine-
triacetic acid (EDTA), GO/RNA, and GO/Fe3O4, have been successfully used as the absorbents [10–12].
GO has an extended layered structure with various functional groups (hydroxyl, carboxyl, and
epoxy groups) in GO, which results in its interesting dispersibility and affinity to many pollutants
in water [13]. Additionally, its huge surface area endows it with strong adsorption abilities much
like carbon nanotubes [14]. Meanwhile, composite hydrogels are considered to be a simple way to
improve the mechanical properties of hydrogels with the addition of reinforcing organic/inorganic
fillers, for example, clay, GO, carbon nanotubes, etc. [9]. GO have been studied as the reinforcing fillers
because of their high aspect ratio, excellent modulus, and intrinsic strength. Moreover, containing
numerous oxygen functional groups on their surfaces, GO could have strong interaction with polar
polymers [15]. Therefore, GO could enhance not only the strength, but also the adsorption ability
of porous GO/cellulose hydrogels. In fact, there is already some previous research devoted to the
composite of cellulose and GO. By the process of freeze-drying, Zhang et al. prepared cellulose/GOS
aerogel with high mechanical strength and good thermal stability [15]. Zhang et al. reported
that cellulose/GO composites were prepared by mixing dissolved cellulose with GO, followed by
reducing with hydrazine hydrate, which exhibited good triazine pesticide adsorption properties [16].
However, to the best of our knowledge, there has been no attempt, and the systemic investigations
have been reported, on hydrogel prepared from GO and cellulose in the NaOH/urea aqueous system
by using epichlorohydrin (ECH) as cross-linker.

In view of these facts mentioned above, we show a simple, novel, and environmental-friendly
preparation of cellulose-based hydrogel by incorporating GO into the cellulose matrix using
NaOH/urea aqueous solution as the processing solvent. Due to the introduction of GO,
the GO/cellulose composite hydrogels exhibited good adsorption capacities for heavy metal ions and
high compressive strength. This study provided a highly efficient bioadsorbent for the removal of
heavy metals from aqueous solution.

2. Results and Discussion

2.1. Characterization of GO/Cellulose Hydrogel

FTIR was used to expound the characteristics of GO, GO/cellulose hydrogel, cellulose hydrogel,
and Cu(II)-loaded GO/cellulose hydrogel, as shown in Figure 1. GO exhibited a strong absorption
band at 3381 cm´1, which corresponds to a characteristic band of –OH. The absorption band at about
1596 cm´1 is assigned to the aromatic C=C, while the absorption bands at 1720, 1231, and 1041 cm´1

are assigned to the stretching vibrations of carboxy (C=O), epoxy (C–O–C), and alkoxy (C–O) groups,
respectively [17]. In the spectrum of GO/cellulose, the absorption band attributed to epoxide groups
disappeared, while the absorption intensity for alkoxy groups at 1041 cm´1 increased, suggesting
the successful conversion of epoxide groups into alkoxy groups. The intensity of absorption peaks
at 3381 cm´1 was diminished due to the decrease of hydroxyl groups when compared to that of
GO. The results indicated that the crosslinking reaction of cellulose and GO in NaOH/urea aqueous
solution with ECH occurred. The symmetric stretching vibration of CH2 is visible at 2923 cm´1

and 2873 cm´1 (spectra b, c and d), in agreement with the literature data [18]. Compared with
the cellulose hydrogel without GO (spectrum c), two distinct band observed at 1605 cm´1 and
1344 cm´1 in the GO/cellulose hydrogel (spectrum b) can be attributed to COO´ stretching and
bending, respectively [19]. Here, we present evidence for the existence of the carboxyl groups of
GO in the hydrogels. After copper ion adsorption on the GO/cellulose hydrogel (GO/cellulose
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hydrogel + Cu2+, spectrum d), the absorption bands of COO´ groups at around 1605 cm´1 shift to
1579 cm´1. This can be attributed to the formation of the coordinated COO´ and Cu2+ complexes [1].
The O–H band absorption peak was observed to shift to 3386 cm´1 when the GO/cellulose hydrogel
is loaded with Cu2+. It seems that this functional group participates in metal binding [20].
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Figure 1. FTIR spectra of GO, GO/cellulose hydrogel, cellulose hydrogel, and Cu(II)-loaded
GO/cellulose hydrogel.

To obtain information about the crystalline structure of the GO, cellulose hydrogel and the
GO/cellulose hydrogel, the x-ray diffraction (XRD) patterns of these samples were measured and
are shown in Figure 2. GO exhibits a characteristic diffraction peak at 2θ = 11.4˝, resulting from its
(002) crystal planes [21]. The XRD pattern of GO contains a peak at around 41˝, which is related to
the (100) plane of the graphite [22]. Cellulose hydrogel displays the diffraction peaks at 2θ = 20.1˝

and 22.5˝, which correspond to the (110) and (200) planes of cellulose II crystalline form, respectively.
GO/cellulose hydrogel exhibits three distinct peaks at 2θ = 14.1˝, 20.1˝, and 22.5˝, which are assigned
to the (110), (110), and (200) planes of crystalline form of cellulose II, respectively [23]. However,
the peaks of GO/cellulose hydrogel moved from 12.1˝ to 14.1˝. The cross-linking reaction of ECH
with GO and cellulose may be due to shrinkage of the (110) planes causing this peak to move to
higher angles [24]. The results indicate that the structure of cellulose I was destroyed in aqueous
NaOH/urea and transformed into cellulose II. In contrast, the GO/cellulose hydrogel generates only
the characteristic peaks of cellulose with no characteristic peak of GO. These findings can be explained
as the high dispersibility of the GO sheets in the GO/cellulose hydrogel due to the bond interactions
between the cellulose molecules and the GO sheets, so that the periodic interlayer spacing between the
GO sheets disappeared [25].
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To sum up, the mechanism for cross-linking reaction of ECH with GO and cellulose in NaOH/urea
solution is schematically illustrated in Figure 3. The hydroxyl groups of the cellulose were cross-linked
covalently with epoxy and hydroxyl groups of the GO through nucleophilic attack of the alcoholate
anion to form a monoethers of chloropropanediols and a new epoxide formed by chloride displacement,
leading to the completion of the cross-linking [19].
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As can be seen in Table 1, the samples with different content of GO showed similar water content.
The compressive modulus of the hydrogels increased to a maximum and then decreased, with the
GO/cellulose ratios increasing from 2.5/100 to 30/100. At lower concentrations, this dependence
of the compressive modulus on the content of GO is perhaps due to the chemical bond between
the cellulose fibers and the surface of GO. However, GO also reduces macromolecular interactions
which decrease the compressive strength [23]. So the GO(5)/cellulose(100) hydrogel possessed the
higher compressive modulus. The value is much higher than those of cellulose-alginate hydrogel
(30.9 kPa) [26], pure cellulose hydrogel (48 kPa) and cellulose/poly(N-isopropylacrylamide) hydrogel
(58 kPa) [27]. The GO/cellulose hydrogel, in general, has a large specific surface area. Furthermore,
it can be seen that, with increasing GO content, the Brunauer-Emmett-Teller (BET) surface areas and
pore volume of the samples resulted in an obvious enhancement. This indicated that the electrostatic
repulsions caused by the ionic character of the carboxylate anions (COO´) in GO had enlarged the
space in the networks of hydrogels [19]. Compared with the GO(10)/cellulose(100) sample and the
GO(30)/cellulose(100) sample, a notable reduction of the specific surface area, pore volume, and
average pore size of GO(20)/cellulose(100) hydrogel was observed. One possible explanation was
the formation of GO sheets on the surface and inner of GO(20)/cellulose(100) hydrogel, leading
to the block of some pore structures [28]. Another possible explanation was the agglomeration of
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the graphene oxide sheets [29]. The SEM images of the GO(x)/cellulose(100) dry hydrogels are
shown in Figure 4. The vast majority of the cross-sectional images of the inside of the gel showed a
macropore architecture, indicating good miscibility between GO and cellulose. The cross-sectional
images of the GO(2.5)/cellulose(100) sample exhibited a homogenous fine fibrillary structure because
of the incomplete dissolution of cellulose. The surface of GO/cellulose hydrogels showed smooth
morphology, which also indicated that the cellulose was miscible with GO. As shown in Figure 5,
there was a distinct common point of intersection at the ∆pH = 0 line at pHi = 6.5, which was the
pHpzc of the GO/cellulose hydrogel. Hence, the hydrogel is positively charged at a pH below pHpzc

and negatively charged at a pH above pHpzc. The above results suggest that the electrostatic attraction
between metal ions and the hydrogel surface should increase with increasing solution pH [30].

Table 1. Water content, compressive modulus, surface area, pore volume, and pore size of
GO(x)/cellulose(100) hydrogels with x = 2.5, 5, 10, 20, and 30, respectively.

Sample 2.5 5 10 20 30

Water content (wt %) 92.7 90.3 94.1 92.5 93.5
Compressive modulus (kPa) 114 193 144 128 115

SBET (m2¨g´1) 0.19 13.41 40.72 25.11 45.12
Pore volume (cm3¨g´1) 0.0023 0.0575 0.1807 0.0048 0.1856

Pore size (nm) 3.11 7.49 7.08 5.15 6.73
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2.2. Adsorption Measurements

2.2.1. Effect of GO/Celluloses Ratios, Cu(II) Solution pH, and Dosage on Cu2+ Uptake

The effect of GO/celluloses ratio on Cu2+ uptake is shown in Figure 6. The adsorption capacity
of Cu2+ was 47.5 mg/g at a GO/cellulose ratio of 0:100, and then increased to 88.5 mg/g as the
ratio increased to 30:100. The adsorbent has a heterogeneous distribution of GO on the surface.
The amount of sorbate which is adsorbed per unit weight of adsorbent at a given solution concentration
is not proportional to the surface area, indicating that the characteristics of the surfaces of the
GO/cellulose hydrogels are different in each case. This phenomenon should be attributed to more
oxygenous functional groups being incorporated into the hydrogel as the GO/celluloses ratio increases,
which increase the surface complexation, electrostatic attraction, and ion-exchange capability of
bioabsorbent [31]. One problem with GO(30)/cellulose(100) hydrogel is incomplete cross-linking,
probably because of the high ratio of GO/ECH. Thus, GO/cellulose hydrogel with a ratio of 20:100 was
chosen in the following experiments. As shown in Figure 7, the experiments were carried out in the
pH range 1.0–7.5. The adsorption capacities of Cu2+ increased as pH increased from 1.0 to 5.3. This is
because the pH value affects the surface charge of the adsorbent. When the pH value increased, the
negative charge of the adsorbent increased [32]. Above pH 5.3, the solution became turbid. Meanwhile,
the GO/cellulose hydrogel displayed a sharp decrease in the uptake values when pH increased.
The cause for the phenomenon could be the reduced solubility and precipitation of Cu2+ under alkaline
condition [33]. Therefore, the optimum pH value for Cu2+ absorption onto GO/cellulose hydrogel was
about 5.3. The effect of hydrogel dosage on the adsorption properties was investigated in the range
0.01–0.05 g, and the results are presented graphically in Figure 8. It was found that qe decreases from 81
to 27.5 mg¨g´1 with an increase in adsorbent mass from 0.01 to 0.05 g. The reason for this phenomenon
is attributed to the unsaturation of adsorption sites through the adsorption process. Another reason
may be the particle interactions, such as aggregation, resulting from high adsorbent concentration.
Such aggregation would lead to a decrease in the total surface area of the adsorbent [34].
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2.2.2. Adsorption Kinetics Studies

The copper(II) adsorption capacities of the GO(20)/cellulose(100) hydrogel were measured as
a function of contact time, and the results are shown on Figure 9. The adsorption capacities of Cu2+

increased rapidly at short time scale and the adsorption process attains equilibrium within 150 min,
indicating that plenty of readily-accessible sites were available for a rapid adsorption [35]. Adsorption
kinetic provided important information about the mechanism of Cu2+ adsorption onto GO/cellulose
hydrogel, which was necessary to describe the adsorbate-adsorbent interactions. The Lagergren’s
pseudo-first-order and pseudo-second-order models are the most commonly used models. The linear
pseudo-first-order kinetic model (Equation (1)) and pseudo-second-order model (Equation (2)) are
expressed by the following equations:

lnpqe´ qtq “ ´k1t ` lnqe (1)

t{q “ t{qe ` 1{k2qe
2 (2)

where qt and qe are the amounts adsorbed (mg¨g´1) at time t (min) and at adsorption equilibrium,
respectively, k1 (min´1) is the kinetics rate constants for the pseudo-first-order model, and k2

(g¨mg´1¨min´1) is the kinetics rate constants for the pseudo second-order model. The values of
ln(qe ´ qt) obtained from the kinetics experimental data. The kinetic models are examined by linear
plots of ln(qe ´ qt) against t and (t/q) against t, respectively. The boundary conditions are q = 0 at t = 0,
and q = q at t = t. Table 2 lists the characteristic parameters and regression coefficients obtained from
the first- and second-order kinetic models.
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By comparing the two kinetics models, the higher correlation coefficients (R2 in Table 2) were
obtained for the pseudo-second order kinetic model, and the calculated data (qcal

e in Table 2) from the
pseudo-second-order kinetic model generally deviate less from the experimental data. These results
indicate that the adsorption system is well-represented by the pseudo-second-order kinetic model,
and the rate of occupation of adsorption sites is proportional to the square of the number of unoccupied
binding sites [36]. Therefore, the adsorption of Cu2+ by bioadsorbent is dominated by a chemical
adsorption process. The interaction may occur between the COO´ and the Cu2+ ions, which means that
the adsorption mechanism of GO/cellulose hydrogel is ion exchange [4]. The calculated adsorption
capacities at equilibrium (qcal

e ) for GO(20)/cellulose(100) hydrogel was 94.34 mg¨g´1, which was
much higher than that of pristine cellulose hydrogels [37]. The value is much higher than those of
acrylic acid-grafted and acrylic acid/sodium humate-grafted bamboo cellulose nanofibers (46.53 and
45.38 mg/g, respectively) [38] and cellulose/chitosan composite microspheres (65.8 mg/g) [39].
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Table 2. Comparison between the pseudo-first-order and pseudo-second order kinetic models for Cu2+

sorption onto GO(20)/cellulose(100) hydrogel.

C0 (mg¨L´1)
Pseudo-First-Order Model Pseudo-Second-Order Model

qcal
e (mg¨g´1) k1 (g¨mg´1¨min´1) R2 qcal

e (mg¨g´1) k2 (g¨mg´1¨min´1) R2

50 16.44 0.0106 0.876 37.59 0.0023 0.991
200 46.92 0.0187 0.846 94.34 0.0009 0.998

2.2.3. Adsorption Isotherm Studies

The adsoption isotherms of the GO(20)/cellulose(100) hydrogel for Cu2+ ion are presented in
Figure 10. Cu2+ ion uptakes of the GO/hydrogel cellulose increased linearly with increasing Cu2+

concentration, suggesting that the adsorption capacity was dependent on the amount of metal ions.
To further understand the process, the adsorption data were subjected to Langmuir (Equation (3)) and
Freundlich (Equation (4)) models for simulation. The Langmuir model is a widely-applied model based
on the assumption of monolayer adsorption onto a surface containing a finite number of adsorption
sites of uniform strategies of adsorption without transmigration of adsorbate in the plane of the
surface [40]. The Freundlich model is derived by assuming an exponential decay energy distribution
function inserted in the Langmuir equation with the amount adsorbed being the summation of
adsorption on all sites with different bond energies [41].

Ce{qe “ 1{Qmaxb ` Ce{Qmax (3)

lnqe “ lnk ` 1{nˆ lnCe (4)

where qe (mg/g) is the amount of Cu2+ ion adsorbed at equilibrium, Ce (mg/L) is the concentration of
Cu2+ ion, Qmax (mg¨g´1) and b (dm3¨mg´1) are the Langmuir equation parameters; k is the Freundlich
isotherm constant (L¨mg´1), and n is the Freundlich factor.
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The parameters of the simulation are all listed in Table 3. The correlation coefficients (R2) of
the linearized Langmuir equation are lower than that of the Freundlich equation. The GO/cellulose
hydrogel was described better with the Freundlich model than with the Langmuir model, which reveals
that the bioadsorbency to Cu2+ ions is mainly through parallel π–π stacking interactions and form
multilayer adsorption [13]. The presence of such heterogeneous adsorption sites may be the reason
for the better applicability of the Freundlich isotherm [37]. Isotherms with n > 1 are classified as
L-type isotherms reflecting a high affinity between adsorbate and adsorbent and is indicative of
chemisorption [38].
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Table 3. The parameters for Langmuir and Freundlich models for Cu2+ sorption onto
GO(20)/cellulose(100) hydrogel.

T (K)
Langmuir Freundlich

Qmax (mg¨g´1) b (L¨mg´1) R2 k (mg1´1/n¨L1/n¨g´1) n R2

293 138.888 0.014 0.9552 18.01 3.19 0.9703
298 384.615 0.001 0.9406 0.92 1.19 0.9982
303 192.308 0.004 0.8098 1.72 3.78 0.9633

2.2.4. Repeated Use of Hydrogel and Adsorption of Other Hazardous Metals

The effect of five consecutive adsorption-desorption cycles on the efficiency of the adsorption
of Cu2+ on GO(20)/cellulose(100) hydrogel was studied, and the results are presented in Figure 11.
As shown in Figure 11, no noticeable losses were observed in the adsorption capacity or desorption
efficiency of GO/cellulose hydrogel as the number of cycles increased. In 1 M HCL solution,
the protons compete with metal ions for carboxyl groups, which are responsible for the easy
desorption of metal ions. This, again, confirms that the main adsorption mechanism is ion exchange [1].
During the regeneration process with NaOH solution, COOH groups were converted to COO´ groups
which exhibited stronger affinity to Cu2+ [38]. The present study further revealed the advantage of
GO/cellulose hydrogel which allowed for excellent reusability. The adsorption measurement was also
performed on Zn2+, Fe3+ and Pb2+ ions (Figure 12). The qe value was different for each ion and was in
the order of Fe3+ > Zn2+ > Pb2+. The GO/cellulose hydrogel sufficiently adsorbed all of the metals
tested, suggesting that the GO/cellulose hydrogel is a general-purpose bioadsorbent.
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3. Materials and Methods

3.1. Materials

Cellulose with DP of 385 (cotton linter pulp) was supplied by Hubei Chemical Fiber Co. Ltd.
(Xiangfan, China). The α-cellulose content in cotton linter pulp was more than 95%. Length and width
of cellulose fiber were measured from 362 to 619 µm and 18 to 36 µm, respectively. All cellulose samples
were shredded into pieces and distributed, and vacuum dried at 60 ˝C for 24 h to remove adsorbed
water before use. All chemicals of analytical grade were obtained from Beijing Chemical Co. Ltd.
(Beijing, China) and used without further purification. The standard solutions (1000 µg/mL) of
Zn (II), Fe (III), and Pb (II) were purchased from the National Institute of Metrology (Beijing, China).
The graphite was supplied by Jinrilai Graphite Co., Ltd. (Qingdao, China).

3.2. Preparation of GO

GO was prepared from natural graphite by a modified Hummers method [42]. Briefly, graphite
(5.0 g), sodium nitrate (2.5 g), and concentrated sulfuric acid (95%, 115 mL) were consistently mixed
in an ice bath for 1 h. While maintaining vigorous agitation, 15 g KMnO4 was slowly added to the
suspension. The rate of addition was carefully controlled to keep the temperature of the reaction
mixture below 5 ˝C. Next, the mixture was placed in a 45 ˝C water bath and kept at that temperature
for 30 min, followed by the slow addition of distilled water (230 mL) to keep the solution from
effervescing. The resulting solution was placed at well below 70 ˝C–80 ˝C for 30 min. With progression
of the reaction, the color turned into light brownish. After further treatment with H2O2 (30%, 25 mL),
the filtered cake was washed with 5.6 L of 10% HCl and then with considerable water. After drying
under vacuum for 24 h, the grey-black powder of GO was obtained.

3.3. Preparation of GO/Cellulose Hydrogel

A solution of 4.0 wt % cellulose in NaOH/urea aqueous solution was prepared according to the
previous work [43]. GO was dispersed into the 7.0 wt % NaOH/12.0 wt % urea aqueous solution
precooled to ´12.6 ˝C for further ultra-sonication for 1 h. Cellulose (2 g) was added in the suspension
(50 mL) and stirred for 15 min at 5000 rpm. Then, 6 mL ECH, as a crosslinking agent, was added
dropwise to the GO/cellulose mixture. After completion of ECH feeding, the resultant mixtures were
stirred at 25 ˝C for 30 min to obtain a homogeneous solution, and then kept at 25 ˝C for 48 h in a
water bath to transform into hydrogels. Finally, the crosslinked hydrogels were immersed in water
for three days to remove any remaining residue. A series of GO/cellulose hydrogels were obtained
with various GO weight contents (GO:cellulose = x:100, where x = 2.5, 5, 10, 20, and 30). The resultant
hydrogels were labeled as GO(x)/cellulose(100).

3.4. Characterization

Fourier transform infrared (FTIR) spectra of the dried hydrogels were recorded with a Thermo
Scientific Nicolet iN 10 FTIR Microscopy instrument (Thermo Nicolet Corp., Madison, WI, USA)
equipped with a liquid nitrogen-cooled mercury-cadmium-teluride (MCT) detector. The scan range
was 600–4000 cm´1, and the distinguishability was 2 cm´1. X-ray diffractograms were collected on
an XRD-6000 instrument (Shimadzu, Kyoto, Japan) with an incident wavelength of 1.54 Å (Cu Kα

radiation) and a detector at a scanning rate of 1 min´1 over the 2θ range, from 5˝ to 45˝.
Cellulose hydrogels were weighed (Mh) and then dried at 105 ˝C to a constant weight. The dried

sample was cooled down in a desiccator to room temperature and weighed (Md). The water content
(Wc) can be calculated as:

Wc “ 100´Md{Mhˆ 100 (5)
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The compressive test was performed on cellulose hydrogels at a rate of 5 mm¨min´1 by a CMT6503
Test Machine (ShenZhen SANS, Shenzhen, China). The undried hydrogel samples were cylindrical
hydrogel 5.0 mm in diameter and 5.0 mm in thickness.

The Brunauer-Emmett-Teller (BET) was measured with a Tristar II 3020 instrument (Micrometrics
Instrument, Norcross, GA, USA), using the adsorption of N2 at the temperature of liquid nitrogen.
Prior to measuring, all of the samples were degassed at 393 K for 16 h and finally outgassed to 10´3

Torr. All of the samples were tested three times and the the average value was used.
The morphologies of hydrogels were examined using scanning electron microscope (SEM)

instrument (Hitachi S-3400N II, Tokio, Japan). All hydrogel samples were immersed in distilled
water at room temperature and allowed to swell to equilibrium, then fast-frozen in liquid nitrogen,
and freeze-dried before SEM observation.

The method for determination of the point of zero charge (pHpzc) was proposed by Balistrieri
and Murray. Accordingly, to a series of well-stoppered 100 mL polyethylene bottles containing 40 mL
of aqueous sodium nitrate solutions, different amounts of either 0.1 M HCl or 0.1 M NaOH solution
were added in order for the pH of the samples. The bottles were filled to 50 mL with the aqueous
sodium nitrate solutions. After 2 h of equilibration the pH values were noted as pHi. A known amount
of hydrogel was added in each bottle and left at 30 ˝C for 72 h with shaking. The pH values of the
supernatant liquid in each bottle was noted as pHf.

3.5. Adsorption Studies

3.5.1. Preparation of Cu2+ Solution

Cu2+ solutions (500 mg¨L´1) were prepared by dissolving 1.9644 g solid CuSO4¨5H2O in 1000 mL
of deionized (DI) water. The other solutions of different concentrations were adjusted by serial dilution.

3.5.2. Adsorption Procedures

Unless otherwise stated, batch experiments were carried out (at 298 K) by agitating a fixed
mass of dry hydrogel (10 mg, the GO(20)/cellulose(100)) in 50 mL of metal solutions (initial Cu
concentration of 200 mg/L, initial pH of solution 5.3) at 100 rpm for 120 min. The adsorbent/heavy
metal ion solution mixtures were shaken in a thermostatic oscillator (Labwit Scientific, Shanghai,
China). The supernatant was transferred for determination of Cu2+ concentration by measuring the
absorbance at 810 nm (Abs810) [37] using a UV 2300 spectrophotometer (Techcomp, Shanghai, China).
Preliminary experiments showed a linear correlation between Abs810 and Cu2+ concentration. All of
the samples were tested three times and the the average adsorption intensity was used to estimate
Cu2+ concentrations. The equilibrium absorption amount of metal ions absorbed on the bioadsorbent,
qe (mg/g), was calculated using Equation (6):

qe “ pC0´CeqV{m (6)

where C0 is the initial metal ions concentration (mg/L), Ce is the equilibrium metal ions concentration
in solution (mg/L), m is the weight of the dried hydrogel used (g), and V is the volume of the metal
ions solution (L).

Kinetics experiments were carried out with different initial Cu(II) concentrations (50 and
100 mg/L), and the mixture was agitated continuously for 3–150 min. To study the effect of temperature,
isothermal experiments were conducted at 293, 298, and 303 K. In this group of experiments, the initial
Cu(II) concentration was varied from 50 to 400 mg/L.

3.5.3. Desorption and Reusability Behaviors of GO/Cellulose Hydrogel

After the attainment of equilibrium, the Cu2+-loaded hydrogel was filtered from the solution
and washed several times with distilled water to remove any unabsorbed Cu2+. Thereafter,
the bioadsorbents were immersed into 0.1 M HCl solution (50 mL) for 2 h to remove the adsorbed
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Cu2+ from the hydrogel and then regenerated with 0.1 M NaOH for 1 h. Finally, the hydrogel particles
were thoroughly washed with deionized water to reach a neutral pH and again used in the adsorption
experiment. The desorption efficiency was calculated according to Equation (7):

desorption efficiency “
amount of Cu pIIq desorbed
amount of Cu pIIq absorbed

ˆ 100% (7)

3.5.4. Adsorption of Other Hazardous Metals

Ten milligrams of dried hydrogel were soaked in 50 mL of 100 mg/L multi-metal (Zn + Fe + Pb)
solutions. The mixtures were shaken in a thermostatic oscillator at 100 rpm for 120 min at 298 K.
The heavy metal ion concentration of the supernatant liquid was determined using an inductively
coupled plasma optical emission spectroscopy (Optima 8x00, PerkinElmer, Foster City, CA, USA) for
Zn2+, Fe3+, and Pb2+.

4. Conclusions

A novel and easy method has been proposed to prepare cellulose/GO hydrogel with good
adsorption of heavy metal ions from aqueous solutions. FTIR and XRD measurements indicated
the existence of crosslinking reaction between the GO and the cellulose matrix. The incorporation
of GO increased the compressive strength of the GO/cellulose hydrogel and significantly improved
their adsorption capacities for the metal ions. The adsorption capacity of Cu2+ increases with an
increase in the GO/cellulose ratio, while the adsorption capacities decreased continuously with an
increasing dosage of GO/cellulose hydrogel. The adsorption kinetics data could be well described by
the pseudo-second-order model, and the adsorption process followed the Freundlich isotherm model.
In addition, GO/cellulose hydrogel exhibited excellent reusability and also substantially adsorbed
other harmful metal ions (Zn2+, Fe3+, and Pb2+). This study provided a highly efficient bioadsorbent
for the removal of heavy metals from an aqueous solution.
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