Supplementary Materials: H₂ Adsorbed Site-to-Site Electronic Delocalization Within IRMOF-1: Understanding Non-negligible Interactions at High Pressure

Jian Wu,* Mustafa Kucukkal, Aurora E. Clark*

Figure S1. Twelve optimized hydrogen configurations on α , β and γ sites.

Figure S2. Eight optimized hydrogen configurations on δ and ϵ sites around phenyl group.

Figure S3. Representation of super-cell cluster IRMOF-1 with optimized 64 H₂ molecules. (A) Front view; (B) side view.

Table S1. Compilation of prior and current quantum mechanical studies (excluding AIMD), including the chemical models, methods, basis sets, and type of calculation used to examine H_2 sorption to IRMOF-1.

Fragment Chemical Models							
Fragment	Method	Basis	Type	Cbs	Bsse	Ref	
	MP2	aug-cc-pVDZ	Opt			11	
	_	aug-cc-pVTZ	SP			11	
HARDC HA	_	aug-cc-pVQZ	SP	/		11	
112-000-112	_	cc-PVTZ	PES Scan	v	—	13	
	B3LYP	6-31g(d)	Opt			13	
	HF	cc-pVTZ	PES Scan			13	
$H_{2}(CO_{2}H)$	MP2	def2-TZVP	Opt	./	./	8	
112-OZ114(CO211)6	1011 2	aug-cc-pVXZ	SP	v	v	0	
$H_{2}O7n(CO_{2}Ph)$	MP2	def2-TZVP	Opt		./	8	
112-OZ114(CO2111)6	1011 2	aug-cc-pVXZ	SP	v	v	0	
	MP2	SVP/cc-pVDZ	Ont			11	
	1011 2	TZVP/aug-cc-pVTZ	SP			11	
	ELMP2	TZVPP	PES Scan			12	
H_2 - $Zn_4O(HCO_2)_6$	RI-IVII Z R3I VP	631g(d)	Opt	✓	\checkmark	12	
	HE	cc-pVTZ	PES Scan			13	
	MP2	LANL2DZ/aug-cc-	PES Scan			16	
	1011 2	pVQZ	I Eð öttil			10	
(7n40)(HC02)5·BDC·I i	RI-MP2	TZVPP	opt	_	_	17	
	CCSD(T)	TZVPP	opt			17	
	Uni	it Cell Chemical Models					
# Atoms/Cell	Method	Basis	Type	Cbs	Bsse	Ref	
108	LDA	plane-wave	H ₂ opt/cell	_	_	4	
100	LDTT	plane wave	fixed			-	
NA	PBE	6-31G*	cell opt	-	-	11	
358	RI-DFT	TZVPP	H ₂ PES Scan	_	1	12	
	PBE						
NA	BLYP	DN	SP	-	-	16	
106	GGA	plane-wave	H ₂ opt/cell	_	_	18	
		1	opt				
106	LDA	plane-wave	H ₂ opt/cell	_	_	19	
		1	opt				
			H ₂ opt/cell-			c	
64	64 PBE PBE+Disp	plane-wave	plane-wave opt		_	8	
~ 1		plane-wave	H ₂ opt/cell-			8	
			opt				

for parallel ($ $) and perpendicular (\perp) H ₂ configurations.											
Mathad			Fra	g1				Frag2			
Wiethod	α()	α(⊥)	β(⊥)	β()	γ(⊥)	γ(])	δ(⊥)	δ()	ε()	ε(⊥)	
MP2 [8] ^a	-7.6	_	-4.4	-	-5.0	_	-4.8	_	_	_	
RIMP2 [12] ^b	-3.10	-1.51	-1.05	-1.34	-1.80	-0.54	_	_	_	_	
PBE [14] ^c	-1.73	-0.92	-2.09	-1.21	-2.01	-0.73	-1.38	-1.06	-0.50	-0.98	
RI-PBE [12] ^d	-1.13	-0.29	-2.09	-2.13	-1.88	-0.96	_	_	_	-	
PBE + Dis[8] ^{<i>e</i>}	-6.30	_	-4.70	-	_	_	_	_	-	_	
M06-2X/ LANL2DZ	-11.13	-7.96	-3.77	-2.68	-3.46	-1.21	-3.17	-3.14	-1.38	-1.21	
ωB97XD/ LANL2DZ	-9.24	-6.23	-4.16	-2.97	-4.85	-1.87	-3.89	-4.23	-2.09	-2.01	
M06-2X/ cc-pVDZ-PP	-7.49	-4.06	-3.22	-2.09	-3.14	-1.30	-3.72	-2.93	-1.38	-1.21	
ωB97XD/cc-pVDZ- PP	-6.94	-4.31	-4.02	-2.51	-4.48	-2.01	-4.48	-4.06	-2.18	-2.05	

Table S2. Stabilization energies (kJ/mol) of an adsorbed hydrogen molecule in frag1 which consists of one metal cluster and six organic linkers (Zn₄O(CO2Ph)₆), and frag2 which consists of one phenylene group and two metal clusters (Ph(CO2)(Zn₄O)₂). The different sorption sites are denoted for parallel (||) and perpendicular (\perp) H₂ configurations.

^{*a*} MP2 with BSSE correction and optimization of H₂; ^{*b*} RIMP2 with BSSE; ^{*c*} PBE without BSSE; ^{*d*} RI-PBE with BSSE; ^{*e*} PBE with dispersion and BSSE.

H ₂ Congfiurations	Μ	IP2 ¹	RI-MP2 ²	RI-PBE ²	M)6-2X	ωΒ	97XD
at Sorption Sites	<i>d</i> н-н	<i>d</i> н-моғ	$d_{ ext{H-MOF}}$	dн-моғ	d н-н	<i>d</i> н-моғ	d н-н	<i>d</i> н-моғ
$\alpha()$	0.741	2.92 ª	4.0 <i>a</i>	3.9 <i>a</i>	0.74	3.20 <i>a</i>	0.76	3.40 ª
$\alpha(\perp)$	_	_	4.0 <i>a</i>	3.6 <i>a</i>	0.74	2.89 <i>a</i>	0.74	3.17 ª
$\mathcal{Q}(1)$	0 720	2 004	280	250	0.74	2.89 a	0.74	2.82 <i>a</i>
P(⊥)	0.739	2.99"	5.0 %	5.5 %	0.74	(3.14 ^c)	0.74	(3.22 ^c)
$\rho()$			240	250	0.74	2.99 a	0.74	3.07 ª
p(+)		-	5.4 °	5.5 *	0.74	(3.17 °)	0.74	(3.28 ^c)
$\gamma(1)$	0 720	2 074	280	280	0.74	2.84 ª	0.74	2.75 ª
γ(⊥)	0.739	2.97"	5.0 %	5.0 °	0.74	(3.47 ^c)	0.74	(3.43 ^c)
		4.00	4.00	4.00	3.5	3.55 ^a	0.74	3.38 a
γ(+)	_	_	4.2	4. ∠ °	0.74	(4.27 ^c)	0.74	(4.08 ^c)
$\delta(\perp)$	0.739	3.35^{b}	_	_	0.74	2.69 ^b	0.74	2.69 ^b
δ()	_	-	_	_	0.74	2.90 ^b	0.74	2.96 ^b
$\epsilon()$	-	-	_	-	0.74	3.56 d	0.74	3.40 d
(上)	_	_	_	_	0.74	3.42 ^d	0.74	3.33 d

Table S3. Relevant geometric parameters (in Å) of adsorbed H₂ in frag1 and frag2. Distances are with respect to the center of H₂ for the parallel orientation, and the closest hydrogen atom for the perpendicular orientation.

^{*a*} Distance (in Å) to the closest oxygen atom (which is the tetrahedrally O atom for the α sites); ^{*b*} Distance (in Å) to the center of benzene ring; ^{*c*} Distance (in Å) to the nearest Zn atom; ^{*d*} Distance (in Å) to the nearest C atom of benzene ring. **Table S4.** SE values of twenty optimized H₂ in IRMOF-1 super-cell, model fragments (in parentheses). The SE values without BSSE correction are also listed. The green ball-bond models are the PBE optimized configurations. The blue tube models are the M06-2X/LANL2DZ optimized configurations. The red tube models represent the ω B97XD/LANL2DZ optimized configurations.

Representation of	H2	M06-2X		ωB97XD			
H ₂ and Super-cell at Sorption Sites	Configurations at Sorption Sites	Coordinate	BSSE	No BSSE	Coordinate	BSSE	No BSSE
	$\alpha()_1$	(2.00,1.43,-2.04) (1.75,2.06,-1.72)	-11.21 (-11.13)	-15.6	(2.14,1.55,-2.15) (1.90,2.17,-1.82)	-9.41	-12.97
	α()2	(1.75,2.06,-1.72) (1.99,1.43,-2.04)	-11.21	-15.6	(1.88,2.15,-1.82) (2.16,1.55,-2.16)	-9.37 (-9.24)	-12.93
	α()₃	(1.72,1.96,-1.58) (2.07,1.56,-2.10)	-10.84	-15.2	(1.81,2.13,-1.85) (2.19,1.57,-2.16)	-9.41	-12.93
	α(⊥)	(2.13,2.13,-2.02) (1.66,1.66,-1.69)	-8.28 (-7.96)	-12.7	(2.24,2.24,-2.19) (1.76,1.76,-1.88)	-6.61 (-6.23)	-10.04
	α()4	(2.61,2.35,–2.35) (2.61,2.88,–2.88)	-3.64	-5.77	(1.85,2.15,–1.83) (2.17,1.56,–2.15)	-9.41	-12.97
	- β(⊥)ı	(2.86,2.86,3.06) (3.33,3.33,3.39)	-3.64 (-3.77)	-6.74	(2.97,2.97,2.98) (3.40,3.403.41)	-4.05 (-4.16)	-6.61
	- β(⊥)2	(2.79,2.92,3.03) (3.29,3.15,3.52)	-3.39	-6.57	(3.05,2.95,2.93) (3.45,3.48,3.27)	-4.01	-6.57
	- β(⊥)₃	(2.61,3.24,2.74) (3.21,3.22,3.17)	-3.31	-6.61	(2.59,3.39,2.74) (3.11,3.43,3.27)	-3.81	-6.57

	β(⊥)4	(3.22,3.16,3.11) (2.51,3.19,2.89)	-3.10	-6.40	(3.19,3.56,3.24) (2.68,3.37,2.74)	-4.02	-6.69
	β()	(2.84,3.24,2.94) (3.09,2.55,3.03)	-2.72 (-2.68)	-6.02	(2.94,3.30,2.98) (3.18,2.60,3.08)	-3.14 (-2.97)	-5.90
	γ(⊥)	(3.57,3.57,1.16) (4.09,4.09,1.27)	-3.26 (-3.46)	-6.19	(3.42,3.42,0.06) (3.89,3.89,-0.30)	-4.85 (-4.85)	-7.24
	γ()	(4.17,4.17,0.97) (4.09,4.09,1.70)	-1.42 (-1.21)	-3.64	(4.04,4.04,0.92) (3.96,3.96,1.65)	-2.22 (-1.87)	-4.39
	δ(⊥)	(1.91,6.42,-1.90) (2.43,6.42,-2.43)	-3.14 (-3.17)	-4.52	(1.90,6.42,-1.90) (2.43,6.42,-2.42)	-4.06 (-3.89)	-5.36
*	δ()1	(2.32,6.42,-1.78) (1.79,6.41,-2.30)	-3.05 (-3.14)	-4.81	(2.37,6.42,-1.92) (1.82,6.43,-2.43)	-4.35 (-4.23)	-5.77
*	δ()2	(1.80,6.33,-2.30) (2.31,6.52,-1.79)	-3.05	-4.81	(1.88,6.21,-2.31) (2.31,6.63,-1.88)	-4.27	-5.77
*	δ()₃	(1.91,6.11,-2.21) (2.21,6.72,-1.91)	-2.85	-4.64	(2.33,6.07,-2.63) (2.65,6.67,-2.34)	-2.97	-3.93

Materials 2016, 9, 578; doi:10.3390/ma9070578

S9 of S2 3

9	δ()4	(2.11,6.10,-2.05) (2.04,6.84,-2.08)	-2.76	-4.56	(2.10,6.06,-2.10) (2.09,6.81,-2.09)	-4.06	-5.65
	ε (⊥)1	(3.57,6.45,3.04) (3.05,6.45,3.56)	-1.30 (-1.21)	-2.51	(3.54,6.45,3.01) (3.01,6.47,3.53)	-2.30 (-2.01)	-3.43
*	ε())	(3.54,6.14,3.13) (3.25,6.75,3.42)	-1.26 (-1.38)	-2.43	(3.32,6.08,3.18) (3.21,6.81,3.30)	-2.22 (-2.09)	-3.35
	ε(⊥)2	(3.84,6.41,3.84) (3.32,6.41,3.32)	-0.54	-1.26	(3.70,6.42,3.70) (3.18,6.42,3.17)	-1.21	-2.01

Table S5. The su	per-cell geometr	v of IRMOF–1 (x.	v and z coordinates).
Tuble bor file bu	per cen geometi	y of manor 1 (%)	y and 2 coordinates).

Atom	x (Å)	y (Å)	z (Å)
Zn	-13.875891	8.737619	-2.9177
Zn	11.793109	8.736912	-2.919527
О	-12.759174	8.973839	-1.356443
0	12.909827	8.973132	-1.358264
0	-13.575622	10.085119	-4.239579
О	12.093378	10.084411	-4.241404
С	-12.759319	11.098551	-4.238786
С	12.909681	11.097842	-4.240612
Zn	-13.875656	9.210124	0.204982
Zn	11.793348	9.209419	0.203158
0	-15.739258	9.146631	-0.214833
0	9.929742	9.145919	-0.216659
С	-16.339998	8.97394	-1.356183
С	9.329002	8.973236	-1.357975
0	-15.739429	8.801215	-2.497619
0	9.929571	8.800511	-2.499447
0	-11.942967	11.399175	-3.271011
0	13.726032	11.398467	-3.272837
Zn	-11.642543	10.53515	-1.592771
Zn	14.026457	10.534442	-1.594597
Zn	-11.642644	7.412501	-1.120256
Zn	14.026404	7.411753	-1.122096
0	-11.942731	6.548423	0.558109
0	13.726172	6.547753	0.556196
0	-13.575276	7.862604	1.526817
0	12.093717	7.861891	1.524985
0	-13.575221	10.888377	1.068977
О	12.093779	10.887669	1.067151
О	-11.942738	11.857016	-0.245241
О	13.726262	11.856307	-0.247068
0	-9.778981	10.115151	-1.52936
0	15.890019	10.114443	-1.531187
0	-9.779019	7.832355	-1.183949
0	15.889978	7.831659	-1.185767
0	-11.943041	6.090615	-2.46775
0	13.725945	6.089913	-2.46958
С	-12.759402	6.091494	-3.481148
С	12.909585	6.090795	-3.482985
0	-13.575671	7.05935	-3.781739
О	12.093328	7.058641	-3.783565
С	-12.759508	4.919952	-4.344729
С	12.909523	4.919244	-4.346543
С	-11.909815	3.847596	-4.079775
С	13.759131	3.846899	-4.081559
С	-11.909993	2.760685	-4.881081

С	13.759058	2.760072	-4.882702
С	-12.759678	2.696729	-5.983581
С	12.909288	2.696034	-5.985429
С	-12.759905	1.525042	-6.847299
С	12.90928	1.524484	-6.849008
0	-11.943215	0.557561	-6.546394
0	13.725494	0.556634	-6.548412
Zn	-11.643346	-1.120907	-7.410675
Zn	14.025721	-1.12164	-7.412446
Zn	-13.876572	0.204222	-9.208059
Zn	11.792433	0.203517	-9.20989
0	-13.57613	1.526061	-7.860558
0	12.092874	1.525362	-7.862387
С	-13.609307	3.769101	-6.248586
С	12.059688	3.768372	-6.250417
С	-13.609219	4.855923	-5.447441
С	12.059794	4.855209	-5.449272
С	7.873576	8.973258	-1.357974
С	7.167815	9.153053	-0.169842
С	7.167763	8.793534	-2.545807
С	5.817526	9.153105	-0.169773
С	5.817359	8.793586	-2.545745
С	-12.758499	-0.766313	11.856895
С	12.910499	-0.767023	11.855073
С	5.111516	8.973323	-1.357705
0	-11.942197	0.247116	11.857689
0	13.726802	0.246409	11.855866
0	-13.574851	-1.066941	10.889122
0	12.094148	-1.067649	10.887299
С	3.656153	8.97339	-1.357607
Zn	-11.641927	1.594616	10.53581
Zn	14.027072	1.593909	10.533989
Zn	-13.875274	-0.202916	9.210881
Zn	11.79373	-0.203626	9.209062
0	3.055413	8.800697	-2.498957
0	3.055584	9.146112	-0.21617
Zn	1.191812	8.737204	-2.918772
Zn	1.192054	9.209703	0.203905
Zn	-11.643512	-1.593432	-10.533306
Zn	14.025488	-1.594139	-10.535133
Zn	1.191133	0.203803	-9.209129
Zn	-1.041247	10.534858	-1.593525
Zn	1.192431	-0.20333	9.209811
Zn	-13.875957	-8.73631	2.920526
Zn	11.793042	-8.737023	2.9187
Zn	-1.041601	-10.534261	1.594526
Zn	-1.042215	-1.593728	-10.53406

Zn	-1.040631	1.594324	10.53506
Zn	-11.642897	-10.533962	1.59528
Zn	14.026102	-10.534676	1.593453
Zn	1.191745	-8.73673	2.919454
Zn	1.192481	2.91935	8.737308
Zn	-13.875222	2.919765	8.738377
Zn	11.793778	2.919057	8.736554
Zn	-13.876192	-9.208814	-0.202154
Zn	11.792811	-9.209529	-0.203981
Zn	1.19152	-9.209227	-0.20322
Zn	1.191079	-2.918878	-8.736627
Zn	-13.876624	-2.918459	-8.735554
Zn	11.792376	-2.919167	-8.737381
Zn	-1.040809	1.121826	7.41239
Zn	-11.642907	-7.411308	1.122767
Zn	14.026153	-7.411989	1.120952
Zn	-1.041911	-1.121219	-7.41142
Zn	-1.041517	-7.411608	1.122012
Zn	-11.642261	1.122217	7.413281
Zn	14.026837	1.121408	7.411299
Zn	-1.04125	7.412235	-1.120998
0	-12.760008	-1.35716	-8.971877
0	12.909004	-1.357856	-8.973715
0	0.074503	-1.357509	-8.972798
0	0.07534	8.973475	-1.357363
0	0.075838	1.358034	8.97365
0	-12.758646	1.358403	8.974549
0	12.910353	1.357687	8.972727
0	-12.759478	-8.972588	1.359113
0	12.909527	-8.973305	1.357279
Ο	0.075029	-8.972946	1.358198
0	-11.943898	-0.245914	-11.855143
Ο	13.725103	-0.246624	-11.856969
0	0.890706	1.067829	-10.88737
0	-0.741016	11.398866	-3.271808
0	0.892196	-1.067338	10.888095
0	-13.575573	-10.083825	4.242362
0	12.093426	-10.084539	4.240538
0	-0.741179	-11.398285	3.272765
0	-15.740148	-0.215675	-9.144382
0	9.928852	-0.216382	-9.146206
0	-0.741995	-3.271999	-11.398098
0	-0.740196	3.272577	11.399054
0	-15.738837	0.217084	9.147471
0	9.930162	0.216375	9.14564
0	-11.943357	-11.855811	0.247793
0	13.725642	-11.856525	0.245966

Ο	3.055282	-8.800323	2.499374
0	3.056043	2.499351	8.80072
0	-13.574762	4.241615	10.085862
0	12.094237	4.240907	10.084039
0	-15.73973	-9.145219	0.217926
0	9.929269	-9.14593	0.2161
0	0.891074	-10.887487	-1.067221
0	3.054657	-2.498982	-8.800303
0	0.891827	10.887979	1.067948
0	-13.576428	-4.240325	-10.083083
0	12.092572	-4.241033	-10.084911
0	0.891474	-10.084229	4.241335
Ο	-0.740246	0.246809	11.856896
Ο	-11.94313	-11.397971	3.273562
Ο	13.725868	-11.398684	3.271737
0	-13.576341	1.068231	-10.886341
0	12.092658	1.067523	-10.888169
0	-0.741946	-0.246228	-11.855939
0	0.891426	10.08472	-4.240608
0	-0.741406	-11.856127	0.246996
0	3.056004	0.216566	9.146135
0	-11.942146	3.272886	11.399847
0	13.726852	3.272179	11.398026
0	-15.739559	-8.799802	2.500711
0	9.92944	-8.800514	2.498886
0	-11.943947	-3.271684	-11.397301
0	13.725053	-3.272392	-11.399129
Ο	3.054694	-0.216195	-9.14572
0	-0.740788	11.856708	-0.246038
Ο	3.055112	-9.145742	0.216589
Ο	-15.740186	-2.49846	-8.798966
Ο	9.928814	-2.499168	-8.800796
0	0.89062	-4.240726	-10.084113
Ο	-15.738799	2.49987	8.802055
Ο	9.930201	2.499164	8.800237
Ο	-13.575973	-10.887083	-1.066194
Ο	12.093026	-10.887797	-1.068018
Ο	0.892285	4.241217	10.084837
Ο	-0.7406	2.469318	6.090497
Ο	0.891091	-7.861744	-1.525096
Ο	-11.943067	-6.547152	-0.555655
0	13.725721	-6.547968	-0.557293
0	-13.57499	3.783774	7.060093
0	12.094009	3.783067	7.058271
0	0.891756	7.862224	1.525808
0	-0.741606	-2.46874	-6.089539
0	-13.576202	-3.782484	-7.057315

0	12.092798	-3.783192	-7.059142
0	-2.905133	-7.83146	1.185703
0	-9.778453	1.185282	7.832499
0	15.890437	1.184895	7.831124
0	-2.904865	7.832169	-1.184429
0	-9.779745	-1.184528	-7.830707
0	15.88926	-1.185229	-7.832531
0	-2.904233	1.530833	10.115245
0	-2.905753	-1.530135	-10.11398
0	-9.779322	-10.114065	1.531603
0	15.889679	-10.114779	1.529778
0	-11.94354	-2.468427	-6.088741
0	13.725448	-2.469135	-6.090573
0	-0.74105	6.548	0.557356
0	0.890847	-3.782887	-7.058343
0	-0.74143	-6.547558	-0.556348
0	-13.575916	-7.861319	-1.524038
0	12.093063	-7.862014	-1.525858
0	-11.942517	2.469592	6.091249
Ο	13.72645	2.468921	6.08947
0	0.892061	3.783372	7.059066
0	-2.90558	-1.184715	-7.831192
0	-9.779288	-7.831281	1.186188
0	15.889716	-7.831995	1.184359
0	-2.904409	1.18542	7.832439
0	-9.779911	-1.529945	-10.11349
0	15.889089	-1.530647	-10.115318
0	-2.905164	-10.114261	1.531113
0	-9.77839	1.530957	10.115738
0	15.890609	1.530314	10.113908
0	-2.904824	10.114961	-1.529848
0	-11.943034	-6.089412	2.470303
0	13.725957	-6.090129	2.468478
0	-0.740716	-0.556698	6.548215
0	-0.741707	0.557115	-6.547287
0	0.891376	7.05895	-3.782767
0	0.891526	-7.05846	3.783494
0	-13.575069	-1.524788	7.86336
0	12.093909	-1.525483	7.86152
0	-0.741121	6.090305	-2.468548
0	-11.942365	-0.556259	6.549068
0	13.726403	-0.556855	6.547312
0	-0.741096	-6.089728	2.469507
0	0.891944	-1.525223	7.862346
0	-13.575523	-7.058055	3.784522
0	12.093476	-7.058768	3.782696
0	0.890912	1.525712	-7.861619

С	-12.760144	0.767562	-11.854233
С	12.908856	0.766853	-11.856059
С	0.074356	0.767203	-11.855144
С	0.075181	11.098196	-4.239699
С	0.076	-0.766668	11.855985
С	-12.759326	-11.0973	4.241452
С	12.909673	-11.098014	4.239627
С	0.075173	-11.097659	4.24054
С	-12.758942	11.856188	0.768271
С	12.910058	11.85548	0.766445
С	-16.340822	-1.357052	-8.971631
С	9.328178	-1.357741	-8.97346
С	0.074274	-4.239853	-11.097508
С	0.076084	4.240388	11.098349
С	-16.339473	1.358494	8.974805
С	9.329527	1.357736	8.972987
С	-12.759704	-11.854937	-0.765603
С	12.909296	-11.85565	-0.767428
С	3.655851	-8.973048	1.357944
С	3.656678	1.357943	8.97339
С	-12.758415	4.240742	11.099258
С	12.910584	4.240034	11.097437
С	-16.340299	-8.972495	1.359363
С	9.3287	-8.973204	1.357536
С	0.074796	-11.855296	-0.766515
С	3.655329	-1.357605	-8.973055
С	0.075559	11.855833	0.767358
С	-12.760226	-4.239495	-11.096596
С	12.908775	-4.240203	-11.098422
С	0.07571	3.482758	6.091297
С	0.074941	-6.848256	-1.524068
С	-12.759774	-6.847928	-1.523098
С	12.909427	-6.848598	-1.52506
С	-12.758795	3.483104	6.092201
С	12.910205	3.482398	6.090381
С	-12.759091	6.84916	1.525842
С	12.909979	6.848441	1.524089
С	0.075604	6.848888	1.524882
С	0.074654	-3.482214	-6.090451
С	-12.75985	-3.481859	-6.08954
С	12.909151	-3.482569	-6.091368
С	-3.505795	-8.972854	1.35845
С	-9.177881	1.358542	8.974286
С	16.491178	1.357588	8.972472
С	-3.505498	8.973585	-1.357101
С	-9.179166	-1.357237	-8.972139
С	16.489829	-1.357955	-8.973967

С	-3.504972	1.358138	8.973895
С	-9.178346	8.973742	-1.356691
С	16.490654	8.973033	-1.358522
С	-3.506326	-1.357407	-8.972542
С	-9.178644	-8.972687	1.358848
С	16.490351	-8.973404	1.357025
С	-12.759244	-6.090244	3.483816
С	12.909755	-6.090959	3.481992
С	0.075788	-1.524134	6.849019
С	0.074874	1.524718	-6.848165
С	0.075091	6.091143	-3.482065
С	0.075254	-6.090604	3.482905
С	-12.758995	-1.52386	6.849823
С	12.910127	-1.524667	6.848036
С	7.166872	-0.169653	-9.15307
С	7.168278	0.169861	9.152891
С	5.817286	-8.793336	2.545847
С	5.817961	2.545821	8.793508
С	7.167264	-9.152914	0.169629
С	5.816636	-2.545696	-8.793447
С	5.817914	0.169936	9.153013
С	7.167457	-8.793375	2.545742
С	5.816664	-0.169632	-9.152977
С	5.817074	-9.152875	0.16974
С	7.166906	-2.545711	-8.793541
С	7.168491	2.545742	8.793378
С	-0.774004	4.081225	3.847579
С	0.924369	-6.249751	-3.768095
С	-11.910058	-4.881569	-2.758857
С	13.75898	-4.88229	-2.760715
С	-13.608474	5.449478	4.856667
С	12.060546	5.448743	4.854862
С	-11.90929	4.882998	2.76143
С	13.759643	4.882066	2.759623
С	0.925274	6.25024	3.768842
С	-0.774744	-4.080622	-3.846611
С	-13.609462	-5.448188	-4.853884
С	12.059577	-5.448862	-4.855719
С	-5.667125	-7.784744	1.178734
С	-7.015591	1.179139	7.785385
С	-5.667003	7.78551	-1.177116
С	-7.01773	-1.177653	-7.784209
С	-5.666213	1.537969	10.162102
С	-7.016996	10.161736	-1.536618
С	-5.667741	-1.537119	-10.160444
С	-7.017338	-10.1608	1.538466
С	-11.910081	-4.080399	-3.845749

С	13.758918	-4.081125	-3.847582
С	-13.60853	6.250623	3.769845
С	12.060497	6.24992	3.767981
С	-0.774222	4.882361	2.760713
С	0.92431	-5.448584	-4.854892
С	-0.774854	-4.881838	-2.759755
С	-13.609407	-6.249333	-3.767063
С	12.059631	-6.250065	-3.768775
С	-11.909409	4.081521	3.848283
С	13.759676	4.080884	3.84652
С	0.925327	5.44912	4.855601
С	-7.017015	7.785615	-1.177071
С	-5.667531	-1.177692	-7.784335
С	-7.017299	-7.784713	1.178846
С	-5.666471	1.178834	7.785879
С	-7.017931	-1.537082	-10.160349
С	-5.667148	-10.160838	1.538369
С	-7.016403	1.538005	10.162199
С	-5.666806	10.161698	-1.536714
С	-11.909495	-3.846361	4.082285
С	13.759475	-3.847179	4.080441
С	-0.774045	-2.759732	4.882698
С	-0.774564	2.76028	-4.88177
С	0.924581	4.855514	-5.448503
С	0.925079	-4.855019	5.449223
С	-13.608629	-3.76781	6.251372
С	12.060396	-3.768477	6.249552
С	-0.774558	3.847143	-4.080402
С	-11.909309	-2.759787	4.882854
С	13.759583	-2.760285	4.881621
С	-0.774128	-3.846678	4.081327
С	0.925166	-3.768273	6.250332
С	-13.608717	-4.854631	5.450226
С	12.060303	-4.855354	5.448376
С	0.924512	3.768811	-6.249593
С	7.872747	-1.357754	-8.973347
С	7.874105	1.357923	8.973065
С	5.111283	-8.973091	1.357827
С	5.112003	1.357896	8.973239
С	7.873274	-8.973166	1.357642
С	5.110732	-1.357641	-8.973149
С	0.075654	4.346323	4.919718
С	0.074783	-5.984726	-2.695709
С	-12.759658	-5.98431	-2.69479
С	12.909275	-5.985026	-2.696611
С	-12.758872	4.34668	4.920656
C	12,91015	4.345983	4 918846

С	-12.758965	5.98554	2.697443
С	12.910027	5.984826	2.695584
С	0.075465	5.985216	2.696571
С	0.074755	-4.345775	-4.918883
С	-12.759795	-4.345448	-4.918004
С	12.909196	-4.346134	-4.919852
С	-4.961232	-8.972808	1.358581
С	-7.72239	1.358193	8.974198
С	-4.960931	8.973625	-1.357001
С	-7.723739	-1.357259	-8.972248
С	-4.960406	1.358152	8.974002
С	-7.722914	8.973701	-1.356803
С	-4.961755	-1.357352	-8.972443
С	-7.723216	-8.972726	1.358757
С	-12.759142	-4.918716	4.347416
С	12.909854	-4.919423	4.345578
С	0.075432	-2.695879	5.985393
С	0.074773	2.696367	-5.984481
С	0.07501	4.919589	-4.345668
С	0.075349	-4.919064	4.346515
С	-12.758928	-2.695514	5.986286
С	12.910022	-2.696162	5.984419
Н	-12.759363	11.733443	-5.100069
Н	12.909637	11.732735	-5.101896
Н	-11.324592	3.890872	-3.320852
Н	14.34445	3.890101	-3.322651
Н	-11.324632	2.023043	-4.697439
Н	14.344292	2.022264	-4.69953
Н	-14.194615	3.72587	-7.007502
Н	11.474383	3.725174	-7.009326
Н	-14.194465	5.593715	-5.630628
Н	11.474534	5.593005	-5.632455
Н	7.652925	9.276882	0.648545
Н	7.652551	8.66967	-3.36437
Н	5.332524	9.27694	0.648707
Н	5.332218	8.669738	-3.364154
Н	-12.758455	-1.401207	12.71818
Н	12.910543	-1.401914	12.716357
Н	-12.760188	1.402454	-12.715518
Н	12.908813	1.401746	-12.717344
Н	0.074313	1.402096	-12.716431
Η	0.075136	11.733088	-5.100983
Η	0.076044	-1.401561	12.71727
Η	-12.759281	-11.732193	5.102736
Η	12.909716	-11.732906	5.100912
Η	0.075216	-11.732552	5.101825
Н	-12.758874	12.717473	1.403163

Н	12.910126	12.716765	1.401337
Н	0.074204	-5.101137	-11.732402
Н	0.076152	5.101673	11.733242
Н	-12.759772	-12.716222	-1.400495
Н	12.909226	-12.716935	-1.402321
Н	-12.758347	5.102026	11.734151
Н	12.910652	5.101318	11.732328
Н	0.074725	-12.716582	-1.401408
Н	0.075627	12.717119	1.40225
Н	-12.760295	-5.100779	-11.731489
Н	12.908704	-5.101487	-11.733315
Н	7.652019	0.648702	-9.276937
Н	7.653232	-0.648623	9.276709
Н	5.332178	-8.669497	3.364226
Н	5.332954	3.364338	8.669656
Н	7.652373	-9.276757	-0.64875
Н	5.331486	-3.364065	-8.669576
Н	5.332887	-0.648549	9.276865
Н	7.652667	-8.669558	3.364064
Н	5.331558	0.648767	-9.276769
Н	5.331896	-9.276692	-0.648598
Н	7.65191	-3.364153	-8.669736
Н	7.653201	3.364345	8.669486
Н	-1.359415	3.322466	3.890759
Н	1.509616	-7.008708	-3.724885
Н	-11.324653	-4.698314	-2.021152
Н	14.344306	-4.699036	-2.022998
Н	-14.193669	5.632723	5.594483
Н	11.475322	5.632039	5.592648
Н	-11.324203	4.699255	2.023654
Н	14.344849	4.698796	2.021803
Н	1.510523	7.009171	3.725504
Н	-1.360243	-3.321897	-3.889722
Н	-14.194772	-5.631401	-5.591619
Н	11.474217	-5.632128	-5.593431
Н	-5.181928	-6.966391	1.055023
Н	-7.503065	1.053973	6.968954
Н	-5.180971	6.967009	-1.05338
Н	-7.502897	-1.053616	-6.965939
Н	-5.181007	1.661784	10.980425
Н	-7.502126	10.980105	-1.660412
Η	-5.182659	-1.660961	-10.978836
Η	-7.502496	-10.979144	1.662331
Η	-11.324791	-3.321517	-3.889002
Η	14.34421	-3.322183	-3.890811
Η	-14.193765	7.009596	3.72664
Н	11.475228	7.008883	3.724843

Н	-1.359595	4.699296	2.022185
Н	1.509527	-5.631835	-5.592727
Н	-1.3598	-4.69853	-2.021752
Н	-14.194678	-7.008273	-3.723774
Н	11.474294	-7.008964	-3.725675
Н	-11.323883	3.322754	3.891423
Н	14.344962	3.321941	3.889588
Н	1.510621	5.632264	5.593383
Н	-7.502231	6.967288	-1.053243
Н	-5.182394	-1.05366	-6.966019
Н	-7.502445	-6.966335	1.055263
Н	-5.181162	1.054275	6.967685
Н	-7.503137	-1.660898	-10.97867
Н	-5.182018	-10.979208	1.662164
Н	-7.501485	1.661848	10.98059
Н	-5.181648	10.980041	-1.660578
Н	-11.324374	-3.889732	3.323289
Н	14.344723	-3.89031	3.321472
Н	-1.359564	-2.022077	4.699298
Н	-1.360138	2.022819	-4.698267
Н	1.509814	5.593297	-5.631722
Н	1.510314	-5.592833	5.632359
Н	-14.193825	-3.724547	7.010371
Н	11.475167	-3.725278	7.008541
Н	-1.360264	3.890959	-3.321148
Н	-11.324251	-2.021445	4.700712
Н	14.344855	-2.022524	4.698328
Н	-1.359773	-3.889947	3.322719
Н	1.510462	-3.724945	7.00926
Н	-14.193977	-5.59239	5.633497
Н	11.475015	-5.593083	5.631694
Н	1.509649	3.725378	-7.008636
Н	-17.410822	-1.357023	-8.971554
Н	-17.409998	8.973968	-1.356107
Н	-17.410299	-8.972464	1.359439
Н	-17.409473	1.358523	8.974882
Η	17.560351	-8.973432	1.35695
Η	17.561178	1.357559	8.972394
Н	17.559829	-1.357986	-8.974042
Н	17.560654	8.973002	-1.3586

	52.	0
ح (Å)		
Z (A)		
.141642		
5.48795		
.923518		
.008917		
6.142105		
5.490955		
).924004		
.009713		
).929603		

Table S6. The positions of 64 adsorbed H₂.

Atom	x (Å)	y (Å)	z (Å)
Н	1.507513	0.922868	6.141642
Н	2.15933	1.006601	6.48795
Н	1.504705	-6.139441	0.923518
Н	2.155721	-6.486868	1.008917
Н	1.51085	-0.922059	-6.142105
Н	2.161186	-1.006678	-6.490955
Н	1.505168	6.141943	-0.924004
Н	2.156394	6.488936	-1.009713
Н	11.491867	6.154601	-0.929603
Н	10.837542	6.491158	-1.032437
Н	11.491523	-0.929736	-6.15738
Н	10.836711	-1.034361	-6.492397
Н	11.492211	0.929321	6.154087
Н	10.837859	1.032369	6.490532
Н	11.491867	-6.157464	0.929521
Н	10.837001	-6.492338	1.034255
Н	-3.039862	0.951888	5.184552
Н	-3.358667	0.840622	4.526163
Н	-2.959785	-1.008756	-5.114768
Н	-3.278523	-0.895742	-4.456676
Н	-3.028709	-5.150757	1.107359
Н	-3.345069	-4.492142	0.990202
Н	-2.97157	5.151917	-1.021366
Н	-3.286194	4.491658	-0.909528
Н	-9.638207	-1.016149	-5.211745
Н	-9.321912	-0.902205	-4.552665
Н	-9.63277	5.182101	-1.035654
Н	-9.316956	4.523276	-0.918519
Н	-9.851674	1.204217	5.040166
Н	-9.519057	1.066909	4.393895
Н	-9.714628	-5.152339	0.996249
Н	-9.397862	-4.49253	0.887532
Н	-0.279775	-4.159522	0.461973
Н	-0.165125	-3.434127	0.562452
Н	-0.288459	0.458405	4.123574
Н	-0.251916	0.545909	3.389003
Н	-0.231395	4.148511	-0.447797
Н	-0.09805	3.426113	-0.54653
Н	-0.183561	-0.424488	-4.161052
Н	-0.028295	-0.521421	-3.443009
Н	-12.316108	4.120186	-0.470967
Н	-12.377156	3.387567	-0.56124
Н	-12.464295	0.453897	4.033248
Н	-12.619853	0.534782	3.313802
Н	-12.462814	-4.126389	0.405427

Н	-12.61389	-3.406231	0.491096
Н	-12.289675	-0.482381	-4.059832
Н	-12.26779	-0.56419	-3.324325
Н	-3.319398	1.341151	-6.926241
Н	-3.651	1.997196	-7.017865
Н	-3.17637	-3.625056	-6.872586
Н	-3.294209	-4.349224	-6.770208
Н	-3.182025	3.622629	6.866368
Н	-3.299304	4.346791	6.763233
Н	-3.327721	-1.363213	6.975565
Н	-3.657154	-2.019622	7.071359
Н	-3.317951	6.940526	1.358725
Н	-3.648718	7.032179	2.015141
Н	-3.178984	6.87113	-3.622638
Н	-3.296781	6.76775	-4.34666
Н	-3.167351	-6.89076	3.634651
Н	-3.284899	-6.789667	4.359035
Н	-3.327245	-6.924807	-1.346363
Н	-3.659656	-7.013451	-2.002395
Н	-9.361273	-6.885784	-1.338978
Н	-9.027942	-6.978754	-1.99385
Н	-9.444394	-6.766811	3.614311
Н	-9.329693	-6.656211	4.337696
Н	-9.118037	-1.236725	6.443262
Н	-8.686076	-1.693157	6.052042
Н	-9.161779	3.52728	6.570653
Н	-8.666367	4.053514	6.412424
Н	-9.35187	6.922279	1.349734
Н	-9.022387	7.014743	2.006601
Н	-9.426935	6.757387	-3.626314
Н	-9.30565	6.648263	-4.348598
Н	-9.34967	1.355991	-6.954465
Н	-9.021518	2.012969	-7.050504
Н	-9.42898	-3.62913	-6.759708
Н	-9.309986	-4.351787	-6.650446
Н	11.018879	2.710259	-3.596365
Н	10.513694	2.414975	-3.144341
Н	6.409448	6.323023	-0.959496
Н	6.346626	5.596943	-0.833354
Н	6.434992	-0.958995	-6.320937
Н	6.392834	-0.832711	-5.593504
Н	6.392546	0.959769	6.324209
Н	6.315365	0.833744	5.599408
Н	6.457375	-6.314596	0.957805
Н	6.431801	-5.586486	0.831426
Н	1.894702	-3.550059	-2.669411
Н	2.374885	-3.079087	-2.361858

Н	11.021882	-3.577239	-2.741333
Н	10.516306	-3.110954	-2.469625
Н	11.015763	3.575904	2.734192
Н	10.506855	3.113962	2.461375
Н	1.896156	3.564306	2.64683
Н	2.374702	3.100796	2.325806
Н	1.885011	2.614257	-3.574297
Н	2.355449	2.268675	-3.120231
Н	11.015664	-2.733862	3.576107
Н	10.506777	-2.460243	3.114621
Н	1.892176	-2.638337	3.566983
Н	2.368022	-2.307292	3.107751
Н	-10.287192	1.448801	-2.04113
Н	-9.675745	1.747683	-2.329469
Η	-10.358019	2.023894	1.361855
Η	-9.744701	2.325056	1.643567
Η	-6.529901	0.18728	4.51649
Η	-6.406553	0.903788	4.382621
Η	-6.269953	4.32891	-1.214356
Η	-6.403907	4.451634	-0.497921
Η	-9.509771	-2.440291	-1.78056
Η	-10.115653	-2.137174	-1.485235
Η	-3.220228	2.529822	1.841099
Η	-2.781297	2.117612	1.412542
Η	-2.845317	-2.178217	-1.370496
Η	-3.281535	-2.599688	-1.792164
Η	-6.348997	-1.240858	-4.312659
Η	-6.229395	-0.521712	-4.434914
Η	-6.31115	-4.449059	0.317249
Η	-6.449991	-4.328462	1.033112
Η	-9.176975	-1.907471	2.876341
Η	-9.604836	-1.489676	2.442126
Η	-2.270777	1.361245	-1.96388
Η	-2.884707	1.645404	-2.261639
Н	-2.350038	-1.392099	1.99239
Η	-2.968134	-1.672824	2.28473

References

 Sillar, K.; Hofmann, A.; Sauer, J. Ab Initio Study of Hydrogen Adsorption in MOF-5. J. Am. Chem. Soc. 2009, 131, 4143–4150

 Klontzas, E.; Mavrandonakis, A.; Froudakis, G. E.; Carissan, Y.; Klopper, W. Molecular Hydrogen Interaction with IRMOF-1: A Multiscale Theoretical Study. J. Phys. Chem. C 2007, 111, 13635–13640