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Abstract: Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through
metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon
nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films
on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting
ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron
microscopy (FE-SEM), X-ray diffraction (XRD), and current´voltage (I´V) measurements. Nonlinear
and rectifying I´V properties confirmed that a heterojunction diode was successfully formed in the
ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio
of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.
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1. Introduction

Nanostructured solar cells (containing nanospheres [1], nanowires [2–4], or nanopillars [5])
have recently been proposed as promising candidates for solar energy harvesting. Silicon (Si) is
still the leading material in today’s photovoltaic industry. As the process has matured, silicon
nanowire (SiNW) or silicon nanorod (SiNR) structures have become the focus of nanowire solar
cells. Si is by far the most versatile and widely used semiconductor—despite the development of many
compound semiconductors—due to its distinct advantages, such as abundance, stability, and ease
of processing [6–8]. Uniform, vertically aligned SiNWs are promising building blocks for a range of
vertical devices, including surround-gate field-effect transistors [9], solar cells [10], and thermoelectric
modules [11]. Nanostructured solar cells made using low-cost materials are expected to be used in the
industry. Polycrystalline nanowire-array solar cells are expected to enhance solar cell efficiency despite
their very low material cost, due to their enlarged p–n junction area and suppressed light reflection.
Vertically aligned SiNWs can be fabricated with a relatively high degree of control and uniformity
through both top-down etching and bottom-up epitaxial growth methods [12]. However, SiNW solar
cells have major drawbacks: their carrier collection efficiency is low, and fabricated nanowire cannot
be easily coated with a transparent electrode.

Zinc oxide (ZnO) is an n-type semiconductor with a large binding energy of 60 meV and a wide
bandgap of 3.3 eV in the UV range. ZnO has numerous applications in optoelectronic devices, including
ultraviolet (UV) visible photodetectors [13,14], solar cells [15], light-emitting diodes (LEDs) [16], and
flat-panel displays [17]. Fabricating p-type ZnO is difficult, due to the low solubility of the dopants.
Most ZnO-based optoelectronic devices rely on heterojunctions between n-type ZnO and p-type
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semiconducting materials, the most common choice being p-type silicon. Heterojunction n-ZnO/p-Si
devices have been employed as UV visible photodetectors [18], solar cells [19–21], and LEDs [22].

In this work, we fabricated silicon nanowires using a top-down method: metal-assisted chemical
etching (MACE) [23]. This approach is simple and can produce homogenous silicon nanowires. Silver
is the most commonly used metal catalyst. Previously, researchers have reported depositing ZnO on
SiNW substrates using various techniques, such as atomic layer deposition (ALD) [11,24–26], chemical
vapor deposition [27], solution synthesis [28], and radio frequency (RF) sputtering [29,30], to fabricate
ZnO/SiNW heterojunction devices. We deposited an IZO thin film on SiNW substrates using RF
sputtering to form IZO/SiNW heterojunction diodes. Previous studies have shown that the ITO/p-Si
heterojunction device exhibits great photovoltaic effect and rectifying behavior [31]. Therefore, the
resulting ITO-coated SiNW-based heterojunction device had a very large surface area and a short
carrier collection path that enhanced light trapping and increased carrier collection efficiency. Thus,
we achieved a significant enhancement in heterojunction diode properties using ITO/IZO/SiNWs.

2. Experimental Procedures

P-type silicon nanowires (SiNWs) were fabricated through metal-assisted chemical etching
(MACE) [23]. Figure 1 shows a schematic illustration of the procedure for fabricating SiNW-based
heterojunction devices. Briefly, single crystalline p-Si (100) wafers (2–4 Ω¨ cm) were cut into rectangular
slices of 2 ˆ 2 cm2; the slices were subsequently cleaned ultrasonically in acetone, isopropyl alcohol,
and deionized water, then dried with nitrogen (N2) gas, as shown in Figure 1a. The cleaned silicon
slices were immersed in a solution containing hydrogen fluoride (HF) and silver nitrate (AgNO3)
(HF:AgNO3 = 5:0.02 M) to deposit silver (Ag) particles, which acted as the catalyst in the following
etching process. Subsequently, (Figure 1b,d), this silicon with Ag particles was etched in an aqueous
solution of HF:AgNO3 for 10 min to produce a vertical p-Si nanowire. To remove the capped silver,
the as-prepared SiNWs were dipped in a nitric acid (HNO3) aqueous solution for 90 s. Finally, the
SiNWs were rinsed with deionized water and blown dry in N2. Figure 1e represents an indium zinc
oxide (IZO) thin film being deposited on a SiNW substrate to form a heterojunction diode with a
ZnO:In2O2 = 98:2 mol % ceramic target (Shonan Electron Material Laboratory Corporation, Kanagawa,
Japan) using a radio frequency (RF) magnetron sputtering system. The working distance between
the SiNW substrate, and the target was fixed at 15 cm. The base pressure was 8 ˆ 10´6 torr, and
the working pressure was 2 ˆ 10´2 torr. The deposition temperature of the IZO thin films was
room temperature, the RF power was 100 W, and the deposition time was 1 h. The ITO thin films
were then deposited on the IZO/SiNW substrates under the same deposition conditions, except
that the deposition time was extended to 2 h (Figure 1f). Finally, aluminum (Al) electrodes were
deposited on the top and bottom using a thermal evaporation method (Figure 1g). The morphologies
of the SiNWs, ITO, IZO, and ITO/IZO/SiNWs were observed using field emission scanning electron
microscopy (FESEM, JEOL JSM-6700F, Akishima-shi, Japan). The core/shell nanowire structure of the
ITO/IZO/SiNWs was observed using the focused ion beam microscopy (FIB, FEI 650, Hillsboro,
OR, USA). The crystalline structures of the ITO and IZO thin films were determined with an
X-ray diffractometer (XRD, LabX, Midland, ON, Canada) using CuKα radiation (Kα = 1.5418 Å).
Current–voltage (I–V) measurements were performed for the IZO/Si, ITO/IZO/Si, IZO/SiNW and
ITO/IZO/SiNW heterojunction structures at room temperature using a Keithley 2400 SourceMeter
(Keithley, Beaverton, OR, USA).
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Figure 1. A schematic illustration of the procedure for fabricating the ITO/IZO/silicon nanowire 
(SiNW) heterojunction diode device. 

3. Discussion 

The surface morphologies of the ITO, IZO, and ITO/IZO thin films deposited on the Si substrate 
are shown in Figure 2. The ITO thin film in Figure 2a shows that the Si substrate was entirely covered 
with grains of different shapes and sizes, ranging from about 40 to 90 nm. The surface morphology 
of the IZO film is smooth and compact, with cobble-type grains that have an average grain size of 
about 52 nm (Figure 2b). However, the ITO/IZO thin film has a larger grain size; abnormal grains 
were formed and the roughness increased, as shown in Figure 2c. 

 
Figure 2. Surface scanning electron microscopy (SEM) images of the thin films: (a) ITO/Si; (b) IZO/Si; 
and (c) ITO/IZO/Si. 

Figure 3 presents the sectional morphologies of the ITO, IZO, and ITO/IZO thin films deposited 
on the Si substrate. Thickness of the ITO thin film was about 250 nm when the deposition time was  
1 h Figure 3a. At 2 h, as shown in Figure 3b, thickness of the IZO thin film was about 150 nm. The 
crystallization in the ITO and IZO thin films displayed preferential orientation growth with a 
columnar structure. Figure 3c shows that the ITO thin film deposited on the IZO/Si substrate was 
about 400 nm thick. 
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Figure 1. A schematic illustration of the procedure for fabricating the ITO/IZO/silicon nanowire
(SiNW) heterojunction diode device.

3. Discussion

The surface morphologies of the ITO, IZO, and ITO/IZO thin films deposited on the Si substrate
are shown in Figure 2. The ITO thin film in Figure 2a shows that the Si substrate was entirely covered
with grains of different shapes and sizes, ranging from about 40 to 90 nm. The surface morphology
of the IZO film is smooth and compact, with cobble-type grains that have an average grain size of
about 52 nm (Figure 2b). However, the ITO/IZO thin film has a larger grain size; abnormal grains
were formed and the roughness increased, as shown in Figure 2c.
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Figure 2. Surface scanning electron microscopy (SEM) images of the thin films: (a) ITO/Si; (b) IZO/Si;
and (c) ITO/IZO/Si.

Figure 3 presents the sectional morphologies of the ITO, IZO, and ITO/IZO thin films deposited
on the Si substrate. Thickness of the ITO thin film was about 250 nm when the deposition time
was 1 h Figure 3a. At 2 h, as shown in Figure 3b, thickness of the IZO thin film was about 150 nm.
The crystallization in the ITO and IZO thin films displayed preferential orientation growth with a
columnar structure. Figure 3c shows that the ITO thin film deposited on the IZO/Si substrate was
about 400 nm thick.
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Figure 3. Cross-sectional SEM images of the thin films: (a) ITO/Si; (b) IZO/Si; and (c) ITO/IZO/Si.

The X-ray diffraction (XRD) patterns of the ITO and IZO films deposited on the Si substrate are
presented in Figure 4. The diffraction peaks at 2θ values of 21.4˝, 30.3˝, 35.1˝, 37.2˝, 41.7˝, 45.4˝, 51.6˝,
55.6˝, and 60.4˝ in Figure 4a correspond to the (211), (222), (400), (411), (332), (431), (440), (411), and
(422) planes of the ITO thin film (JCPDS No. 6-416), respectively. No second phase was present in this
film. The IZO film exhibited a dominant (002) peak, with slight (102) and (103) peaks in the diffraction
angle (2θ) range of 20˝–70˝ (JCPDS No. S6-314), as shown in Figure 4b. The IZO (002) peak indicated a
preferential crystallization orientation with a hexagonal structure along the c-axis at diffraction angles
(2θ) near 34.1˝; no characteristic peak of the In2O3 phase was found. As shown in Figure 4c, for the
ITO/IZO thin film, ITO diffraction peaks were observed at 21.4˝, 30.3˝, 35.1˝, 37.2˝, 41.7˝, 45.4˝, 51.6˝,
55.6˝, and 60.4˝, along with IZO diffraction peaks at 33.7˝ and 62.1˝.
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Figure 4. X-ray diffraction (XRD) analyses of thin films: (a) ITO; (b) IZO; and (c) ITO/IZO.

The SEM images in Figure 5 show cross sections of the SiNWs formed after 10 min of etching.
The large area of vertically aligned SiNW arrays with uniform length was successfully fabricated
through metal-assisted chemical etching (MACE) of Si wafers. Figure 5a indicates that the length of
the SiNWs is about 1.7 µm, and the average diameter is about 120 nm (full width at half length of
SiNW). In addition, the SiNWs have smooth surfaces with almost no pores as shown in Figure 5b. The
result is identical to that produced by Xiaopeng Qi et al. [32].
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Figure 5. Cross-sectional SEM images of the SiNWs. (a) Low rate and (b) high rate.

Figure 6a presents a cross-sectional SEM image of the ITO/IZO/SiNW heterojunction structure,
showing a “chicken thigh” morphology; because the degree of step coverage in the sputtering method
was not good, the ions could not uniformly cover the SiNWs. The focused ion beam (FIB) image of the
ITO/IZO/SiNW heterojunction structure is shown in Figure 6b. It can be observed that the diameter
of the SiNWs is about 120 nm (full width at half length of SiNW) and the ITO and IZO-coated radial Si
NW heterojunction structure.
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Figure 7 shows the reflectance of the different Si-base structures. In the visible light range
(450–750 nm), compared to the Si wafer (average reflectance about 28%), the SiNW shows a lower
average reflectance and the reflectance is about 1.6%. In addition, the average reflectance of the
IZO/SiNWs and ITO/IZO/SiNWs are 1.2% and 0.7%, respectively. From the above results, it is
demonstrated that the suppressed light reflection is due to the nanowire structure.
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Current–voltage (I–V) characterization of the IZO/Si and ITO/IZO/Si was carried out at room
temperature, as shown in Figure 8. The nonlinear and rectifying I–V characteristics shown in Figure 8
confirmed that a p–n junction structure had been formed in IZO/Si and ITO/IZO/Si. In Figure 8a, the
rectification properties of the IZO/Si heterojunction diode is not obtained. The rectification ratios (R)
of the ITO/IZO/Si heterojunction diode (at ˘3 V) were calculated using Equation (3), yielding values
of 125.6 [33]:

R “
Forward current
Reverse current

(1)
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Figure 8. I´V characterization curves of the (a) IZO/Si and (b) ITO/IZO/Si heterojunction diodes;
(c) the log(|I|)´V curve of the ITO/IZO/Si heterojunction diode.

Figure 8a shows the I´V characteristics of the IZO/Si heterojunction diode. The I´V curve for the
turn-on voltages in the forward bias range is indistinct. These indicate that the I´V characteristics of
the IZO/Si heterojunction diode did not follow a typical p–n diode curve. Figure 8b shows that under
forward bias, the low value of the turn-on voltage for the ITO/IZO/Si heterojunction diode has a low
value of about 1.42 V and a higher rectification ratio. The log(|I|)´log(V) curve is plotted in Figure 8c
and shows a leakage current of 1.07 ˆ 10´9 A/cm2 at 1 V for the ITO/IZO/Si heterojunction diode
and smaller than the IZO/Si heterojunction diode. The roles of the ITO layer are interpreted with
the help of the following key parameters: The electrode area ratio of the ITO/IZO/Si heterojunction
diode is much larger than that of the IZO/Si heterojunction diode. As the ITO layer covers the entire
surface of the IZO/Si, although the resistivity of ITO film (5 ˆ 10´3 Ω¨ cm) is larger than that of Al
film (10´5 Ω¨ cm), the generated carriers are readily collected via the shortest path between the p–n
heterojunction and the ITO layer and effectively transported to the Al finger electrode via ITO without
recombination. Therefore, the ITO/IZO/Si heterojunction diode obtained the rectifying I–V curve and
small leakage current.
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To improve the properties of the heterojunction diode, SiNWs were used. Figure 9 presents the
I–V characteristics of the ITO/IZO/SiNW heterojunction diode. The I–V curve of ITO/IZO/SiNWs
clearly shows excellent rectification behavior, with a rectification ratio of about 550.7 at 3 V. The
ITO/IZO/SiNW heterojunction diode shows a turn-on voltage of 2.53 V in the forward bias range.
When compared with the ITO/IZO/Si heterojunction diode, the ITO/IZO/SiNW heterojunction diode
shows a small leakage current in the reverse bias region. This is caused by the junction area of the
ITO/IZO/SiNW heterojunction diode being larger than that of the ITO/IZO/Si heterojunction diode.
The junction area of the heterojunction diode is characterized using the capacitance–voltage (C´V)
method [34,35], as shown in Figure 10. The maximum capacitance (Cmax) of the ITO/IZO/SiNW
heterojunction diode is about 6.21 nF/cm2 and is larger than that of the ITO/IZO/Si heterojunction
diode (about 3.58 nF/cm2). The ratio of Cmax is proportional to the ratio of the p–n junction areas
of the ITO/IZO/SiNWs and the ITO/IZO/Si heterojunction diode [35]. It is understood that the
junction area of the ITO/IZO/SiNW heterojunction diode is about 1.73 times that of the ITO/IZO/Si
heterojunction diode.
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The nonlinear I–V characteristics with diode behavior can be described by a thermionic emission
(TE) model theory. The current in such a device can be expressed as [36]

I “ Is

”

ep
qV
nkT q ´ 1

ı

(2)
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where, Is is the saturation current; k is the Boltzmann constant; n is the ideality factor; T is the
temperature in Kelvin; q is the electron charge; and V is the applied voltage. The Is of the heterojunction
diode is expressed by the following equation [37]:

Is “ AA˚T2ep
´qϕb

kT q (3)

where A is the device area; A* is the Richardson constant; and ϕb is the barrier height. The plot of
log I vs. V gives the value of the ideality factor. The ϕb is obtained by rewriting Equation (3) as

ϕb “
kT
q

ln
„

AA˚T2

Is



(4)

Using Equations (2)–(4), the values of ϕb and n of the ITO/IZO/SiNW heterojunction diode were
calculated. The n = 1.53 can be calculated from the slope of the linear region of the I–V curve in the
forward bias region, and the value of ϕb is estimated to be 0.91 eV. The high ideality factor could be
due to the accelerated recombination of electrons and holes in the depletion region or by the presence
of the interfacial layer [38].

4. Conclusions

In this study, the rectifying current–voltage (I–V) characteristics confirmed that a p–n junction
structure had been formed in ITO/IZO/Si and ITO/IZO/SiNW heterojunction structures. To enhance
the properties of the ITO/IZO/Si heterojunction diodes, an array of vertically aligned SiNWs was
fabricated through metal-assisted chemical etching. Subsequently, ITO and IZO thin films were de ϕb
posited onto the SiNWs using a radio frequency sputtering technique to create an ITO/IZO/SiNW
heterojunction diode. The ITO/IZO/SiNW heterojunction diode showed a lower turn-on voltage
(2.53 V) in the forward bias range and a small leakage current in the reverse bias range. Its rectification
ratio is 550.7 at 3 V. The ideality factor (n = 1.53) can be calculated from the slope of the linear region of
the I–V curve in the forward bias region and the barrier height (ϕb) is estimated to be 0.91 eV.
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