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Abstract: The typical experimental procedure for testing stress corrosion cracking initiation involves
an interval-censored reliability test. Based on these test results, the parameters of a Weibull
distribution, which is a widely accepted crack initiation model, can be estimated using maximum
likelihood estimation or median rank regression. However, it is difficult to determine the appropriate
number of test specimens and censoring intervals required to obtain sufficiently accurate Weibull
estimators. In this study, we compare maximum likelihood estimation and median rank regression
using a Monte Carlo simulation to examine the effects of the total number of specimens, test duration,
censoring interval, and shape parameters of the true Weibull distribution on the estimator uncertainty.
Finally, we provide the quantitative uncertainties of both Weibull estimators, compare them with the
true Weibull parameters, and suggest proper experimental conditions for developing a probabilistic
crack initiation model through crack initiation tests.
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1. Introduction

Stress corrosion cracking (SCC) is one of the main material-related issues that occur in the
operation of nuclear reactors [1–3]. Particularly, in pressurized water reactors, the occurrence of SCC at
a reactor’s pressure boundary can cause a loss-of-coolant accident. Therefore, many researchers have
endeavored to predict SCC initiation time for a given component. However, accurately predicting SCC
initiation is difficult because the mechanism is quite complex and not yet clearly understood; instead,
empirical SCC initiation models are generally considered [4–6].

However, most SCC experiments show significant variation in cracking time, even though all
specimens are tested in the same experimental conditions (e.g., temperature and stress level). Therefore,
the Weibull distribution [7], which considers the effect of time-dependent material degradation, is
widely accepted as a probabilistic model for SCC initiation time [6,8,9]. Probabilistic models cannot
offer an exact cracking time but can offer a cracking probability as a function of time for a given set
of conditions. In this case, SCC initiation testing is required to determine the cracking probability
function (i.e., the unreliability function).

The typical experimental procedure of an SCC initiation test involves an interval-censored
reliability test. That is, stressed specimens are exposed to a corrosive environment and censored
at scheduled periods. The results of these tests can be used to estimate the parameters of a Weibull
distribution, using either maximum likelihood estimation (MLE) or median rank regression (MRR) [10].

Both estimation methods for Weibull parameters are anticipated to be more accurate with more
test specimens and narrower censoring intervals. However, we do not yet know the optimal number of
test specimens and censoring intervals required to estimate a sufficiently accurate Weibull distribution.

Materials 2016, 9, 521; doi:10.3390/ma9070521 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2016, 9, 521 2 of 17

In this study, we use Monte Carlo simulation to compare MLE and MRR estimators and quantify the
effects of specimen number, test duration, and censoring interval on the uncertainty of the estimated
Weibull parameters.

2. Weibull Estimation

2.1. Weibull Distribution

The cumulative distribution function (CDF) of a two-parameter Weibull distribution is frequently
used as a cracking probability function, and is given by [10]:

F pt; β, ηq “ 1´ exp

«

´

ˆ

t
η

˙β
ff

; t ě 0; β, η ą 0 (1)

where t is time, β is the shape parameter, and η is the scale parameter of the Weibull distribution.
If β < 1, the cracking rate, or hazard function, decreases with time. If β ą 1, the cracking rate

increases monotonically. This indicates time-dependent material degradation, or aging effects. If β “ 1,
the Weibull distribution becomes equivalent to an exponential distribution and the cracking rate is not
influenced by time. The scale parameter η is also called characteristic time, which is the quantile at
which the CDF of the Weibull distribution reaches approximately 0.632.

2.2. Median Rank Regression

MRR is a method that can derive a cracking probability function from the result of a crack
initiation test. It is reasonable to assume that all specimens are tested independently; that is, the status
of one specimen does not affect the cracking probability of the other specimens.

Let N be the total number of specimens and j be the number of cracked specimens. Then, the
distribution of j at a certain time follows a binomial distribution. The CDF of the binomial distribution
can be expressed as follows [11]:

CDFBin pj; N, F ptqq “

j
ř

i“0

˜

N
i

¸

rF ptqsi r1´ F ptqsN´i

“ pN ´ jq

˜

N
j

¸

ş1´Fptq
0 tN´j´1 p1´ tqj dt

“ I1´Fptq pN ´ j, j` 1q

(2)

where F ptq is the cracking probability function and I is the regularized incomplete beta function. When
CDFBin is set to 0.5, the value of F ptq at a certain time can be calculated, and is called the median rank.
If the total number of specimens is very large, the value of the median rank is close to the cracked
fraction j{N.

Benard and Bos-Levenbach [12] suggested a simple approximation for non-statisticians to easily
calculate the median rank:

FMed ptq “ 1´ I´1
0.5 pN ´ j` 1, jq

«
j ´ 0.3

N ` 0.4
(3)

where FMed ptq is the cracking probability function calculated using median rank. Figure 1 shows that
the exact median rank values are very close to their approximations. Therefore, in this study, we use
the approximation, defined in Equation (3), to improve calculation speed.
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Figure 1. Comparison of exact median rank values (blue line) and their approximations (red squares) 
when: (a) N = 5; and (b) N = 10. 

If the test is not censored continuously (i.e., if it is an interval-censored test), the resulting F୑ୣୢ(ݐ) must be treated as a set of unreliability points and not as a function. With this median rank 
point set, it is possible to estimate the Weibull distribution, which is the model of SCC initiation, 
through regression [10,13]. Figure 2 is an example of Weibull estimation using MRR that uses the test 
data in Table 1. The red dots show the median rank points, F୑ୖୖ(ݐ) is the estimated Weibull CDF 
by regression with the median rank points, and ߚመெோோ and ̂ߟெோோ are the Weibull shape and scale 
parameters, respectively, estimated by MRR. 

Table 1. Example of a cracking initiation test result with six specimens. 

Censoring Time (h) Cracked Fraction Median Rank 
100 0/6 0 
250 0/6 0 
500 1/6 0.1091 
700 1/6 0.1091 
900 3/6 0.4214 

1200 6/6 0.8909 

 
Figure 2. Example of Weibull estimation by MRR with the test data from Table 1. 

A widely used Weibull regression technique employs the linearization of the Weibull 
distribution, which is as follows: 

Figure 1. Comparison of exact median rank values (blue line) and their approximations (red squares)
when: (a) N = 5; and (b) N = 10.

If the test is not censored continuously (i.e., if it is an interval-censored test), the resulting
FMed ptqmust be treated as a set of unreliability points and not as a function. With this median rank
point set, it is possible to estimate the Weibull distribution, which is the model of SCC initiation,
through regression [10,13]. Figure 2 is an example of Weibull estimation using MRR that uses the
test data in Table 1. The red dots show the median rank points, FMRR ptq is the estimated Weibull
CDF by regression with the median rank points, and β̂MRR and η̂MRR are the Weibull shape and scale
parameters, respectively, estimated by MRR.

Table 1. Example of a cracking initiation test result with six specimens.

Censoring Time (h) Cracked Fraction Median Rank

100 0/6 0
250 0/6 0
500 1/6 0.1091
700 1/6 0.1091
900 3/6 0.4214

1200 6/6 0.8909
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A widely used Weibull regression technique employs the linearization of the Weibull distribution,
which is as follows:

ln
„

ln
„

1
1´ F ptq



“ βln ptq ´ βln pηq (4)

However, this Weibull estimation method encounters limitations. First, it cannot handle the case
in which there are zero cracking points, which returns a negative infinity value in the linearized form.
Second, the Weibull distribution is nonsymmetrical and the error in the rank probability estimation is
not random in nature [14]. Weights in the MRR linear function are based on the incorrect assumption
of uncorrelated, equal variance residuals [15]. Therefore, we used a nonlinear curve-fitting function,
lsqcurvefit, provided by MATLAB, which is based on the least squares method.

2.3. Maximum Likelihood Estimation

The MLE method estimates the parameters of the Weibull distribution directly by using the
likelihood function, instead of the cracking probability at each censoring point. The likelihood function
for the interval-censored case is given by [13]:

L pβ, ηq “
S
ź

i“1

r1´ F psi; β, ηqs ¨
C
ź

j“1

“

F
`

cjU ; β, η
˘

´ F
`

cjL ; β, η
˘‰

(5)

where S is the number of suspended specimens, si is the last censoring time of ith suspended specimen,
C is the number of interval-censored cracked specimens, and cjU and cjL are the upper and lower
bound times, respectively, of the censoring interval for the jth cracking. The sum of S and C is equal to
the total number of specimens N.

The use of log-likelihood is convenient to determine the Weibull parameters that maximize the
likelihood function (i.e., argmax

pβ, ηq
L pβ, ηq). The log-likelihood function is as follows:

Λ pβ, ηq “ lnL pβ, ηq

“
řS

i“1 ln r1´ F psi; β, ηqs `
řC

j“1 ln
“

F
`

cjU ; β, η
˘

´ F
`

cjL ; β, η
˘‰ (6)

The maximum likelihood point is obtained where both partial derivatives of Λ pβ, ηq reach zero.
Therefore, the maximum likelihood point is given by:

#

B
Bβ Λ pβ, ηq “ 0
B
Bη Λ pβ, ηq “ 0

(7)

Substituting Equations (1) and (6) into Equation (7), we can obtain the final simultaneous equation:
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(8)

The derivation of Equation (8) is available in the Supplementary Materials. It would be extremely
difficult to determine a general analytical solution for Equation (8); therefore, we used a numerical
approach. In this case, MATLAB offers the numerical nonlinear simultaneous equation function fsolve.
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3. Monte Carlo Simulation

The goals of MRR and MLE are the same: the estimation of Weibull parameters. However, the
resulting estimators are slightly different, even though they were both deduced from the same test
result. Figure 3 shows the different Weibull curves estimated from the same test data, found in Table 1.
It is intriguing to know which estimation method generates more precise estimators. A Weibull
distribution with precise estimators could better describe inherent SCC initiation behavior.
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Theoretically, it is possible to calculate the estimation confidence for data containing the exact
cracking time only; that is, when cracking is continuously monitored using a direct current potential
drop technique. However, an MLE theory to set the estimation confidence for interval-censored data is
not yet available [10]. Therefore, Monte Carlo simulation [16] could be used to quantitatively evaluate
estimator uncertainties of MLE and MRR. The experimental factors considered in the simulation study
are as follows.

‚ True Weibull parameters: It is assumed that the inherent cracking probability is
Weibull-distributed. If the standardized estimation errors were affected by the value of the
true scale parameter (ηtrue), only changing the time unit (e.g., hours to seconds) could affect
standardized estimation errors. It is a contradiction. In fact, a scale parameter is just a scale factor.
Therefore, standardized estimation errors are not affected by the value of ηtrue [15]. Without loss
of generality, ηtrue can be fixed at 100, whereas the value of the true Weibull shape parameter
(βtrue) could affect the standardized estimation errors. To examine the degree of aging effects,
several values of βtrue (2, 3, and 4) are examined. In earlier studies, the values of the Weibull shape
parameter for crack initiation time range from 2 to ~4 [6,17–19].

‚ The number of specimens: The SCC initiation test for nuclear reactor materials requires a corrosive
environment at high temperatures and pressures. Thus, simultaneously testing a large number of
specimens is difficult. Therefore, the base number of test specimens is set at 10. To evaluate the
effect of the number of specimens, additional cases were studied (see Table 2).

‚ Test duration: When planning the SCC test, cracking will not necessarily occur for every specimen
within the available testing time. Thus, the test duration is also a factor affecting the uncertainty of
Weibull estimators. For convenience, the baseline test duration is set at 120% of ηtrue. Additional
test duration cases are shown in Table 2.
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‚ Censoring interval: A shorter censoring interval may be better for developing an accurate SCC
initiation model. However, frequent censoring would be inconvenient for the experimenters.
Therefore, the baseline censoring interval is set at 20% of ηtrue. Other examined interval cases are
shown in Table 2. Although time-dependent censoring intervals are more general for real cracking
tests, it is assumed that censoring intervals do not vary with time. If we consider time-dependent
censoring intervals, there are too many possible combinations of experimental conditions to
perform a simulation study.

Table 2. Experimental conditions for the Monte Carlo simulation.

True Weibull Parameter
Number of Specimens Test Duration

(% of ηtrue)
Censoring Interval

(% of ηtrue)ηtrue
(Dimensionless Time) βtrue

100 2 5 80 5
3 7 100 10
4 10 * 120 * 15

15 140 20 *
20 160 30
30 180 40
50 200 60

* Baseline case of the simulation study.

Figure 4 shows examples of the simulation experiments with different combinations of
conditions. Weibull_True represents the pre-assumed true cracking probability, which follows a
Weibull distribution. Median_Rank is the set of cumulative cracking point probabilities resulting
from the randomly simulated cracking experiments and is calculated by the median rank method.
Weibull_MLE and Weibull_MRR are the estimated Weibull distributions obtained from simulation
experiments using MLE and MRR, respectively.

Materials 2016, 9, 521  6 of 17 

 

cracking tests, it is assumed that censoring intervals do not vary with time. If we consider time-
dependent censoring intervals, there are too many possible combinations of experimental 
conditions to perform a simulation study. 

Table 2. Experimental conditions for the Monte Carlo simulation. 

True Weibull Parameter Number of 
Specimens 

Test Duration 
(% of ࢋ࢛࢚࢘ࣁ) Censoring Interval 

(% of ࢋ࢛࢚࢘ࣁ) ࢋ࢛࢚࢘ࣁ  
(Dimensionless Time) ࢋ࢛࢚࢘ࢼ 

100 2 5 80 5 
 3 7 100 10 
 4 10 * 120 * 15 
  15 140 20 * 
  20 160 30 
  30 180 40 
  50 200 60 

* Baseline case of the simulation study. 

Figure 4 shows examples of the simulation experiments with different combinations of 
conditions. Weibull_True represents the pre-assumed true cracking probability, which follows a 
Weibull distribution. Median_Rank is the set of cumulative cracking point probabilities resulting 
from the randomly simulated cracking experiments and is calculated by the median rank method. 
Weibull_MLE and Weibull_MRR are the estimated Weibull distributions obtained from simulation 
experiments using MLE and MRR, respectively. 

Figure 4a is an example of a simulation in which the number of specimens is relatively small, 
the censoring interval is wide, and the test duration is short. In this case, the estimated Weibull curves, 
Weibull_MLE and Weibull_MRR, are quite different from the true cracking probability curve, 
Weibull_True. Figure 4b shows another example of the simulation, in which the number of specimens 
is relatively large, the censoring interval is narrow, and the test duration is long. In this simulation, 
the estimated Weibull curves approximate the true Weibull curve, following our intuition. The 
detailed experimental conditions applied in Figure 4 are described in Table 3. 

 

 
Figure 4. Two examples of simulation experiments with relatively (a) poor test condition; and (b) 
ideal test condition. 

  

Figure 4. Two examples of simulation experiments with relatively (a) poor test condition; and (b) ideal
test condition.

Figure 4a is an example of a simulation in which the number of specimens is relatively small,
the censoring interval is wide, and the test duration is short. In this case, the estimated Weibull
curves, Weibull_MLE and Weibull_MRR, are quite different from the true cracking probability curve,
Weibull_True. Figure 4b shows another example of the simulation, in which the number of specimens
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is relatively large, the censoring interval is narrow, and the test duration is long. In this simulation, the
estimated Weibull curves approximate the true Weibull curve, following our intuition. The detailed
experimental conditions applied in Figure 4 are described in Table 3.

Table 3. Combinations of experimental factors applied to examples in Figure 4.

Factors Figure 4a Figure 4b

ηtrue (dimensionless time) 100 100
βtrue 2 4

The number of specimen 10 50
Test duration (% of ηtrue) 120 200

Censoring interval (% of ηtrue) 40 5

By combining the considered experimental conditions, a total of 441 simulation cases were studied.
Each case was simulated 20,000 times.

We think that it is important to represent the degree of bias and degree of dispersion of estimators
respectively in every specific experimental condition. For the experimenters who want to develop a
cracking prediction model, both the degree of bias and degree of dispersion of estimators are necessary
to guess their model uncertainty. For the same reason, the estimation uncertainties of β and η are
respectively represented.

The 5th, 50th, and 95th percentiles of the Weibull estimators were derived from each simulation
case. Further, these estimators were converted to the standard error, which is defined as follows:

SEpβ̂q “
β̂´ βtrue

βtrue
; SEpη̂q “

η̂ ´ ηtrue

ηtrue
(9)

where β̂ and η̂ are the Weibull parameters estimated by MRR or MLE. To quantify the Weibull estimator
deviations, we utilized a standardized length of 90% confidence interval, defined as follows:

SLCI90%pβ̂q “ SEpβ̂95%q ´ SEpβ̂5%q; SLCI90%pη̂q “ SEpη̂95%q ´ SEpη̂5%q. (10)

The true Weibull parameters (βtrue, ηtrue) are input as initial values of numerical solvers (i.e., the
fsolve and lsqcurvefit functions in MATLAB). If a given combination of experimental conditions is too
poor (e.g., cases with a small specimen number and wide censoring interval), it is possible to fail to
find estimators with this numerical approach; in these cases, we exclude the failed estimators.

4. Results and Discussion

4.1. Fixed Test Duration

We fixed the test duration at 120% of ηtrue, the baseline case for test duration, to examine both the
effects of the number of specimens and censoring interval.

As a special case, Figure 5 shows the effect of the number of specimens on estimation uncertainties
when the censoring interval is fixed to 20% of ηtrue. When the number of specimens is large, there is
a high probability of precise and accurate estimation with both MRR and MLE. For estimating the
shape parameter β, MRR and MLE provide similar estimation uncertainty levels (see Figure 5a–c).
It is likely that the shape parameters are overestimated with high probability when the number of
specimens is less than 30 (i.e., SE50%pβ̂q ą 0). For the scale parameter η estimation, smaller deviation
levels are observed in the estimation of scale parameter η for all ranges of specimen number as
compared with those of the β estimators, especially at the high βtrue (see Figure 5d–f). Notably, the
scale parameters estimated through MLE have a very slight bias in all ranges of specimen number (i.e.,
SE50%pη̂MLEq « 0).
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From these data, it is possible to calculate the confidence interval and bias of the estimators
when real cracking test conditions are given. For example, if the test duration is 120% of ηtrue and the
censoring interval is 20% of ηtrue, the probability of obtaining 0.853 ă η̂MLE

ηtrue
ă 1.151 is approximately

90% and η̂MLE, 50%
ηtrue

– 1 with only 10 specimens when βtrue “ 4 for the testing material (see Figure 5f).
Figure 6 shows the convergence ratio distributions of MLE numerical estimation. The convergence

ratio is defined as follows:

Convergence Ratio “
Number of converged estimations by numerical solver

Number of total simulation p“ 20, 000q
(11)
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ratio were too low, there would be a filtering effect caused by the disregard of outlier estimators. That 
is, for low convergence ratio region, output estimators were not purely random. It is recommended 
to be careful when analyzing the results in this region. 

Although it is known that MLE convergence ratios might be improved by restricting β > 1 [20], 
we did not use this algorithm in this study. It will be considered in later research. For MRR estimation, 
the convergence ratios were mostly close to unity in all simulation cases. 

 
Figure 6. Convergence ratio distributions of MLE numerical estimation at: (a) ߚ௧௥௨௘ = 2; (b) ߚ௧௥௨௘ = 3; 
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Figure 6. Convergence ratio distributions of MLE numerical estimation at: (a) βtrue “ 2; (b) βtrue “ 3;
and (c) βtrue “ 4 when test duration is 120% of ηtrue.
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The convergence ratio decreased when the number of specimens was small and the censoring
interval was wide. This trend was enlarged when the value of βtrue increased. If the convergence ratio
were too low, there would be a filtering effect caused by the disregard of outlier estimators. That is, for
low convergence ratio region, output estimators were not purely random. It is recommended to be
careful when analyzing the results in this region.

Although it is known that MLE convergence ratios might be improved by restricting β > 1 [20],
we did not use this algorithm in this study. It will be considered in later research. For MRR estimation,
the convergence ratios were mostly close to unity in all simulation cases.

Figure 7 shows the distributions of SE50%pβ̂q by MLE or MRR. These results indicate a bias in
Weibull shape parameter estimation. It is likely that when the number of specimens is relatively small,
βtrue tends to be overestimated, as in Figure 5. However, this trend did not occur when MLE was used
and the censoring interval was relatively wide. Furthermore, if the value of βtrue was relatively large,
underestimation occurred in wide censoring interval regions of MLE estimators (see Figure 7c).
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Figure 8 shows the distributions of SEହ଴%(̂ߟ) by MLE or MRR. These results indicate bias in 
Weibull scale parameter estimation. It is interesting that when MLE was used, very little bias was 
observed in all simulation cases. For MRR, a tendency toward overestimation (i.e., SEହ଴%(̂ߟ) > 0) 
occurred when the number of specimens was relatively small. This tendency was slightly amplified 
when ߚ௧௥௨௘ was relatively small. 

Figure 9 shows the distributions of SLCIଽ଴%൫ߚመ൯ by MLE or MRR. These results illustrate the 
variance in Weibull shape parameter estimators. As anticipated, the variance in ߚመ  was large when 
the number of specimens was relatively small and the censoring interval was wide. It is likely that 
there are critical lines after which estimators whose variances are too large are produced. Near the 
critical lines, the gradients of SLCIଽ଴%൫ߚመ൯  were very high. Experimenters who want to develop 
cracking prediction models with a cracking test should avoid this region. 

Figure 7. Distributions of SE50%pβ̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SE50%pβ̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (test duration: 120% of ηtrue).

Figure 8 shows the distributions of SE50%pη̂q by MLE or MRR. These results indicate bias in
Weibull scale parameter estimation. It is interesting that when MLE was used, very little bias was
observed in all simulation cases. For MRR, a tendency toward overestimation (i.e., SE50%pη̂q ą 0)
occurred when the number of specimens was relatively small. This tendency was slightly amplified
when βtrue was relatively small.

Figure 9 shows the distributions of SLCI90%pβ̂q by MLE or MRR. These results illustrate the
variance in Weibull shape parameter estimators. As anticipated, the variance in β̂ was large when the
number of specimens was relatively small and the censoring interval was wide. It is likely that there
are critical lines after which estimators whose variances are too large are produced. Near the critical
lines, the gradients of SLCI90%pβ̂q were very high. Experimenters who want to develop cracking
prediction models with a cracking test should avoid this region.
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Figure 10 shows the distributions of SLCIଽ଴%(̂ߟ) by MLE and MRR. These results show the 
variance in Weibull scale parameter estimators. The overall values of the SLCIଽ଴%(̂ߟ) distributions 
were much lower than those of the SLCIଽ଴%൫ߚመ൯ distributions, especially for the case of high ߚ௧௥௨௘ 
values. Interestingly, shortening the censoring interval slightly affects the reduction of estimator 
deviations as compared to the case of SLCIଽ଴%൫ߚመ൯ , and there is no critical line for SLCIଽ଴%(̂ߟ) 
distributions. 

Figure 8. Distributions of SE50%pη̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SE50%pη̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (test duration: 120% of ηtrue).
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Figure 9. Distributions of SLCI90%pβ̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SLCI90%pβ̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (test duration: 120% of ηtrue).

Figure 10 shows the distributions of SLCI90%pη̂q by MLE and MRR. These results show the
variance in Weibull scale parameter estimators. The overall values of the SLCI90%pη̂q distributions
were much lower than those of the SLCI90%pβ̂q distributions, especially for the case of high βtrue values.
Interestingly, shortening the censoring interval slightly affects the reduction of estimator deviations as
compared to the case of SLCI90%pβ̂q, and there is no critical line for SLCI90%pη̂q distributions.
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In fact, the distributions of Weibull estimators were not normal in most simulation conditions. 
Therefore, the upper and lower bound of the confidence intervals (e.g., SEହ%  and SEଽହ% , 
respectively) must be represented. We provide these data in the Supplementary Materials. 

4.2. Fixed Censoring Interval 

We fixed the censoring interval at 20% of ߟ௧௥௨௘, the baseline case for the censoring interval, to 
examine the effects of both the number of specimens and test duration. Figure 11 shows the 
convergence ratio distributions of MLE numerical estimation. The convergence ratio decreased when 
the number of specimens was small, and the test duration short. This tendency was enlarged when 
the value of ߚ௧௥௨௘ was increased. As previously mentioned, if the convergence ratios were too low, 
there would be the filtering effect. For MRR estimation, the convergence ratios were mostly close to 
unity in all simulation cases. 

 
Figure 11. Convergence ratio distributions of MLE numerical estimation at: (a) ߚ௧௥௨௘ = 2; (b) ߚ௧௥௨௘ = 3; 
and (c) ߚ௧௥௨௘ = 4 (censoring interval: 20% of ߟ௧௥௨௘). 

Figure 10. Distributions of SLCI90%pη̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SLCI90%pη̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (test duration: 120% of ηtrue).

In fact, the distributions of Weibull estimators were not normal in most simulation conditions.
Therefore, the upper and lower bound of the confidence intervals (e.g., SE5% and SE95%, respectively)
must be represented. We provide these data in the Supplementary Materials.

4.2. Fixed Censoring Interval

We fixed the censoring interval at 20% of ηtrue, the baseline case for the censoring interval,
to examine the effects of both the number of specimens and test duration. Figure 11 shows the
convergence ratio distributions of MLE numerical estimation. The convergence ratio decreased when
the number of specimens was small, and the test duration short. This tendency was enlarged when the
value of βtrue was increased. As previously mentioned, if the convergence ratios were too low, there
would be the filtering effect. For MRR estimation, the convergence ratios were mostly close to unity in
all simulation cases.
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Figure 12 shows the distributions of SE50%pβ̂q. For MLE, when the number of specimens
was relatively small, there was likely a tendency toward overestimation (i.e., SEpβ̂q ą 0). For
MRR, overestimation was shown at short test durations and underestimation was shown at long
test durations.
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Figure 12. Distributions of SE50%pβ̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4 and
SE50%pβ̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (censoring interval: 20% of ηtrue).

Figure 13 shows the distributions of SE50%pη̂q. When MLE was used, very little bias was observed
in all simulation ranges, as in the fixed test duration case (see Figure 8a–c). For MRR, overestimation
(i.e., SEpη̂q ą 0) occurred when the number of specimens was relatively small, except in cases of short
test duration. This tendency was amplified when βtrue was relatively small.

Figure 14 shows the distributions of SLCI90%pβ̂q. As anticipated, there was quite large variance
in β̂ when the number of specimens was relatively small and the test duration was short. It is likely
that very long test durations are not useful for reducing estimator variance. This phenomenon is
natural because censoring beyond a certain time only returned repeated meaningless results (i.e., all
the specimens were cracked after this time). As in the fixed test duration case (see Figure 9), critical
lines are observed in the distributions of SLCI90%pβ̂q. . The areas after critical line region increased
when the value of βtrue was relatively high.

Figure 15 shows the distributions of SLCI90%pη̂q. The overall values of the SLCI90%pη̂q

distributions were much lower than those of the SLCI90%pβ̂q distributions especially at high βtrue. As in
the case of SLCI90%pβ̂q, too long a test duration was not useful for reducing estimator variance. Contrary
to the fixed test duration case (see Figure 10), there were critical lines in SLCI90%pη̂q distributions.
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Figure 13. Distributions of SE50%pη̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SE50%pη̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (censoring interval: 20% of ηtrue).
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Figure 14. Distributions of SLCI90%pβ̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; (c) βtrue “ 4 and
SLCI90%pβ̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; (f) βtrue “ 4 (censoring interval: 20% of ηtrue).
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The upper and lower bounds for this fixed censoring interval case are also represented in the 
Supplementary Materials. 

4.3. Fixed Number of Specimen 

We fixed the number of specimen at 10, the baseline case for the number of specimens, to 
examine both the effects of censoring interval and test duration. Figure 16 shows the convergence 
ratio distributions of MLE numerical estimation. It was quite complicated to find a general tendency 
from these results. We hypothesize this complexity is due to the complex distribution of the number 
of censoring times (see Figure 17). For example, if only one censoring was implemented during the 
simulation, the convergence ratio reaches unity even though the experimental condition of the 
simulation was very poor. For MRR estimation, the convergence ratios were mostly close to unity in 
all simulation cases. 

 
Figure 16. Convergence ratio distributions of MLE numerical estimation at: (a) ߚ௧௥௨௘ = 2; (b) ߚ௧௥௨௘ = 3; 
and (c) ߚ௧௥௨௘ = 4 (number of specimens: 10). 

Figure 15. Distributions of SLCI90%pη̂MLEq at: (a) βtrue “ 2; (b) βtrue “ 3; and (c) βtrue “ 4; and
SLCI90%pη̂MRRq at: (d) βtrue “ 2; (e) βtrue “ 3; and (f) βtrue “ 4 (censoring interval: 20% of ηtrue).

The upper and lower bounds for this fixed censoring interval case are also represented in the
Supplementary Materials.

4.3. Fixed Number of Specimen

We fixed the number of specimen at 10, the baseline case for the number of specimens, to
examine both the effects of censoring interval and test duration. Figure 16 shows the convergence
ratio distributions of MLE numerical estimation. It was quite complicated to find a general tendency
from these results. We hypothesize this complexity is due to the complex distribution of the number
of censoring times (see Figure 17). For example, if only one censoring was implemented during
the simulation, the convergence ratio reaches unity even though the experimental condition of the
simulation was very poor. For MRR estimation, the convergence ratios were mostly close to unity in
all simulation cases.

Materials 2016, 9, 521  14 of 17 

 

 
Figure 15. Distributions of SLCIଽ଴%(̂ߟெ௅ா) at: (a) ߚ௧௥௨௘ = 2; (b) ߚ௧௥௨௘ = 3; and (c) ߚ௧௥௨௘ = 4; and SLCIଽ଴%(̂ߟெோோ) at: (d) ߚ௧௥௨௘ = 2; (e) ߚ௧௥௨௘ = 3; and (f) ߚ௧௥௨௘ = 4 (censoring interval: 20% of ߟ௧௥௨௘). 

The upper and lower bounds for this fixed censoring interval case are also represented in the 
Supplementary Materials. 

4.3. Fixed Number of Specimen 

We fixed the number of specimen at 10, the baseline case for the number of specimens, to 
examine both the effects of censoring interval and test duration. Figure 16 shows the convergence 
ratio distributions of MLE numerical estimation. It was quite complicated to find a general tendency 
from these results. We hypothesize this complexity is due to the complex distribution of the number 
of censoring times (see Figure 17). For example, if only one censoring was implemented during the 
simulation, the convergence ratio reaches unity even though the experimental condition of the 
simulation was very poor. For MRR estimation, the convergence ratios were mostly close to unity in 
all simulation cases. 

 
Figure 16. Convergence ratio distributions of MLE numerical estimation at: (a) ߚ௧௥௨௘ = 2; (b) ߚ௧௥௨௘ = 3; 
and (c) ߚ௧௥௨௘ = 4 (number of specimens: 10). 
Figure 16. Convergence ratio distributions of MLE numerical estimation at: (a) βtrue “ 2; (b) βtrue “ 3;
and (c) βtrue “ 4 (number of specimens: 10).
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Figure 17. Distribution of the number of censoring times during the test duration. 

In this case, with a fixed number of specimens, the distributions of SEହ଴% and SLCIଽ଴% were 
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Therefore, we do not represent these results in this manuscript, but in the Supplementary Materials 
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In this case, with a fixed number of specimens, the distributions of SE50% and SLCI90% were very
complex and it was difficult to find general tendencies for both the MLE and MRR cases. Therefore,
we do not represent these results in this manuscript, but in the Supplementary Materials instead.

In fact, we think that the end cracking fraction would be a more appropriate factor of estimation
uncertainty than test duration. First, end cracking fraction of the test is not directly related to the
number of censoring times when the censoring interval is pre-determined. Second, it does not produce
repeated meaningless results after a certain time (i.e., test will end when all specimens are cracked
if end cracking fraction is set to unity). We will study the effects of end cracking fraction on Weibull
estimation uncertainties in later research.

5. Conclusions

The main goal of this study is to suggest proper experimental conditions for experimenters who
want to develop a probabilistic SCC initiation model through cracking tests. We consider the widely
used MRR and MLE methods for Weibull estimation. By using Monte Carlo simulation, MRR and MLE
estimator uncertainties were quantified in various experimental conditions. The following conclusions
can be drawn:

‚ It is possible to calculate the confidence interval and bias of estimators when the real cracking test
conditions are given.

‚ Very little bias is observed in all simulation ranges when MLE is used to estimate the scale
parameter η.

‚ The overall deviations of η̂ are much lower than those of β̂ in the simulation study range. This
effect is enlarged when the value of βtrue is relatively high. Therefore, it is not recommended to
estimate β from a cracking test when the experimental conditions are poor.

‚ It is likely that there are critical lines after which estimators whose variances are too large are
produced. Near the critical lines, the gradients of SLCI90% are very high. It is recommended that
experimenters avoid this region.

‚ Before the critical line region, too narrow censoring interval, or too long test duration, is not useful
for reducing the estimation uncertainty.

6. Outlook

The following issues will be considered in the later research:

‚ In this study, it is assumed that censoring interval is time-independent variable. However,
time-dependent censoring interval is more general for a real SCC test.
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‚ The end cracking fraction seems more appropriate than the test duration for use as a factor of
estimation uncertainty.

‚ To improve the convergence ratio of MLE, we will consider the numerical algorithm which
restricts β > 1.

‚ If a cost function (e.g., specimen cost and labor cost) is obtained for an experiment, it will be
possible to find out an optimum experimental condition which returns minimum estimation
uncertainty with a given cost.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/7/521/s1.
Derivation of interval censored ML simultaneous equation for 2-parameter Weibull distribution (word file);
Raw data of the simulation results for “fixed test duration”, “fixed censoring interval”, and “fixed specimen
number” cases (excel files); All contour plots of the simulation results, which contains the upper bounds (i.e.,
SE95%), lower bounds (i.e., SE5%), and the contour plots for the fixed specimen number case (pdf file).
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