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Abstract: We systematically studied the physical properties of a novel superhard (t-C3N4) and a
novel hard (m-C3N4) C3N4 allotrope. Detailed theoretical studies of the structural properties, elastic
properties, density of states, and mechanical properties of these two C3N4 phases were carried out
using first-principles calculations. The calculated elastic constants and the hardness revealed that
t-C3N4 is ultra-incompressible and superhard, with a high bulk modulus of 375 GPa and a high
hardness of 80 GPa. m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to Poisson’s ratio,
shear modulus, and Young’s modulus. Moreover, m-C3N4 is a quasi-direct-bandgap semiconductor,
with a band gap of 4.522 eV, and t-C3N4 is also a quasi-direct-band-gap semiconductor, with a band
gap of 4.210 eV, with the HSE06 functional.
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1. Introduction

Studies on light element-based materials trace back to the middle of the last century. Since
Lavoisier found that diamond was isostructural to carbon and much denser than graphite, many
studies have been devoted to its synthesis under high pressure [1–4]. More and more researchers
have begun to investigate the carbon allotropes [5–15]. The second light element-based material
to be evidenced was boron nitride. It includes three different structures: blende-, wurtzite- and
graphitic-type structures. Cubic boron nitride (c-BN) was first elaborated upon in 1957 by Wentorf,
who performed direct conversion using graphitic boron nitride (at 7 GPa and 1500 ˝C) [16]. Many
boron nitride allotropes have been investigated by researchers, such as O-BN, Pbca-BN, Z-BN, W-BN,
h-BN, bct-BN, P-BN, and cT8-BN. Interest in carbon nitrides has been initiated by studying materials
that exhibit mechanical properties comparable with those of diamond. A fullerene is a molecule of
carbon in the form of a hollow sphere, ellipsoid, tube, and many other shapes. Gueorguiev et al. [17,18]
studied the formation mechanisms and structural features of fullerene-like carbon nitride (FL CNx),
utilizing first-principles calculations.

Liu et al. first predicted β-C3N4 [19]; its structure originated in β-Si3N4, with carbon substituting
for silicon. In the same way, α-C3N4 has been deduced from α-Si3N4, replacing silicon with carbon.
The bulk of α-C3N4 and β-C3N4 is 387 and 427 GPa, respectively, which are slightly smaller than that
of diamond (431 GPa [20]). Therefore, there are sp2 and sp3 hybridizations on carbon and nitrogen in
α-C3N4 and β-C3N4, respectively. The pseudocubic-C3N4 structure is isostructural to α-CdIn2Se4 [21]
and was first proposed by Liu and Wentzcovitch [22]. The network structure of pseudocubic-C3N4

consists of corners-linked CN4 tetrahedra in which the C-N-C angle is close to 109˝, which ensures sp3
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hybridization for nitrogen. The bulk modulus of pseudocubic-C3N4 is 448 GPa, which is slightly larger
than that of diamond.

Cubic-C3N4 is another C3N4 phase and is isostructural to the high-pressure structure of Zn2SiO4,
which was proposed by Teter and Hemley [23]. The structure of cubic-C3N4 is similar to that of
pseudocubic-C3N4, including the hybridization. Mo et al. [24] and later Kroll [25] proposed a γ-C3N4

polymorph derived from a γ-Si3N4 spinel high-pressure structure. The largest difference between
these structures involves the hybridization of nitrogen and carbon. In pseudocubic-C3N4 or cubic-C3N4,
both carbon and nitrogen adopt sp3 hybridization. Graphite C3N4 (g-C3N4) consists of the stacking
along the c-axis of graphitic planes. Teter and Hemley first described these graphitic planes as a
hexagonal organization of C3N3 triazine cycles. Because of its graphitic structure, the bulk modulus is
only 51 GPa [22,26].

We propose m-C3N4 (m denotes Monoclinic symmetry, space group: Cm) and t-C3N4 (t denotes
Tetragonal symmetry, space group: I-42m), whose structures are based on m-Si3N4 and t-Si3N4 [27],
respectively, with C substituting for Si. The mechanical and electronic properties of m-C3N4 and
t-C3N4 are presented in this work.

2. Computational Method

Density functional theory (DFT) [28,29] calculations within Vanderbilt ultrasoft pseudopotentials [30]
were performed using the Cambridge Serial Total Energy Package (CASTEP) code [31]. For the
exchange and correlation functional, we used the Perdew–Burke–Ernzerhof (PBE) version of the
generalized gradient approximation (GGA) [32]. For α-C3N4, β-C3N4, d-ZB-C3N4, Pseudocubic-C3N4,
Cubic-C3N4, g-C3N4, m-C3N4 and t-C3N4, an energy cutoff of 520 eV was used for the wave functions
expansion. High dense k-point [33] sampling, with a grid spacing of less than 2π ˆ 0.025 Å´1

(7 ˆ 17 ˆ 9 for m-C3N4, 11 ˆ 11 ˆ 6 for t-C3N4, 12 ˆ 12 ˆ 12 for d-ZB-C3N4, 12 ˆ 12 ˆ 12 for
pseudocubic-C3N4, 8 ˆ 8 ˆ 8 for cubic-C3N4, 10 ˆ 10 ˆ 6 for g-C3N4, 7 ˆ 7 ˆ 8 for α-C3N4, and
7 ˆ 7 ˆ 18 for β-C3N4) in the Brillouin zone, was used. The equilibrium crystal structures were
achieved by utilizing geometry optimization in the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [34]
minimization scheme. The self-consistent convergence of the total energy was 5 ˆ 10´6 eV/atom; the
maximum force on the atom was 0.01 eV/Å, the maximum ionic displacement was within 5 ˆ 10´4 Å,
and the maximum stress was within 0.02 GPa. The electronic properties of t-C3N4 and m-C3N4 were
calculated using the Heyd–Scuseria–Ernzerhof (HSE06) [35,36] hybrid functional.

3. Results and Discussion

3.1. Structural Properties

The crystal structures of m-C3N4 and t-C3N4 are shown in Figure 1. There are 14 (six carbon
atoms and eight nitrogen atoms) atoms in a conventional cell of m-C3N4 and t-C3N4. Within this
structure of m-C3N4, three inequivalent carbon atoms occupy the (0.8392, 0.0, 0.5479), (0.2917, 0.0,
0.8418) and (0.9864, 0.0, 0.3048) positions, and four inequivalent nitrogen atoms occupy the (0.2050,
0.0, 0.3856), (0.8843, 0.0, 0.8186), (0.3600, 0.0, 0.1253) and (0.5344, 0.5, 0.5771) positions, while for
t-C3N4, two inequivalent carbon atoms occupy the (0.5, 0.5, 0.0) and (0.5, 0.0, 0.75) positions, and
nitrogen atoms occupy the (0.7330, 0.2670, 0.8705) position, respectively. The basic building block of
m-C3N4 is the six-membered zigzag carbon-nitrogen rings, which can be clearly observed in Figure 1a;
the twelve-membered zigzag carbon-nitrogen rings in the [010] direction in the structure of m-C3N4

are shown in Figure 1b, while six-membered zigzag carbon-nitrogen rings and eight-membered
gauche carbon-nitrogen rings exist in t-C3N4. The equilibrium lattice parameters of m-C3N4, t-C3N4,
d-ZB-C3N4 (space group: P-43m), cubic-C3N4 (space group: I-43d), pseudocubic-C3N4 (space group:
P-42m), g-C3N4 (space group: P-6m2), α-C3N4 (space group: P31c) and β-C3N4 (space group: P63/m)
at ambient pressure are listed in Table 1. The calculated parameters of α-C3N4 and β-C3N4 are in
excellent agreement with previous theoretical results (see Table 1).
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Figure 1. The crystal structures of: m-C3N4 (a,b); and t-C3N4 (c) (black spheres denote carbon atoms, 
blue spheres denote nitrogen atoms). 

Table 1. Calculated lattice parameters (Å) of m-C3N4, t-C3N4, d-ZB-C3N4, Cubic-C3N4, 
Pseudocubic-C3N4 and g-C3N4. 

Materials 
This Work Other Works

a b c a, b, c 

α-C3N4 6.512 – 4.742 
a = 6.489, c = 4.729 a; a = 6.425, c = 4.715 b; a = 6.467, c = 4.710 c; 

a = 6.453, c = 4.699 d; a = 6.47, c = 4.71 e 

β-C3N4 6.449 – 2.422 
a = 6.426, c = 2.418 a; a = 6.419, c = 2.425 b; a = 6.402, c = 2.404 c; 

a = 6.394, c = 2.397 d; a = 6.40, c = 2.40 e 
d-ZB-C3N4 3.456 – – a = 3.455 f; a = 3.52 e; a = 3.43 g 
cubic-C3N4 5.398 – – a = 5.395–5.444 h; a = 5.40 e 

pseudocubic-C3N4 3.456 – – a = 3.41–3.44 h 
g-C3N4 4.791 – 6.769 a = 4.74, 6.72 e 
m-C3N4 8.032 2.418 6.246 – 
t-C3N4 3.483 – 6.933 – 

a Reference [37]; b Reference [38]; c Reference [23]; d Reference [39]; e Reference [40]; f Reference [41];  
g Reference [22]; h Reference [42]. 

Figure 1. The crystal structures of: m-C3N4 (a,b); and t-C3N4 (c) (black spheres denote carbon atoms,
blue spheres denote nitrogen atoms).

Table 1. Calculated lattice parameters (Å) of m-C3N4, t-C3N4, d-ZB-C3N4, Cubic-C3N4,
Pseudocubic-C3N4 and g-C3N4.

Materials
This Work Other Works

a b c a, b, c

α-C3N4 6.512 – 4.742
a = 6.489, c = 4.729 a; a = 6.425, c = 4.715 b;

a = 6.467, c = 4.710 c;
a = 6.453, c = 4.699 d; a = 6.47, c = 4.71 e

β-C3N4 6.449 – 2.422
a = 6.426, c = 2.418 a; a = 6.419, c = 2.425 b;

a = 6.402, c = 2.404 c;
a = 6.394, c = 2.397 d; a = 6.40, c = 2.40 e

d-ZB-C3N4 3.456 – – a = 3.455 f; a = 3.52 e; a = 3.43 g

cubic-C3N4 5.398 – – a = 5.395–5.444 h; a = 5.40 e

pseudocubic-C3N4 3.456 – – a = 3.41–3.44 h

g-C3N4 4.791 – 6.769 a = 4.74, 6.72 e

m-C3N4 8.032 2.418 6.246 –
t-C3N4 3.483 – 6.933 –

a Reference [37]; b Reference [38]; c Reference [23]; d Reference [39]; e Reference [40]; f Reference [41];
g Reference [22]; h Reference [42].
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The calculated pressure–volume relationships of m-C3N4 and t-C3N4, together with diamond,
c-BN, and other C3N4 allotropes, are shown in Figure 2. The highest incompressibility along
the c-axis is due to m-C3N4 in the C3N4 allotropes, while along the c-axis, m-C3N4 yields the
lowest incompressibility at pressures from 0 to 87 GPa; along the b-axis, m-C3N4 yields the lowest
incompressibility at pressures from 87 to 100 GPa. For the crystal structure, pseudocubic-C3N4 has
the greatest incompressibility in the C3N4 allotropes discussed above, while m-C3N4 has the weakest
incompressibility. However, the incompressibility of t-C3N4 is greater than that of c-BN and the
incompressibility of m-C3N4 is weaker than that of c-BN.
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Figure 2. The lattice constants a/a0, b/b0, c/c0 and V/V0 of compression as functions of pressure and 
temperature for: m-C3N4 (a); and t-C3N4 (b). 

3.2. Elastic Properties and Hardness 

In an effort to assess the thermodynamic stability of two novel C3N4 allotropes, enthalpy change 
curves with pressure for various structures were calculated, as presented in Figure 3. The dashed 
line represents the enthalpy of the summary of diamond and α-N2. It can be clearly seen that g-C3N4 
has the lowest minimum value of enthalpy, which is in good agreement with previous reports and 
supports the reliability of our calculations [43]. Pseudocubic-C3N4 has the greatest minimum value of 
enthalpy. The minimum value of total energy per formula unit of t-C3N4 is slightly larger than that of 
g-C3N4, α-C3N4, m-C3N4, and β-C3N4 but much smaller than those of pseudocubic-C3N4 and cubic-C3N4, 
indicating that t-C3N4 and m-C3N4 should be thermodynamically metastable phases. 

Figure 2. The lattice constants a/a0, b/b0, c/c0 and V/V0 of compression as functions of pressure and
temperature for: m-C3N4 (a); and t-C3N4 (b).

3.2. Elastic Properties and Hardness

In an effort to assess the thermodynamic stability of two novel C3N4 allotropes, enthalpy change
curves with pressure for various structures were calculated, as presented in Figure 3. The dashed
line represents the enthalpy of the summary of diamond and α-N2. It can be clearly seen that g-C3N4

has the lowest minimum value of enthalpy, which is in good agreement with previous reports and
supports the reliability of our calculations [43]. Pseudocubic-C3N4 has the greatest minimum value
of enthalpy. The minimum value of total energy per formula unit of t-C3N4 is slightly larger than
that of g-C3N4, α-C3N4, m-C3N4, and β-C3N4 but much smaller than those of pseudocubic-C3N4 and
cubic-C3N4, indicating that t-C3N4 and m-C3N4 should be thermodynamically metastable phases.Materials 2016, 9, 427 5 of 18 
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Figure 3. Calculated enthalpies of different C3N4 structures relative to diamond and α-N2 as a function
of pressure.
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For monoclinic symmetry and tetragonal symmetry, there are different independent elastic
constants. Monoclinic symmetry has thirty independent elastic constants (C11, C22, C33, C44, C55, C66,
C12, C13, C23, C15, C25, C35 and C46), while tetragonal symmetry has six independent elastic constants
(C11, C33, C44, C66, C12 and C13). The mechanical stability criteria of monoclinic symmetry are given
by [44,45]:

Cii ą 0, i “ 1 „ 6. (1)

rC11 ` C22 ` C33 ` 2pC12 ` C13 ` C23qs ą 0 (2)

pC33C55 ´ C2
35q ą 0 (3)

pC44C66 ´ C2
46q ą 0 (4)

pC22 ` C33 ´ 2C23q ą 0 (5)

rC22pC33C55 ´ C2
35q ` 2C23C25C35 ´ C2

23C55 ´ C2
25C33s ą 0 (6)

Ω “ 2rC15C25pC33C12 ´ C13C23q ` C15C35pC22C13 ´ C12C33q`

C25C35pC11C23 ´ C12C13qs ´ rC2
15pC22C33 ´ C2

23q`

C2
25pC11C33 ´ C2

13q ` C2
35pC11C22 ´ C2

12qs ` C55g ą 0
(7)

g “ C11C22C33 ´ C11C2
23 ´ C22C2

13 ´ C33C2
12 ` 2C12C13C23 (8)

The criteria for the mechanical stability of tetragonal symmetry are given by [44]:

Cii ą 0, i “ 1, 3, 4, 6. (9)

pC11 ´ C12q ą 0 (10)

pC11 ` C33 ´ 2C13q ą 0 (11)

r2pC11 ` C12q ` C33 ` 4C13s ą 0 (12)

The calculated elastic constants of α-C3N4, β-C3N4, t-C3N4, d-ZB-C3N4, pseudocubic-C3N4,
cubic-C3N4 and m-C3N4 are listed in Table 2. Elastic constants under high pressure were also studied.
The elastic constants under ambient pressure and high pressure of t-C3N4 and m-C3N4 satisfied the
mechanical stability criteria of monoclinic symmetry and tetragonal symmetry. Namely, t-C3N4 and
m-C3N4 are mechanically stable. To confirm the stability of t-C3N4 and m-C3N4, their dynamical
stabilities should also be studied under ambient pressure and high pressures. Thus, we calculated
the phonon spectra for m-C3N4 and t-C3N4 at 0 and 100 GPa, as shown in Figure 4. No imaginary
frequencies are observed throughout the whole Brillouin zone, signaling dynamically the stabilities of
m-C3N4 and t-C3N4. The calculated elastic modulus of α-C3N4, β-C3N4, d-ZB-C3N4, pseudocubic-C3N4,
cubic-C3N4, t-C3N4 and m-C3N4 are listed in Table 3. Bulk modulus B and shear modulus G were
calculated by using the Voigt–Reuss–Hill approximation [46–48]. The Voigt and Reuss approximation
of monoclinic symmetry is calculated using the following equations [44]:

BV “
1
9
rC11 ` C22 ` C33 ` 2pC12 ` C13 ` C23qs (13)

BR “ Ωpa` b` c` d` e` f q´1 (14)

a “ pC33C55 ´ C2
35qpC11 ` C22 ´ 2C12q (15)

b “ pC23C55 ´ C25C35qp2C12 ´ 2C11 ´ C23q (16)

c “ pC13C35 ´ C15C33qpC15 ´ 2C25q (17)

d “ pC13C55 ´ C15C35qp2C12 ` 2C23 ´ C13 ´ 2C22q (18)
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e “ pC13C25 ´ C15C23qpC25 ´ C15q (19)

f “ C11pC22C55 ´ C2
25q ´ C12pC12C55 ´ C15C25q`

C15pC12C25 ´ C15C22q ` C25pC23C35 ´ C25C33q
(20)

GV “
1
15
rC11 ` C22 ` C33 ` 3pC44 ` C55 ` C66q ´ pC12 ` C13 ` C23qs (21)

GR “ 15
"

4p f ` h` i` j` k` lq
Ω

` 3r
g
Ω
`
pC44 ` C66q

C44C66 ´ C2
46
s

+´1

(22)

h “ pC33C55 ´ C2
35qpC11 ` C22 ` C12q (23)

i “ pC23C55 ´ C25C35qpC11 ´ C12 ´ C23q (24)

j “ pC13C35 ´ C15C33qpC15 ` C25q (25)

k “ pC13C55 ´ C15C35qpC22 ´ C23 ´ C12 ´ C13q (26)

l “ pC13C25 ´ C15C23qpC15 ´ C25q. (27)
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The dependence of bulk modulus, shear modulus and Young’s modulus on pressure of m-C3N4 
and t-C3N4 is 3.49, 0.59, and 2.15 and 3.41, 1.59, and 4.35, respectively. Young’s modulus of t-C3N4 
increases faster than other elastic modulus, while the increase in the shear modulus of m-C3N4 is the 
slowest. At ambient pressure, the bulk modulus of α-C3N4, β-C3N4, m-C3N4 and t-C3N4 are 387 GPa,  
406 GPa, 327 GPa and 375 GPa, respectively. The calculated hardness of α-C3N4, β-C3N4, m-C3N4, 
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slightly smaller than that of c-BN. The hardness of m-C3N4 is only 37 GPa, which is approximately half 
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Figure 4. Phonon spectra for: m-C3N4 (a,b); and t-C3N4 (c,d).

The Voigt and Reuss approximation of tetragonal symmetry is calculated using the following
equations [44]:

BV “
1
9
r4C13 ` C33 ` 2pC11 ` C12qs (28)
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BR “
pC11 ` C12qC33 ´ 2C2

13
C11 ` C12 ` 2C33 ´ 4C13

(29)

GV “
1

30
rC11 ` C12 ` 2C33 ´ 4C13 ` 3C11 ` 12C44 ` 6C66 ´ 3C12qs (30)

GR “ 15

#

18BV

pC11 ` C12qC33 ´ 2C2
13
` r

6
C11 ´ C12

`
6

C44
`

3
C66

s

*´1
. (31)

The Hill approximation of monoclinic symmetry and tetragonal symmetry is calculated using the
following equation:

BH “
BV ` BR

2
, GH “

GV ` GR
2

. (32)

Young’s modulus and Poisson’s ratio can be calculated using the following formulas, respectively:
E = 9BHGH/(3BH + GH), v = (3BH ´ 2GH)/(6BH + 2GH) [49]. The relationships between elastic constants
and pressures are shown in Figure 5a,b. Most of them increase with pressure, whereas C66 and C15 of
m-C3N4 decrease with pressure. The dependence of the elastic constants on pressure of C22 of m-C3N4,
i.e., dC22/dP = 6.97, means that C22 of m-C3N4 increases fastest among all elastic constants.
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Table 2. The calculated elastic constants (GPa) of m-C3N4, t-C3N4, d-ZB-C3N4, cubic-C3N4,
pseudocubic-C3N4 and cubic-BN.

Materials C11 C22 C33 C44 C55 C66 C12 C13 C23 C15 C25 C35 C46

α-C3N4 848 – 906 319 – 335 179 131 – ´27 – – 27
Reference [37] 851 – 906 326 – 334 183 129 – – – – –

β-C3N4 852 – 1150 286 – 312 228 111 – – – – –
Reference [37] 833 – 1049 289 – 287 259 110 – – – – –
Reference [22] 834 – 1120 305 – – 279 138 – – – – –

d-ZB-C3N4 791 – – 443 – – 184 – – – – – –
Reference [41] 794 – – 431 – – 184 – – – – – –

Cubic-C3N4 889 – – 518 – – 309 – – – – – –
Reference [26] 861 – 469 – – 300 – – – – – –

Pseudocubic-C3N4 790 – 792 445 – 444 188 187 – – – – –
Reference [37] 804 – 805 439 – 439 183 183 – – – – –

m-C3N4 564 1002 859 209 331 213 51 195 36 ´57 6 60 48
t-C3N4 702 – 767 428 – 424 212 195 – – – – –

Cubic-BN 823 – – 479 – – 185 – – – – – –
Reference [50]-Exp. 820 – – 480 – – 190 – – – – – –

Table 3. The calculated elastic modulus (GPa), B/G, hardness Hv (GPa) and the universal anisotropic
index of m-C3N4, t-C3N4, d-ZB-C3N4, cubic-C3N4, pseudocubic-C3N4 and cubic-BN.

Materials BV BR GV GR BH GH B/G E v Hv AU

α-C3N4 386.83 386.82 338.65 335.09 387 337 1.15 784 0.16 78 0.053
Reference [48] 387.60 387.60 341.85 338.96 388 340 1.14 790 0.16 82 0.043

β-C3N4 406.11 405.57 330.77 320.96 406 326 1.25 772 0.18 78 0.154
Reference [48] 408.21 407.84 322.09 311.12 408 317 1.29 755 0.19 63, 85 a 0.176

d-ZB-C3N4 386.59 386.59 387.23 374.16 387 381 1.02 861 0.13 81 0.175
Reference [51] – – – – 387 375 1.03 850 0.13 63 –

Cubic-C3N4 502.48 502.48 426.82 394.18 502 411 1.22 969 0.18 88 0.414
Reference [48] – – – – 496 401 1.24 948 0.18 90, 87 b –

Pseudocubic-C3N4 388.21 388.21 387.66 373.98 388 381 1.02 861 0.13 81 0.183
Reference [48] 390.02 390.02 387.76 376.88 390 382 1.02 864 0.13 70, 80 c 0.144

m-C3N4 332.22 320.80 293.26 254.44 327 274 1.19 643 0.17 37 0.798
t-C3N4 374.81 374.47 360.75 340.05 375 350 1.07 801 0.14 80 0.305
c-BN 397.43 397.43 414.90 398.88 397 407 0.98 910 0.12 63 0.201

- – – – – 400 d – – – – 66 e, 64 f –
a Reference [52]; b Reference [51]; c Reference [53]; d Reference [50]; e Reference [54]; f Reference [55].

The dependence of bulk modulus, shear modulus and Young’s modulus on pressure of m-C3N4

and t-C3N4 is 3.49, 0.59, and 2.15 and 3.41, 1.59, and 4.35, respectively. Young’s modulus of t-C3N4

increases faster than other elastic modulus, while the increase in the shear modulus of m-C3N4 is
the slowest. At ambient pressure, the bulk modulus of α-C3N4, β-C3N4, m-C3N4 and t-C3N4 are
387 GPa, 406 GPa, 327 GPa and 375 GPa, respectively. The calculated hardness of α-C3N4, β-C3N4,
m-C3N4, t-C3N4, Cubic-C3N4, d-ZB-C3N4, Pseudocubic-C3N4 and c-BN are shown in Table 3. The bulk
modulus of t-C3N4 is 375 GPa, which is slightly larger than that of c-BN, while the bulk modulus
of m-C3N4 is slightly smaller than that of c-BN. The hardness of m-C3N4 is only 37 GPa, which is
approximately half of that of α-C3N4, β-C3N4, d-ZB-C3N4, pseudocubic-C3N4 and t-C3N4. The reason
for this phenomenon is that the mechanical properties of m-C3N4 are not excellent compared with the
other C3N4 allotropes and the bulk modulus, shear modulus and Young’s modulus are all smaller than
those of other C3N4 allotropes.

In materials science, ductility is a solid material’s ability to deform under tensile stress. If a material
is brittle, when subjected to stress, it will break without significant deformation (strain). Additionally,
these material properties are dependent on pressure. Pugh [56] proposed a simple relationship to
judge the plastic properties of materials based on their elastic modulus, i.e., B/G. If the ratio B/G is
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larger than 1.75, a material exhibits the ductile property; otherwise, the material is brittle. Moreover,
Poisson’s ratio v is another criterion for judging the plastic properties of materials [57]. A larger v
value (v > 0.26) for a material indicates ductility, while a smaller v value (v < 0.26) usually denotes
brittleness. At ambient pressure, the ratio B/G and v of α-C3N4, β-C3N4, d-ZB-C3N4, Cubic-C3N4,
Pseudocubic-C3N4, m-C3N4 and t-C3N4 are as listed in Table 3. The ratio B/G and v of four C3N4

allotropes are all less than 1.75 and 0.26, respectively, which indicates that the four C3N4 allotropes
are all brittle. t-C3N4 has the most brittleness, while β-C3N4 has the least brittleness. The pressure
dependence of B/G and Poisson’s ratio v are shown in Figure 5c,d, respectively. In Figure 5c,d, the
B/G and v of m-C3N4 and t-C3N4 increase with increasing pressure. m-C3N4 is found to change from
brittle to ductile at 71 GPa, while t-C3N4 does not change from brittle to ductile in this pressure range.

The elastic anisotropy of a solid is closely related to the possibility of inducing microcracks in
materials and can be expressed by the universal anisotropic index (AU) [58]. The universal anisotropic
index is defined as AU = 5GV/GR + BV/BR-6. The calculated results of universal anisotropic index are
also shown in Table 3. The universal anisotropic index of α-C3N4 is only 0.073, which is approximately
one-third that of β-C3N4, approximately one-sixth that of t-C3N4, and approximately one-sixteenth
that of m-C3N4. Namely, α-C3N4 and m-C3N4 exhibit the smallest and largest elastic anisotropy in
AU, respectively. The pressure dependence of the universal anisotropic index is shown in Figure 5e.
The universal anisotropic index of m-C3N4 increases faster than that of t-C3N4. The reason for this
phenomenon is that the difference between the value of Voigt and Reuss approximations of shear
modulus for m-C3N4 are greater than that of t-C3N4. At 0 GPa (100 GPa), the Voigt approximation
values of the shear modulus for m-C3N4 and t-C3N4 are 293.26 GPa (403.14 GPa) and 360.75 GPa
(534.66 GPa), respectively. The Reuss approximation values of the shear modulus for m-C3N4 and
t-C3N4 are 254.44 GPa (262.45 GPa) and 340.05 GPa (484.94 GPa) at 0 GPa (100 GPa), respectively.
The difference between the values of the Voigt and Reuss approximations of the shear modulus for
m-C3N4 ranges from 38.8 to 140.7 GPa at 0 GPa and 100 GPa, respectively. Nevertheless, the difference
between the value of the Voigt and Reuss approximations of the shear modulus for t-C3N4 only ranges
from 20.7 to 49.7 GPa at 0 GPa and 100 GPa, respectively. Thus, the universal anisotropic index m-C3N4

increases faster than that of t-C3N4.
To analyze the anisotropy of m-C3N4 and t-C3N4 more systematically, we will investigate the

anisotropy of m-C3N4 and t-C3N4 for Poisson’s ratio, the shear modulus and Young’s modulus by
utilizing the ELAM codes [20,59]. The two-dimensional representations of Poisson’s ratio in the xy
plane, xz plane and yz plane for m-C3N4 and t-C3N4 are shown in Figure 6. The blue, red and cyan
lines represent Poisson’s ratio at 0, 50 and 100 GPa, while the solid line and dash-dot line represent the
minimum and maximum values of Poisson’s ratio in the xy plane, xz plane and yz plane, respectively.
From Figure 6, it is clear that the anisotropy of Poisson’s ratio for m-C3N4 and t-C3N4 increases with
increasing pressure. The maximum value of Poisson’s ratio for m-C3N4 is 0.47, 0.61 and 0.76 at 0,
50 and 100 GPa, while the minimum value of Poisson’s ratio for m-C3N4 is 0.01; the maximum and
minimum values of Poisson’s ratio are the same for m-C3N4 in the xy plane, xz plane and yz plane.
The maximum value of Poisson’s ratio for t-C3N4 is 0.30, 0.38 and 0.44 at 0, 50 and 100 GPa, respectively,
while the minimum value of Poisson’s ratio for t-C3N4 is 0.0; the maximum and minimum values of
Poisson’s ratio are the same for t-C3N4 in the xy plane, xz plane and yz plane. The difference between
the maximum and minimum values of Poisson’s ratio for t-C3N4 and m-C3N4 shows that m-C3N4

exhibits greater anisotropy with respect to Poisson’s ratio.
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and t-C3N4 (d–f). The solid line represents the minimum, and the dashed line represents the 
maximum. The blue, red and cyan lines represent Poisson’s ratio at p = 0, 50 and 100 GPa, 
respectively. 

Figure 6. 2D representation of Poisson’s ratio in the xy plane, xz plane and yz plane for: m-C3N4 (a–c);
and t-C3N4 (d–f). The solid line represents the minimum, and the dashed line represents the maximum.
The blue, red and cyan lines represent Poisson’s ratio at p = 0, 50 and 100 GPa, respectively.
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The 2D representations of the shear modulus in the xy plane, xz plane and yz plane for m-C3N4

and t-C3N4 are illustrated in Figure 7. For m-C3N4 in Figure 7a–c, the maximum value of the shear
modulus occurs in the deviation from the x axis or y axis of approximately 45 degrees in the xy plane
or yz plane, respectively. The maximum value of the shear modulus occurs in the deviation from the
x axis or z axis of approximately 15 degrees in the xz plane. Moreover, the minimum value of the
shear modulus occurs along the y axis in the xy plane and yz plane, respectively. The maximum and
the minimum values of m-C3N4 are 163 GPa and 455 GPa at ambient pressure, respectively, and the
ratio Gmax/Gmin = 2.79. At the same time, the maximum and minimum values of m-C3N4 are 153 GPa
(110 GPa) and 611 GPa (738 GPa), respectively, at 50 GPa (100 GPa); the ratio Gmax/Gmin = 3.99 at
p = 50 GPa, and the ratio Gmax/Gmin = 6.71 at p = 100 GPa. The anisotropy of m-C3N4 increases
with increasing pressure. The average shear modulus of m-C3N4 is 266 GPa, 312 GPa and 328 GPa,
respectively. For t-C3N4 in Figure 7d–f, the maximum value of the shear modulus for t-C3N4 in the xy
plane, xz plane and yz plane appears along the coordinate axis, while the minimum value of the shear
modulus for t-C3N4 in the xy plane, xz plane and yz plane appears in the deviation from the coordinate
axis of approximately 45 degrees. The maximum and minimum values of the shear modulus for
t-C3N4 are 245 GPa, 291 GPa, 323 GPa and 428 GPa, 559 GPa, 669 GPa at 0 GPa, 50 GPa, 100 GPa,
respectively. The ratio Gmax/Gmin = 1.75 at p = 0 GPa, the ratio Gmax/Gmin = 1.92 at p = 50 GPa, and the
ratio Gmax/Gmin = 2.07 at p = 100 GPa. It is clear that the ratio Gmax/Gmin for t-C3N4 is much smaller
than that for m-C3N4. In other words, m-C3N4 exhibits greater anisotropy than t-C3N4. This agrees
well with our previous prediction of anisotropy with respect to the universal anisotropic index and
Poisson’s ratio.

As a valid method to describe the elastic anisotropic behavior of a crystal completely, the 3D
surface constructions of the directional dependences of reciprocals of Young’s modulus are practically
useful. The results are shown in Figure 8 for Young’s modulus. For an isotropic system, the 3D
directional dependence would exhibit a spherical shape, while the deviation degree from the spherical
shape reflects the content of anisotropy [60]. In Figure 8a,c, the 3D shape of Young’s modulus shows
that m-C3N4 exhibits greater anisotropy than t-C3N4. As the pressure increases, the anisotropy of
Young’s modulus for m-C3N4 and t-C3N4 increases, but m-C3N4 still exhibits greater anisotropy than
t-C3N4. To analyze the anisotropy of m-C3N4 and t-C3N4 in detail, the 2D representations of Young’s
modulus in the xy plane, xz plane and yz plane for m-C3N4 and t-C3N4 are depicted in Figure 9.
From Figure 9, it is clear that m-C3N4 has a larger anisotropy and that the anisotropy will become
larger with increasing pressure.

Young’s modulus of t-C3N4 has the same value in different planes, while that of m-C3N4 has
different values in different planes. For example, at ambient pressure, the maximum and minimum
values of Young’s modulus for t-C3N4 are 928 GPa and 612 GPa in the xy plane, xz plane and yz plane,
while at p = 100 GPa, they are 1510 GPa and 864 GPa, respectively. However, the maximum value of
Young’s modulus is 996 GPa in the xy plane and yz plane for m-C3N4, but in the xz plane, it is 995 GPa,
and the minimum value is always 476 GPa. At 100 GPa, the difference reaches a larger degree; in the
xy plane and yz plane, the maximum value of Young’s modulus for m-C3N4 is 1638 GPa, while the
maximum value is 1634 GPa. This also proves that m-C3N4 has a larger anisotropy from the other side.
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3.3. Electronic Structures

Band theory is one of the most stringent tests of the physics of semiconductors. For example,
silicon, calcite and copper all contain similar densities of electrons, but they have different physical
properties, all inexplicable without quantum mechanics [61]. Thus, it is necessary to understand the
band structure and density of states. The band structures and density of states of m-C3N4 and m-C3N4

at different pressures are shown in Figure 10. The band structure calculations show that m-C3N4 is
a quasi-direct band gap semiconductor, with a band gap of 4.52 eV (see Figure 10a), and at 100 GPa,
m-C3N4 remains a quasi-direct band gap semiconductor, with a band gap of 5.68 eV. t-C3N4 has a
quasi-direct band gap of 4.21 eV at (0.322 0.322 0.0) along the M´Γ direction and Γ point, while the
direct band gap is 4.22 eV at the Γ point. At 100 GPa, t-C3N4 has a quasi-direct band gap of 4.79 eV
at (0.322 0.322 0.0) along the M´Γ direction and Γ point, while the direct band gap is 4.81 eV at the Γ
point. At 0 GPa, the valence band maximum (VBM) of m-C3N4 is located at the Z point, the energy
of VBM near the Fermi level of m-C3N4 is 10.37 eV, and the energy of the Z point near the Fermi
level is 10.39 eV; thus, m-C3N4 is a quasi-direct band gap semiconductor. At 100 GPa, the Fermi level
of m-C3N4 increases to 14.04 eV, and the energy of the Z point near the Fermi level of m-C3N4 is
14.02 eV. The VBM of m-C3N4 is located at the point along the Z and Γ directions; its energy is 14.04 eV.
The conduction band minimum (CBM) is at the Γ point for m-C3N4 at 0 and 100 GPa. The energy of
CBM is 14.91 and 19.72 eV. At 0 GPa, the Fermi level of m-C3N4 is 10.39 eV, which is slightly smaller
than that of t-C3N4 (10.52 eV). For t-C3N4, the CBM is at the Γ point for t-C3N4 at 0 and 100 GPa; the
energy of CBM is 14.73 and 18.82 eV, respectively. The VBM of t-C3N4 is located at the point along the
M and Γ directions; the energy is 10.52 and 14.03 eV, respectively. Moreover, the energy of the Γ point
near the Fermi level of t-C3N4 is 10.51 eV and 14.01 eV at 0 and 100 GPa, respectively. Thus, t-C3N4

is a quasi-direct band gap semiconductor. Interestingly, the band gaps of m-C3N4 and t-C3N4 both
increase with increasing pressure. At 100 GPa, m-C3N4 increases by 25.61%, and t-C3N4 increases by
13.66% compared with that at 0 GPa.
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Figure 10. Electronic band structure of: m-C3N4 (a,b); and t-C3N4 (c,d) with HSE06. 
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4. Conclusions

In conclusion, we have predicted two novel C3N4 allotropes, i.e., m-C3N4 and t-C3N4, with space
groups Cm and I-42m, which are both mechanically and dynamically stable up to at least 100 GPa.
The bulk modulus of t-C3N4 is 375 GPa, which is slightly larger than that of c-BN, while the bulk
modulus of m-C3N4 is slightly smaller than that of c-BN. The hardness of t-C3N4 is larger than that of
c-BN, thereby making it a superhard material with potential technological and industrial applications.
The ratio B/G and v of the two novel C3N4 phases are both less than 1.75 and 0.26, respectively,
which indicates that the two novel C3N4 allotropes are both brittle. The B/G and v of m-C3N4 and
t-C3N4 increase with increasing pressure. m-C3N4 is found to change from being brittle to ductile at
71 GPa, while t-C3N4 does not change from being brittle to ductile in this pressure range. The elastic
anisotropy calculations show that m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to
Poisson’s ratio, the shear modulus and Young’s modulus and universal anisotropic index. The band
structure calculations show that m-C3N4 and t-C3N4 are a quasi-direct-band-gap semiconductor
and a quasi-direct-band-gap semiconductor, respectively. Moreover, the band gaps of m-C3N4 and
t-C3N4 continue to be a quasi-direct band-gap and quasi-direct band gap at 100 GPa, respectively.
The band gaps of m-C3N4 and t-C3N4 are 4.522 and 4.210 eV, respectively, and these materials are
both wide-band-gap semiconductors. Due to their quasi-direct band gaps, they are attractive for
luminescent device applications.
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