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Abstract: An investigation of the photoluminescent properties and crystalline morphology of blue
emitting LiBa1´xPO4:xTm3+ phosphors with various concentrations (x = 0.005–0.030) of Tm3+ ions
were synthesized by microwave sintering. For comparison, the LiBa1´xPO4:xTm3+ powders sintered
at the same sintering condition but in a conventional furnace were also investigated. LiBaPO4 without
second phase was formed no matter which furnace was used. More uniform grain size distributions
are obtained by microwave sintering. When the concentration of Tm3+ ion was x = 0.015, the
luminescence intensity reached a maximum value, and then decreased with the increases of the
Tm3+ concentration due to concentration quenching effect. The microwave sintering significantly
enhanced the emission intensity of LiBa1´xPO4:xTm3+ phosphors. Additionally, the d-d interaction
is the key mechanism of concentration quenching for LiBaPO4:Tm3+. The chromaticity (x, y) for all
LiBa1´xPO4:xTm3+ phosphors are located at (0.16, 0.05), which will be classified as a blue region.
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1. Introduction

Several advantages of white light-emitting diodes (WLEDs) such as high luminous efficiency,
energy-saving, maintenance as well as environmental protection, lead the WLEDs to be called
the next-generation solid-state light and to replace traditional incandescent and fluorescent lamps.
The combination of blue LED with yellow luminescence from Y3Al5O12:Ce3+ is the present strategy
to make white light (YAG:Ce3+) phosphor materials [1]. Another method to make white light is to
combine ultraviolet LED and different colors of phosphors obtained from excitation by ultraviolet LED.
Therefore, many red, green and blue phosphors that can be excited by UV light should be developed [2].
Also, phosphors with high luminescent efficiency, stability and low cost are in demand for application
in WLEDs.

Phosphates with a general formula like ABPO4, where A is a mono-valent cation and B is a
divalent cation, are interesting because of their optical, ferroelectric properties, excellent thermal
and hydrolytic stability [2–7]. Therefore, many studies have concentrated on ABPO4 phosphate by
solid-state reaction for WLEDs [2–7]. Among them, Tm3+-doped materials have been widely adopted
as blue emitting phosphors because of their intense 1D2 Ñ

3F4 emission. The investigation from Li et al.

Materials 2016, 9, 356; doi:10.3390/ma9050356 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2016, 9, 356 2 of 7

has shown that Tm3+-doped NaCaPO4 phosphor exhibits relatively strong absorption in near-UV
region of 356 nm and intense blue emission of 451 nm with excellent color purity [7].

Regarding the sintering process, it has been reported that, when the phosphors were sintered using
the microwave energy as the heating sources, the energy can be absorbed immediately and uniformly
compared to results from a conventional solid state sintering process [8]. This technique has been
applied recently to prepare various oxide phosphors, such as YInGe2O7:Eu3+ [9], BaY2ZnO5:Eu3+ [10],
and Sr2SiO4:Eu3+ [11] and LiBaPO4:Dy3+ [12].

However, to our knowledge, Tm3+ ions doped LiBaPO4 phosphors prepared by
microwave-assisted sintering or conventional sintering have not yet been reported. In addition,
the luminescent characteristics of Tm3+ ions doped LiBaPO4 and the mechanism of energy transfer
of Tm3+-doped LiBaPO4 phosphor has been little-reported until now. Therefore, in this paper,
the luminescent characteristics, microstructure properties and mechanism of energy transfer of
LiBaPO4:Tm3+ phosphors prepared using different sintering processes are investigated.

2. Results and Discussion

2.1. Structure

Figure 1 shows the X-ray diffraction patterns of LiBa0.985PO4:0.015Tm3+ sintered at 1200 ˝C for 3 h
in different furnace, respectively. According to the Joint Committee on Powder Diffraction Standards
(JCPDS #14-0270), the LiBaPO4 has a hexagonal crystal structure with a space group P63 [12], and all
patterns of LiBa0.985PO4:0.015Tm3+ phosphors with different sintering furnace can be indexed and
match the reference [13] and no other second phase or starting material is observed. The XRD result
implied that the full-width at half-maximum (FWHM) of LiBa0.985PO4:0.015Tm3+ phosphors prepared
using microwave sintering is smaller than that prepared using the conventional one, indicating that
the crystallinity of LiBa0.985PO4:0.015Tm3+ was improved by microwave sintering. It is known that a
long sintering time causes grain growth, resulting in good crystallinity. However, at the same sintering
condition (1200 ˝C, 3 h) with a different sintering method, the heat through conventional method is
indirect, but in a microwave furnace, the material is rapidly heated both internally and externally.
The heat generated within the material, and the susceptors provided the heat to the specimen externally
by thermal conduction [9]. High sintering efficiency could be obtained through microwave sintering,
resulting in good crystallinity.
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sintered at 1200 ˝C for 3 h in different furnace.

Figure 2a,b shows typical SEM micrographs for LiBa0.985PO4:0.015Tm3+ sintered in microwave
furnace and in conventional furnace at 1200 ˝C for 3 h, respectively. The microstructures of
the LiBa0.985PO4:0.015Tm3+ powders changed significantly through different sintering processes.
The shapes of the particles are not very different from one another, but the grain size distribution from
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microwave sintered powder is uniform. The grain distribution of conventionally sintered powder
reveals the agglomeration of particles. Additionally, the particle sizes of LiBa0.985PO4:0.015Tm3+

phosphors are in the range of 9–11 µm.
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is the tendency of the blue emission intensity (454 nm) for LiBa1´xPO4:xTm3+ at 0.005 < x ď 0.030;
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Figure 4 shows the emission spectra of LiBa0.985PO4:0.015Tm3+ phosphors with different sintering
processes. It is shown that LiBa0.985PO4:0.015Tm3+ phosphor prepared by microwave sintering
has much higher luminescent intensity than that of a conventionally sintered one. Referring to
Figure 1, the crystallinity of LiBa0.985PO4:0.015Tm3+ phosphors prepared by microwave sintering is
better than that using conventionally sintering so that higher luminous intensity is expected. As the
concentration of Tm3+ ion increased, the probability of the energy transfer among Tm3+ ions also
increased. The luminescence intensity reached a maximum when the concentration of Tm3+ ion was
at 0.015, and then decreased with the increases of the Tm3+ concentration due to the concentration
quenching effect.
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Blasse proposed the critical transfer distance (Rc) to realize the mechanism of energy transfer in
phosphors whereby Rc is about equal to twice the radius of a sphere with the volume as shown in
Equation (1) [14–16].

Rc “ 2r
3V

4πxcN
s

1{3
(1)

In which xc is the critical concentration, N is the number of cations in the unit cell and V is
the volume of the unit cell. The unit cell volume V of LiBaPO4 is 0.391577 nm3 and the critical
concentration xc is 0.015, resulting from the maximum intensity of LiBa1´xPO4:xTm3+ at x = 0.015.
The number of host cations in the unit cell of LiBaPO4 is 4. Based on the above values, the critical
distance of energy transfer Rc is calculated as 2.3186 nm. Exchange interaction, radiation reabsorption,
or multipole-multipole interaction and so-called non-radiative energy transfer between different Tm3+

ions may have happened. When the typical critical distance is approximately 5 Å, the exchange
interaction is generally responsible for the energy transfer of forbidden transitions [16]. When the
sensitizer and activator coexist in phosphor system, the mechanism of radiation reabsorption occurs
due to broad overlap between excitation and emission spectra. In this study, there is no overlap
between excitation and emission spectra of LiBa1´xPO4:xTm3+ phosphor. Besides, the critical distance
Rc (2.3186 nm) of LiBa1´xPO4:xTm3+ phosphor is larger than 5 Å. Therefore, the energy transfer
mechanism between Tm3+ ions in LiBaPO4 phosphor could be suggested by multipole-multipole
interaction from Dexter's theory [16]. If the energy transfer takes place between the same sorts of
Tm3+ ions, the multipole-multipole interaction effect can be determined from of the difference of the
emission intensity according to the emitting level with multipolar interaction. The emission intensity
(I) per Tm3+ ion can be calculated by the Equation (2) [14–16]:

I{x “ Kr1`βpxqQ{3s
´1

(2)
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where x is the activator concentration; Q = 6, 8 or 10 for dipole–dipole (d-d), dipole-quadrupole (d-q)
or quadrupole-quadrupole (q-q) interaction, respectively; and K and β are constants for a given host
crystal with the same excitation condition. The doped Tm3+ concentration, which is not less than the
critical concentration (i.e., x = 0.02, 0.025, 0.03), is used to determine the dependence of the emission
intensity of LiBaPO4:Tm3+ phosphor excited at 359 nm. As shown in Figure 5, the dependence of
log (I/x) on log (x) in microwave sintering is linear and the slope is ´2.231. The value of Q can be
calculated as 6.693. In addition, the dependence of log (I/x) on log (x) in conventional sintering is
linear and the slope is ´2.186. The value of Q can be calculated as 6.558. Both are approximately equal
to 6 based on Equation (2). Therefore, the d-d interaction is the major mechanism for concentration
quenching of the LiBaPO4:Tm3+ phosphor no matter what sintering method was used.
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It is known that color coordinates could be established by Commission International de l’Eclairage
(CIE) 1931 according to a two-dimensional graphical representation of any color perceptible by the
human eye. The CIE coordinates could be obtained through commercial software by converting the
data of photoluminescence emission spectrum. Figure 6 shows all LiBa0.985PO4:0.015Tm3+ phosphors
having the same chromaticity (x, y) coordinates located in the blue region (0.16, 0.05). Therefore, if we
choose appropriate green and red phosphors mixed with the LiBaPO4:Tm3+ onto the ultraviolet LED
chip, the goal to form WLEDs could be achieved.
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3. Experimental Procedure

3.1. Sample Preparation

The LiBa1´xPO4:xTm3+ phosphors used Li2CO3 (99.94%), BaCO3 (99.9%), NH4H2PO4 (98%), and
Tm2O3 (99.9%) powders as starting materials and different concentrations of Tm3+ ions (x = 0.005–0.03)
were chosen as a variable parameter. The starting materials were mixed using alcohol as a solvent
and then ball-milled for 1 h with zirconia balls. After drying, the mixed powders were sintered in a
microwave furnace and conventional furnace to form LiBa1´xPO4:xTm3+ phosphors. As in the case of
microwave sintering, a microwave furnace (Therm Wave Mod. III) with a continuously variable power
of 2.45 GHz microwaves up to 1.3 kW was used. Silicon carbide (SiC), having a very strong heating
response to 2.45 GHz microwaves, was used as a susceptor to provide indirect heating of the powders.
For comparison, the sample was also sintered at 1200 ˝C for 3 h in conventional furnace under an air
atmosphere with the heating rate controlled at 10 ˝C/min. The average heating rate of microwave
furnace was greater than 100 ˝C/min. After sintering, the phosphor samples were cooled to room
temperature and then characterized.

3.2. Characterization

The crystalline phases of the phosphors were identified by X-ray diffraction (XRD, model D8
Advance, Bruker Axs Gmbh, Karlsruhe, Germany) with CuKα radiation of λ = 1.54 Å using a Ni filter,
and a secondary graphite monochromator. A scanning range of 2θ = 10˝~60˝ was used with a step
of 0.03˝ and 0.4 s as a per-step count time. The particle morphology of phosphors was identified by
scanning electron microscopy (SEM; model S-3000N, Hitachi, Ltd., Tokyo, Japan). Additionally, the
excitation, emission spectra and the color coordinates and the Commission International de l’Eclairage
(CIE) information were obtained using a photoluminescence spectrophotometer (PL, model FP-6000,
JASCO Corporation, Tokyo, Japan) with a 150 W xenon lamp as the light source.

4. Conclusions

In this paper, LiBa0.985PO4:0.015Tm3+ phosphors with various sintering process were successively
synthesized at 1200 ˝C for 3 h. XRD results indicate that pure LiBa0.985PO4:0.015Tm3+ phosphor
phase was formed. The major emission peak centered at 454 nm corresponds to the 1D2 Ñ

3F4

transition and the maximum photoluminescence intensity appeared at the Tm3+ concentration of 0.015.
Under the microwave sintering, good crystallinity and uniform grain size distributions are obtained
because microwave energy provides the material rapidly heated both internally and externally. The d-d
interaction plays a major role in the mechanism of concentration quenching of LiBaPO4:Tm3+ phosphor
based on the theoretical calculation no matter what sintering method was used. Additionally, WLEDs
could be achieved by mixing appropriate green and red phosphors with the LiBaPO4:Tm3+ onto the
ultraviolet LED chip.
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