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Abstract: Evolution of pure hydrogen and oxygen by photocatalytic water splitting was attained
from the opposite sides of a composite Pt/Ti/TiO2 photoelectrode. The TiO2 films were prepared
by radio frequency (RF)-Magnetron Sputtering at different deposition time ranging from 1 up to
8 h and then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and
ultraviolet-visible-near infrared (UV-vis-NIR) diffuse reflectance spectroscopy. The photocatalytic
activity was evaluated by incident photon to current efficiency (IPCE) measurements and by
photocatalytic water splitting measurements in a two-compartment cell. The highest H2 production
rate was attained with the photoelectrode prepared by 6 h-long TiO2 deposition thanks to its high
content in the rutile polymorph, which is active under visible light. By contrast, the photoactivity
dropped for longer deposition time, because of the increased probability of electron-hole recombination
due to the longer electron transfer path.
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1. Introduction

Photocatalytic water splitting into hydrogen and oxygen is one of the most promising ways to
produce a renewable and environmentally friendly fuel by converting solar into chemical energy.
A separate stream of pure hydrogen can be attained using two-compartment photocatalytic cells [1–7].
The main issue in the development of such devices is the preparation of photoactive, stable, and cost
effective photoanodes in the form of thin layers. Among all of the existing techniques for thin films
deposition [8], radio frequency (RF) magnetron sputtering proved to be an effective method to prepare
photoactive semiconductor coatings [4,9–11]. Moreover, this technique is already available for large
surface deposition and scale production (e.g., roll-to-roll magnetron sputtering). A precise control of all
the deposition parameters (RF power, total pressure inside the chamber, deposition time, temperature
and distance of the substrate) allows one to tune the characteristics of the deposited film. For example,
Ebrahimi et al. [12] showed that the crystal phase composition of a TiO2 film can be changed from
pure rutile to a mixture of anatase and rutile by increasing the total Ar pressure during deposition.
In a previous work [4], we showed that almost pure anatase is obtained by keeping the substrate
temperature at 450 ˝C, whereas prevalently rutile is obtained at 600 ˝C. Furthermore, both cation
(e.g., Cr, Fe, V and Cu) [13–15] or anion (N and/or C) [16–18] doping of the TiO2 coatings have been
reported by co-deposition or reactive magnetron sputtering, respectively. Chemical post treatment
with HF etching [19] or hydrothermal treatment with NaOH [20] have also been reported to increase
the photocatalytic performance.
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In this work, we present the photocatalytic water splitting results obtained employing composite
Pt/Ti/TiO2 photoelectrodes prepared by RF magnetron sputtering, which allow the cleavage of H2O
into H2 and O2 on the two opposite sides upon illumination. In particular, we focus on the effects that
the deposition time has on the properties of the TiO2 coating and on its photocatalytic performance.

2. Materials and Methods

2.1. Preparation of the Photoelectrodes

TiO2 thin films (9.6 cm2) were deposited on pure titanium disks (TI000420/8, Goodfellow,
Huntingdon, UK) starting from a TiO2 powder target (Puratronic, 99.995%, Alfa Aesar, Haverhill,
MA, USA), employing a RF magnetron sputtering system (Rial Vacuum, Chiozzola, Italy). Prior to
deposition, titanium disks were immersed for 1 min in a pickling aqueous solution (DeTitan 90, Kemar,
Leggiuno, Italy) containing HF, H2SO4 and H2O2. All depositions were carried out in pure Ar at
constant sputtering power (200 W) and total gas pressure inside the chamber (2.0 Pa). The Ti disk
substrate was placed at a distance of 50 mm above the TiO2 target and kept at 600 ˝C during the
deposition. Four samples were prepared at different deposition times (1, 3, 6 and 8 h).

A thin platinum coating (ca. 20 mg¨ cm´2 loading) was deposited on the opposite side of all
titanium disks in a vacuum evaporator, finally obtaining the Pt/Ti/TiO2 photoelectrodes.

2.2. Characterization of the Photoelectrodes

The film morphology was investigated by scanning electron microscopy (SEM) employing a
LEO 1430 microscope (Zeiss, Jena, Germany). X-ray diffraction (XRD) patterns of the deposited TiO2

coatings were acquired with a PW3020 powder diffractometer (Philips, Amsterdam, The Netherlands),
using the Cu Kα radiation (λ = 1.5418 Å) in the 20˝–80˝ 2θ range with a time step of 0.05˝ and a
fixed counting time of 2 s per step. Quantitative phase analysis was made by the Rietveld refinement
method [21,22], using the “Quanto” software [23]. UV-Vis-NIR diffuse reflectance (DR) spectra were
recorded in the 220 nm < λ < 2600 nm range with a UV3600 Plus spectrophotometer (Shimadzu, Kyoto,
Japan) equipped with an ISR-603 integrating sphere.

2.3. IPCE Measurements

Incident photon to current efficiency (IPCE) curves were measured with a homemade single
compartment Plexiglas cell with a Pyrex glass window by connecting the irradiated TiO2 film (anode)
with a platinum counter electrode (cathode) through an external circuit including a DMM4040 digital
multimeter (Tektronix, Beaverton, OR, USA) for photocurrent measurement. For these tests the
Pt coating was covered by pressing the Ti disk against a silicone rubber foil. A 300 W Xe lamp
with a Omni-λ 150 monochromator (LOT-Oriel, Darmstadt, Germany) was used as monochromatic
irradiation source. The photocurrent was measured in a 1.0 M NaOH electrolyte solution without any
external applied voltage in the 300–500 nm wavelength range with a 2 nm step and a 4 s time per step.
The incident light power was measured with the same scan parameters using a S130VC calibrated
photodiode (Thorlabs, Newton, NJ, USA) with the Pyrex window placed between the light source
and the photodiode, to account for the transmittance of the cell window. The percent IPCE at each
wavelength was calculated with the following formula:

%IPCE “
Iλ ˆ 1240

Pλ ˆ λ
ˆ 100 (1)

where Iλ is the photocurrent density (mA¨ cm´2); Pλ is the incident power density (mW¨ cm´2); λ (nm)
is the incident wavelength; and 1240 (J¨nm¨C´1) = h¨ c¨ e´1 (h being the Planck constant, c the speed of
light and e the charge of a single electron).
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2.4. Separate H2 and O2 Photocatalytic Production Tests

The thus-obtained photoelectrodes were tested in a two-compartment photocatalytic Plexiglas
cell, including a Pyrex glass optical window, which allows the separate evolution of pure hydrogen
and oxygen from the aqueous solutions contained in the two compartments (Figure 1).
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Figure 1. Schematic representation of the two-compartment photocatalytic cell.

The cell has been fully described elsewhere [4]. The photoactive electrode was placed within
the frame separating the two compartments, which were filled with 1.0 M NaOH and 0.5 M H2SO4

aqueous solutions, so that the illuminated anodic oxide coating was in contact with the alkaline
solution, whereas the cathodic Pt-coated side of the titanium disk faced the acidic solution. Thus,
a chemical bias was produced to assist the transfer of photopromoted electrons from the TiO2 film
toward the Pt-coated side of the photoelectrode (Figure 1). The two solutions were separated by a
Nafion 117 cation exchange membrane placed below the photoelectrode.

During irradiation, the evolved gases were collected into the two upside-down graduated
burettes surmounting each cell compartment. The amounts of H2 and O2 were determined from
the displacement of the solutions within each burette. The composition of the evolved gases was
determined by gas-chromatographic analysis, after having sampled them with a gas-tight syringe.
The irradiation source, which was switched on 15 min prior to the beginning of the runs, was a
UV-vis iron halogenide mercury arc lamp (HG200, 250 W, Jelosil, Vimodrone, Italy) emitting in the
350 nm < λ < 450 nm range, with a full irradiation power density on the sample of ca. 19.7 mW¨ cm´2.
The emission spectrum of the lamp was measured with a compact CCD (charge-coupled device)
spectrometer (CCS100, Thorlabs, Newton, NJ, USA).

3. Results and Discussion

3.1. XRD and SEM Investigation

Figure 2 shows the XRD patterns of the investigated TiO2 films deposited in pure Ar at the same
substrate temperature (600 ˝C) for different deposition times (1, 3, 6 and 8 h) together with that of the
pristine metal Ti disk.

All RF magnetron sputtered coatings were composed of a mixture of anatase and rutile.
The intensity of the main reflections of the two phases (2θ ca. 25˝ and ca. 27.5˝ for anatase and
rutile, respectively) increased with an increase in the deposition time, while those of the metal Ti
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support decreased because of the growth of the TiO2 film thickness. The sample obtained after 1 h
deposition was composed of ca. 54% anatase and 46% rutile, whereas the amount of rutile increased to
ca. 70% for longer deposition time (Table 1). No evidence of the brookite polymorph was ever detected.
A similar phase composition has been previously reported for coatings prepared by RF magnetron
sputtering at a substrate temperature of 600 ˝C and Ar pressure of 2.0 Pa [12]. Moreover, the relative
intensity of the reflection of the rutile phase at 2θ = 27.5˝ (corresponding to the (110) reflection) with
respect to those at 2θ = 36.1˝ (101) and 2θ = 54.3˝ (211) is much larger compared to the reference one
reported on top of Figure 2. This suggests that, during the sputtering process, the particles grow along
a preferred orientation on the Ti support.
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Figure 2. XRD patterns of the pristine Ti disk and of the TiO2 coatings grown for different deposition
time (1, 3, 6, and 8 h). The peak positions and relative intensities of the anatase (A) and rutile (R) phases
are reported at the top of the figure for comparison.

Table 1. Film thickness, crystal phase composition, and band gap of the investigated TiO2 coatings.

Deposition
Time (h)

Film Thickness
(nm) 1 Anatase (wt.%) Rutile (wt.%) Band Gap (eV)

1 320 54 46 3.30
3 1066 31 69 3.18
6 1823 30 70 3.05
8 3030 28 72 3.05

1 Calculated by the UV-vis-NIR DRS spectra.

The surface morphology of the films was analyzed by SEM. The sample prepared after 1 h-long
deposition (Figure 3a) shows a relatively smooth surface with some irregularities mostly arising from
the Ti substrate underneath (Figure 3e).

By contrast, well defined TiO2 particles with pyramidal shape form after longer deposition
time. During the evaporation process, the sputtered atoms, possessing relatively high kinetic
energy, gradually add to the crystals growing on the substrate. According to the Wulff construction
principle [24], the crystals assume the most thermodynamically stable shape in order to minimize the
surface energy. Both anatase [24,25] and rutile [26] single crystals show a pyramidal shape.

Finally, the SEM images show that the particle size, and consequently the surface roughness,
considerably increases from some tens to some hundreds of nanometers with an increase of the
deposition time. Thus, the deposition time affects not only the thickness of the TiO2 film, but also its
surface morphology, particle size and crystallinity.
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Figure 3. SEM images of TiO2 coatings prepared by radio frequency (RF) magnetron sputtering with
(a) 1 h; (b) 3 h; (c) 6 h; and (d) 8 h deposition times; (e) Surface of the bare metal Ti disk surface; and
(f) Pt film deposited on the back side of the titanium disk.

3.2. UV-vis-NIR Diffuse Reflectance and IPCE Measurements

The UV-vis-NIR DRS spectra of all investigated samples exhibit the interference fringes typical of
thin films in the vis-NIR region (Figure 4). These fringes originate from the interference of the waves
reflected by the upper surface with those penetrating the film and reflected by the bottom surface.
The frequency and the amplitude of the fringes depend on the film thickness. In particular, Figure 4
shows that the frequency increases and the amplitude decreases with an increase in the deposition
time of the coatings (i.e., an increase in the film thickness). The fringes are expected to vanish for very
thick films, depending on the penetration depth of the incident light through the film itself.

Materials 2016, 9, 279 5 of 10 

 

 
Figure 3. SEM images of TiO2 coatings prepared by radio frequency (RF) magnetron sputtering with 
(a) 1 h; (b) 3 h; (c) 6 h; and (d) 8 h deposition times; (e) Surface of the bare metal Ti disk surface; and 
(f) Pt film deposited on the back side of the titanium disk. 

3.2. UV-vis-NIR Diffuse Reflectance and IPCE Measurements 

The UV-vis-NIR DRS spectra of all investigated samples exhibit the interference fringes typical 
of thin films in the vis-NIR region (Figure 4). These fringes originate from the interference of the 
waves reflected by the upper surface with those penetrating the film and reflected by the bottom 
surface. The frequency and the amplitude of the fringes depend on the film thickness. In particular, 
Figure 4 shows that the frequency increases and the amplitude decreases with an increase in the 
deposition time of the coatings (i.e., an increase in the film thickness). The fringes are expected to vanish 
for very thick films, depending on the penetration depth of the incident light through the film itself. 

 
Figure 4. UV-vis-NIR diffuse reflectance spectra of the TiO2 coatings on a metal Ti disk for different 
deposition time. (a) Percent reflectance vs. wavelength spectra; and (b) corresponding Kubelka-Munk 
transform used for band gap calculation. 

The interference fringes are relevant in the characterization of thin films because they allow the 
evaluation of the film thickness [5]. In this work, we have used a dedicated tool of the 
spectrophotometer software and the obtained values are collected in Table 1. As expected, the 
thickness linearly increases as a function of the deposition time with a growth rate of ca. 350 nm·h−1. 

The semiconductor absorption edges of the films are located below 420 nm. The band gap can 
be calculated from the Kubelka-Munk transform spectra (Figure 4b). This is usually done by taking 
the value at the intersection between a straight line interpolating the absorption edge and the abscissa 
axis, reporting the photon energy. However, the investigated films possess a very low reflectance in 
the vis-NIR region that linearly decreases towards lower wavelengths, likely due to the surface 

400 800 1200 1600 2000 2400
0

10

20

30

40

50

%
 R

ef
le

ct
an

ce

Wavelength / nm

 1h
 3h
 6h
 8h

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
0

1

2

3

4

5

6

7

(h
 

(1
-R

) /
 2

R
)0.

5

Photon Energy / eV

 1h
 3h
 6h
 8h

(a) (b)

Figure 4. UV-vis-NIR diffuse reflectance spectra of the TiO2 coatings on a metal Ti disk for different
deposition time. (a) Percent reflectance vs. wavelength spectra; and (b) corresponding Kubelka-Munk
transform used for band gap calculation.

The interference fringes are relevant in the characterization of thin films because they allow
the evaluation of the film thickness [5]. In this work, we have used a dedicated tool of the
spectrophotometer software and the obtained values are collected in Table 1. As expected, the thickness
linearly increases as a function of the deposition time with a growth rate of ca. 350 nm¨h´1.

The semiconductor absorption edges of the films are located below 420 nm. The band gap can be
calculated from the Kubelka-Munk transform spectra (Figure 4b). This is usually done by taking the
value at the intersection between a straight line interpolating the absorption edge and the abscissa axis,
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reporting the photon energy. However, the investigated films possess a very low reflectance in the
vis-NIR region that linearly decreases towards lower wavelengths, likely due to the surface roughness
of the films and the presence of the interference fringes. Consequently, all spectra appear shifted at
higher [f(R)hν]0.5 values. Thus, band gap values have been here evaluated as the photon energy value
at the crossing point between the straight line interpolating the portion of the spectrum at energy
lower than the absorption edge (i.e., the background) and the straight line interpolating the absorption
edge (see dotted lines in Figure 4b). The band gap of bulk anatase and rutile notoriously are 3.2 eV
and 3.0 eV, respectively. However, slightly larger values have been obtained for the coatings prepared
after 1 h-long (3.30 eV) and 3 h-long (3.18 eV) deposition, despite of their high rutile content, whereas
the same band gap of 3.05 eV has been obtained for those prepared by 6 h- and 8 h-long deposition,
in line with the band gap of bulk rutile. It is known that the band gap of a semiconductor material
can be affected by the particle size due to the confinement of the movement of electrons. The XRD
and SEM investigations revealed that the deposition time affects not only the film thickness but also
the crystal size. Thus, the unexpected larger band gap values of the two thinner TiO2 coatings (i.e.,
1 h- and 3 h-long deposited films) can be attributed to the size quantization effects that can widen the
semiconductor band gap (i.e., blue shift the absorption threshold) of small nanoparticles [27–29].

The IPCE curves (Figure 5) show that the photoactivity threshold of the investigated series of
samples progressively red-shifts with an increase in the coating thickness, in agreement with the
calculated band gaps. In particular, the films prepared after 6 h- and 8 h-long deposition exhibit
photoactivity above 390 nm, i.e., in the visible region.
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Figure 5. Effect of the deposition time on the incident photon to current efficiency (IPCE) curves of the
TiO2-based photoelectrodes as a function of the incident wavelength. The emission spectrum of the Hg
vapor lamp used as light source in separate H2 and O2 evolution photocatalytic tests is also shown
(gray line).

Two efficiency maxima can be distinguished in the IPCE curves, whereas curves measured on
films of pure anatase or pure rutile usually show a single maximum (e.g., [5]). Thus, the first IPCE
maximum, located around 325 nm, can be attributed to the anatase phase, while the second one,
located at longer wavelengths (it appears as a shoulder in the 1 h-long deposited sample) can be
attributed to the rutile phase. The latter maximum red-shifts together with the photoactivity edge.

It is interesting to note that the maximum IPCE is only partially related to the film thickness.
Indeed, the first three photoelectrodes (deposition timeď 6 h) reach similar maximum efficiency values
up to 27.5%, whereas IPCE considerably drops below 10% for the thickest one. In fact, increasing the
semiconductor film thickness might lead to an increase in the fraction of the absorbed incident photons
up to a boundary limit. On the other hand, the thicker the film is, the longer the electron transfer path
is, with the consequent increase of electron-hole recombination probability. This latter phenomenon
explains the sudden efficiency drop of the 8 h-long deposited sample.
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3.3. Photocatalytic Water Splitting Test

The photocatalytic activity under polychromatic irradiation is strictly related to the IPCE curve,
the emission spectrum of the light source, the incident power, and, in this case, the chemical bias (i.e.,
the ∆pH between the two compartments of the photocatalytic cell).

Hydrogen and oxygen evolution occurred at a constant rate during irradiation, according
to a pseudo zero order kinetics. The production rates obtained with the investigated series of
photoelectrodes are listed in Table 2 and shown in Figure 6a.

As expected by the IPCE curves, the photocatalytic performance increased with an increase
of the film thickness, reaching a maximum with the sample prepared after 6-h long deposition
(0.21 mmolH2 ¨h

´1, corresponding to ca. 5.3 NL h´1 per square meter of irradiated photoelectrode
area) and then dropped for the thickest film. The increase of hydrogen production rate, rH2 , with
increasing film thickness is clearly paralleled by a progressive red shift of the IPCE curves that allows
the absorption and conversion of a larger portion of the incident light spectrum, as shown in Figure 6b.

Table 2. Effect of the deposition time on the photocatalytic performance of water splitting.

Deposition Time (h) rH2 (µmol¨ h´1) rO2 (µmol¨ h´1) rH2 /rO2 ϕexp ϕeff

1 72.94 ˘ 0.06 31.62 ˘ 0.03 2.3 2.3 2.5
3 100.15 ˘ 0.09 40.3 ˘ 0.1 2.5 4.0 3.5
6 212.30 ˘ 0.03 98.4 ˘ 0.1 2.2 7.1 7.3
8 52.35 ˘ 0.08 21.81 ˘ 0.05 2.4 3.0 2.2

This result is in line with the larger amount of the rutile phase having a narrower band gap with
respect to anatase. The evolved hydrogen to oxygen ratio is slightly higher than the stoichiometric
value of 2, as already observed and discussed recently [5].
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Figure 6. (a) Rate of hydrogen and oxygen production under polychromatic light irradiation obtained
with the photoelectrodes obtained with different deposition times; (b) expected portion of converted
incident spectrum and corresponding integrated area (calculated as the product of the IPCE curves
times the emission spectrum of the light source).

Finally, two different types of photocatalytic efficiency in hydrogen production can be calculated.
The first one is the expected efficiency, ϕexp, calculated from the IPCE curves and the light emission
spectrum, as:

ϕexp “ Aconv.{Ai.s.ˆ 100 (2)

where Aconv. and Ai.s. are the integrated areas of the converted portion (Figure 6b) and of the incident
spectrum, respectively.
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The second one is the effective efficiency, ϕeff, i.e., the efficiency in conversion of the incident light
power density P (=19.7 mW¨ cm´2) into chemical energy [6], calculated by the following equation:

φeff “
rH2 ˆ ∆G˝

Aˆ P
ˆ 100 (3)

where ∆G˝ is the standard Gibbs free energy of the water spitting reaction (237 kJ¨mol´1); and A
(9.6 cm2) is the irradiated area of the photoelectrode.

The two efficiencies can slightly differ one from the other becauseϕexp is calculated form transient
experiment (the IPCE curves are measured while scanning λ), whereas ϕeff is calculated from the
rH2 values obtained under full lamp irradiation. The obtained efficiency values reported in Table 2,
are relatively low, in line with the fact that the irradiation source employed in photocatalytic water
splitting tests mainly emits in the 400–450 nm range, i.e., above the photoactivity threshold of our
samples. Notably, similar efficiency values were obtained for the same sample, although they were
calculated from two different experiments and approaches. However, it is interesting to notice that
ϕeff < ϕexp for samples showing rH2 /rO2 > 2.3.

4. Conclusions

This work demonstrates that a more straightforward interpretation of photocatalytic water
splitting results can be obtained by comparing them with those of IPCE measurements. In fact, the
increase of hydrogen production rate obtained with an increase in the film thickness should not be
attributed to an increased photocatalyst amount, but rather to a red-shift in photoactivity threshold in
accordance with the increased amount of rutile phase.
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