Supplementary Materials: Integrated Utilization of Sewage Sludge and Coal Gangue for Cement Clinker Products: Promoting Tricalcium Silicate Formation and Trace Elements Immobilization

Zhenzhou Yang, Yingyi Zhang, Lili Liu, Seshadri Seetharaman, Xidong Wang and Zuotai Zhang

1. The Equations of Compositional Parameters in Cement Chemistry:

Lime saturation coefficient:

$$KH = (CaO - 1.65 Al_2O_3 - 0.34 Fe_2O_3) / 2.8 SiO_2$$
(S1)

0.902 < KH < 0.915.

Silica Modulus:

$$SM = SiO_2 / (Al_2O_3 + Fe_2O_3)$$
 (S2)

2.25 < SM < 2.35.

Iron modulus:

$$IM = Al_2O_3 / Fe_2O_3$$
(S3)

1.3 < IM < 1.4.

Lime saturation:

L.S.F = CaO/
$$(2.8 \text{ SiO}_2 + 1.18 \text{ Al}_2 \text{ O}_3 + 0.65 \text{ Fe}_2 \text{ O}_3)$$
 (S4)

0.94 < L.S.F < 0.96.

2. Prepared Method

All mixtures were pressed to $\phi 20 \text{ mm} \times 5 \text{ mm}$ slices by applying a pressure of 10 Mpa and calcined in the programmable electrically heated tube furnace. The furnace temperature was raised at the rate of 10 °C/min from room temperature to 1450 °C. The temperature was maintained at 950 °C for 30 min to ensure the complete decomposition of CaCO₃ and held at 1450 °C for 2 h.

Band Center (cm ⁻¹)	Spectral Feature	Probable Assignment		
3694, 3669, 3653	Band	Outer OH stretching		
3404	Band	O–H stretching		
2923, 2854	Shoulder	Symmetric C–H stretching		
2353	Band	O–C=O stretching		
1652	Band	C=O stretching		
1439	Peak	C=O symmetrical stretching		
1165	Band	Trace of quartz		
1115, 1110	Shoulder	Apical Si–O stretching		
1062	Shoulder	(PO ₄) groups		
1034, 1009	Band	Si–O stretching of Si–O–Si and Si–O–Al		
988	Shoulder	v3(SiO4) in C2S		
937	Band	v3(SiO4) in C3S		
934	Shoulder	Al-OH libration (inner, outer)		
918	Shoulder	v3(SiO4) in C2S		
891	Band	v3(SiO4) in C3S		
840	Band	v1(SiO4) in C2S		
816	Shoulder	v1(SiO4) in C3S		
797, 780	Shoulder	Trace of quartz		
792, 754, 695	Shoulder	OH translation		
741	Shoulder	Al-O vibrations in ferrite and tricalcium aluminate		
522	Band	SiO4 tetrahedra out-of-plane bending vibrations		
538	Band	Si–O–Al ^{vI} deformation		
470, 431	Band	Si–O bending		
454	Band	Al–O vibration in C ₃ A		

Table S1. Characteristic bands of FTIR spectra.

Table S2.	The chemical	analysis of	the raw	materials in	the reference.
1 abie 52.	The chemical	anary 515 01	the raw	materials m	the reference.

Raw Meals	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	LOI
Limestore	5	2.4	0.74	50	40.7
Sand	88.6	2.9	2.67	2.2.	2.61
Clay	37.1	10.6	4.23	18.7	20.6
Fe ₂ O ₃	0	0	96	0	0.5

Figure S1. Particle size distribution of raw meals.

Figure S2. Detail of XRD peaks appearing between 32° and 33°, and between 51° and 52° with different amount of SS addition: (a) XRD peak between 32° and 33°; and (b) XRD peak between 51° and 52°.

Figure S3. The comparison detail of XRD peaks appearing between 32° and 33°, and between 51° and 52° with different amount of SS and CG addition: (**a**) XRD peak between 32° and 33°; and (**b**) XRD peak between 51° and 52°.