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Abstract: Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC)
composites are widely used in aerospace structures. The complicated spatial architecture and
material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties.
Thus, discovering the intrinsic relations between the properties and the microstructures and
sequentially optimizing the microstructures to obtain composites with the best performances becomes
the key for practical applications. The objective of this work is to optimize the thermal-elastic
properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses.
A hybrid approach based on micromechanical modeling and back propagation (BP) neural network
is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm
optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for
minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic
modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and
optimization method.

Keywords: C/C–SiC composites; micromechanical modeling; BP neural network; particle swarm
optimization algorithm; thermal-elastic properties

1. Introduction

Carbon fiber-reinforced multi-layered pyrocarbon-silicon carbide matrix (C/C–SiC) composites
exhibit attractive properties for thermal-structural applications, including low density, high strength,
and high oxidation resistance. The multi-layered matrices consist in alternating sub-layers of
pyrocarbon (PyC) and silicon carbide (SiC) [1,2]. The complicated spatial architecture and material
heterogeneity of C/C–SiC composites constitute the challenge to understand their properties.
Thus, discovering the intrinsic relations between the properties and the microstructures and
sequentially optimizing the microstructures to obtain composites with the best possible performances
becomes the key for practical applications of C/C–SiC composites.

The multi-layered matrices can be obtained by using the chemical vapor infiltration (CVI)
process [3,4]. The controllable parameter in the CVI process is the layer thickness of each material.
The layer thicknesses have to be properly controlled since the thickness variation of each layer affects
the material microstructure and the effective properties of the composite as well. Many typical
C/C–SiC composite components in aerospace engineering would be loaded in high temperature
environments over hundreds even thousands of hours [5]. In such environments, the primary concern
is to use materials with low thermal expansion behaviors and large elastic modulus. Motivated by
this situation, optimization of the thicknesses of matrix layers within microstructure to minimize the
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coefficient of thermal expansion (CTE) of the unidirectional C/C–SiC composites is proposed in this
paper. The constraint is imposed on the allowable elastic modulus according to real applications.

The micromechanical modeling approach, which provides the overall behavior of the composite
through a finite element analysis of a unit cell model [6,7], is applied to obtain the CTE [8] and
elastic modulus [9] of composites. The advantage of this approach is not only in obtaining global
properties of the composite but also the behaviors that can be related to the composite microstructure.
However, due to the complex multi-layered microstructure and large heterogeneity of multi-phase
materials, a detailed unit cell finite element model of the unidirectional C/C–SiC composites involves
a large number of elements. Generalization of the relationship between the microstructure and the
overall properties of the composites using this finite element procedure is extremely difficult, especially
in an optimization procedure. A new finite element mesh has to be rebuilt for each new situation
and an iterative finite element analysis has to be carried out. This is extremely time consuming and
computationally expensive. Thus, a hybrid approach is proposed in this paper by integrating the
micromechanical model and artificial neural network for the identification of CTE and elastic modulus
of the C/C–SiC composites. The artificial neural network has been extensively used in modeling
composite material properties [10–13], especially for composite designing [14–16], as the relationship of
the properties of the designed composite with its design parameters is very difficult to be represented
as an explicit mathematical model. However, there is a lack of studies on applying the neural network
in predicting the properties of C/C–SiC composites.

The nonlinear and non-differentiable nature of the presented optimization problem induces
difficulty in using classical deterministic approaches for solutions. To solve this nonlinear optimization
problem, a particle swarm optimization (PSO) algorithm [17,18] is used. The PSO algorithm belongs to
the category of swarm intelligence techniques. It has only a small number of parameters that need to
be adjusted, and is easy to implement. Although the PSO algorithm has been applied to a wide range
of engineering problems in the literature [19–22], few applications to C/C–SiC composites are known.

In this study, a hybrid approach integrating the micromechanical model and artificial neural
network is firstly proposed for the identification of CTE and elastic modulus of the unidirectional
C/C–SiC composites. Predictions are compared with the results of a micromechanical model to assess
the predictive capability of the proposed hybrid approach. The comparison shows that the forecast
errors of the hybrid approach are inside the range of the relative fluctuations of testing samples.
Although the neural network predictions partly agree with the micromechanical model, it is essential
to improve the current neural network model in the future for an enhanced predicting capability.
Then, a modified PSO algorithm is interfaced with the hybrid predictive model to minimize the CTE
of a unidirectional C/C–SiC composite with six layers of alternating PyC and SiC matrix. The design
variables are the thicknesses of matrix layers within the microstructure, and a constraint is imposed
on the allowable elastic modulus. The classical PSO algorithm is modified to satisfy the constraints
and the variable limits. The multi-stage penalty function method is adopted within PSO to satisfy the
constraints, and the Harmony Search algorithm is used to deal with the particles that fly outside the
variable boundaries.

2. Micromechanical Model of the Unidirectional C/C–SiC Composites

2.1. Unit Cell Model

The architecture of the preform of unidirectional C/C–SiC composite consists of closely arranged
fibers. The multi-layered PyC and SiC matrices are infiltrated within the porous fiber preforms by
CVI process. Figure 1 shows the scanning electron microscope (SEM) photograph of a C/C–SiC
composite [23], with the matrix consisting of alternate SiC (white color) and PyC (black color). It is
clearly observed that the multi-layered matrices are distributed around the fibers. In addition, the
pores are usually generated between adjacent fibers due to incomplete infiltration.
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Figure 1. Scanning electron microscopy (SEM) photograph of a carbon fiber-reinforced multi-layered 

pyrocarbon-silicon carbide matrix (C/C–SiC) composite [23]. 

For the CVI-processed composites, the research of Chateau and Gélébart [24] has indicated that 

the residual pores after CVI process have an important influence on the mechanical behavior of 

composites. Thus, for an accurate simulation of the material behavior, one must carefully introduce 

these manufacturing flaws in a computing scheme. However, in the present study, a highly idealized 

unit cell model is employed. Our purpose is to use this idealized model to develop a numerical 

scheme in an efficient manner for optimizing the thermal-elastic properties of composites. Thus, the 

presented research in this paper puts more emphasis on creating a validated and expandable 

optimization scheme. However, it should be noted that for an accurate microstructure design of the 

C/C–SiC composites, the pores and fiber positions must be carefully captured and modeled. To do 

this, the X-ray micro-computed tomography is an effective tool that has shown its applicability in the 

work of Chateau and Gélébart [24]. In our future study, for a high-quality optimization of C/C–SiC 

composites, a more real unit cell including the heterogeneous pore and fiber distributions would be 

carefully modeled. 

In this paper, a unidirectional C/C–SiC composite with six layers of alternating PyC and SiC is 

considered as a case study. A geometrical model of the unit cell is displayed in Figure 2a. 

Characteristic geometric parameters of the unit cell are given: φf is fiber diameter and d1–d6 are 

thicknesses of the matrix layers. The six layers of matrices are alternating PyC and SiC material layers 

(denoted as PyC/SiC/PyC/SiC/PyC/SiC). The unit cell model is then meshed using the 3-D  

twenty-node, thermal-structural coupled element (SOLID 96) of ANSYS finite element software,  

as depicted in Figure 2b. 

  
(a) (b) 

Figure 2. Unit cell of the unidirectional C/C–SiC composites: (a) Geometrical model; (b) Finite element model. 

Figure 1. Scanning electron microscopy (SEM) photograph of a carbon fiber-reinforced multi-layered
pyrocarbon-silicon carbide matrix (C/C–SiC) composite [23].

For the CVI-processed composites, the research of Chateau and Gélébart [24] has indicated that
the residual pores after CVI process have an important influence on the mechanical behavior of
composites. Thus, for an accurate simulation of the material behavior, one must carefully introduce
these manufacturing flaws in a computing scheme. However, in the present study, a highly idealized
unit cell model is employed. Our purpose is to use this idealized model to develop a numerical scheme
in an efficient manner for optimizing the thermal-elastic properties of composites. Thus, the presented
research in this paper puts more emphasis on creating a validated and expandable optimization
scheme. However, it should be noted that for an accurate microstructure design of the C/C–SiC
composites, the pores and fiber positions must be carefully captured and modeled. To do this, the X-ray
micro-computed tomography is an effective tool that has shown its applicability in the work of Chateau
and Gélébart [24]. In our future study, for a high-quality optimization of C/C–SiC composites, a more
real unit cell including the heterogeneous pore and fiber distributions would be carefully modeled.

In this paper, a unidirectional C/C–SiC composite with six layers of alternating PyC and SiC is
considered as a case study. A geometrical model of the unit cell is displayed in Figure 2a. Characteristic
geometric parameters of the unit cell are given: ϕ f is fiber diameter and d1–d6 are thicknesses of
the matrix layers. The six layers of matrices are alternating PyC and SiC material layers (denoted
as PyC/SiC/PyC/SiC/PyC/SiC). The unit cell model is then meshed using the 3-D twenty-node,
thermal-structural coupled element (SOLID 96) of ANSYS finite element software, as depicted in
Figure 2b.
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2.2. Computation of the Elastic Modulus

In this study, a strain energy-based finite element approach is applied to evaluate effective elastic
properties. It is assumed that each unit cell in the composites has the same deformation mode and that
there is no separation or overlap between neighboring unit cells. Therefore, the periodic boundary
conditions (PBC) [25–27] must be applied to the unit cell model. The PBC can be applied using nodes
coupling (CP) and constraint equations (CE) defining in ANSYS. Then, the explicit formulations
between the stiffness matrix coefficients and the strain energy of the unit cell model under specific
loadings are derived. The detailed description of this method can be found in [28,29]. Here, only a
basic introduction is presented.

In the elastic regime, the macroscopic behaviors of the unit cell can be characterized by the effective
stress tensor σ and strain tensor ε over the homogeneous equivalent model. They are interrelated by
the effective, also termed homogenized, stiffness matrix CH .

σ “ CHε (1)

where σ “ 1{V
ş

Ω σdΩ, ε “ 1{V
ş

Ω εdΩ, and V is the volume of the unit cell.
Consider the case of 3-D orthotropic materials; Equation (1) corresponds to

»

—

—

—

—

—

—

—

–

σ11

σ22

σ33

σ12

σ23

σ31

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

CH
1111 CH

1122 CH
1133 0 0 0

CH
1122 CH

2222 CH
2233 0 0 0

CH
1133 CH

2233 CH
3333 0 0 0

0 0 0 CH
1212 0 0

0 0 0 0 CH
2323 0

0 0 0 0 0 CH
3131

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

ε11

ε22

ε33

ε12

ε23

ε31

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2)

The strain energy related to the microstructure is equal to:

E “
ż

Ω

1
2
pσ11ε11 ` σ22ε22 ` σ33ε33 ` σ12ε12 ` σ23ε23 ` σ31ε31q dΩ

“
1
2
pσ11ε11 ` σ22ε22 ` σ33ε33 ` σ12ε12 ` σ23ε23 ` σ31ε31qV

(3)

With the help of specific loadings, the combination of Equation (2) and Equation (3) can be used
to deduce the effective stiffness matrix CH for the unit cell. Suppose a unit initial strain is imposed in

the y1 direction; i.e.,
´p1q
ε “ p1 0 0 0 0 0qT . Note that the superscript (1) represents the first load case.

The corresponding average stress is then obtained by Equation (2):

´p1q
σ “ pCH

1111 CH
1122 CH

1133 0 0 0q
T

(4)

By replacing
´p1q

σ and
´p1q
ε into Equation (3), one obtains the following expression of the

strain energy:

Ep1q “
1
2
´p1q

σ
´p1q

ε V “
1
2

CH
1111V (5)

The matrix coefficient CH
1111 can be derived:

CH
1111 “ 2Ep1q{V (6)

In the same way, demonstrations can be made for other coefficients, and all the results are
summarized in Table 1. The elastic properties can be derived by inversing the elastic matrix. In practice,
the considered unit cell will be discretized into a finite element model on which the initial strain will
be imposed to evaluate the strain energy.
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Table 1. Different loadings and the coefficients of elastic matrix.

Load Case Loadings Effective Coefficients of Elastic Matrix

1 ´p1q
ε “ p1 0 0 0 0 0qT CH

1111 “ 2Ep1q{V

2 ´p2q
ε “ p0 1 0 0 0 0qT CH

2222 “ 2Ep2q{V

3 ´p3q
ε “ p0 0 1 0 0 0qT CH

3333 “ 2Ep3q{V

4 ´p4q
ε “ p0 0 0 1 0 0qT CH

1212 “ 2Ep4q{V

5 ´p5q
ε “ p0 0 0 0 1 0qT CH

2323 “ 2Ep5q{V

6 ´p6q
ε “ p0 0 0 0 0 1qT CH

3131 “ 2Ep6q{V

7 ´p7q
ε “ p1 1 0 0 0 0qT CH

1122 “ Ep7q{V ´ CH
1111{2´ CH

2222{2

8 ´p8q
ε “ p0 1 1 0 0 0qT CH

2233 “ Ep8q{V ´ CH
2222{2´ CH

3333{2

9 ´p9q
ε “ p1 0 1 0 0 0qT CH

1133 “ Ep9q{V ´ CH
1111{2´ CH

3333{2

2.3. Computation of the CTE

Here, the CTE of the composites is determined by finite element computation of the unit cell
with specific structural and thermal loadings [30]. As shown in Figure 1a, along the planes x1 = 0,
x2 = 0, and x3 = 0, the model is restricted to move in the x1, x2, and x3 directions. Planes x1 = l1, x2 = l2,
and x3 = l3 are free to move but have to remain planar in a parallel way to preserve the compatibility
with adjacent cells. Suppose the deformation of the unit cell is caused by a temperature rise of ∆T.
During the deformation, xi = li becomes xi = li + ∆li, and the displacement, ∆li, can be determined
from the finite element analysis. The CTE in direction i then corresponds to

αi “
∆li

li∆T
(7)

2.4. Experiment

To test the accuracy of the micromechanical model, three samples of the unidirectional C/C–SiC
composites with different layer thicknesses were fabricated. The fiber preforms were close-packed 1K
T-300 carbon fiber yearns from Nippon Toray (Tokyo, Japan). The multi-layered PyC and SiC matrix
were deposited by CVI process using butane and methyltrichlorosilane (MTS) as the reactive materials
in School of Material, Northwestern Polytechnical University, Xi’an, PR China. The infiltration
condition of PyC was: temperature 960 ˝C, pressure 5 KPa, Ar flow 200 mL/min, butane flow
15 mL/min. The infiltration condition of SiC was: temperature 1000 ˝C, pressure 5 KPa, H2 flow
350 mL/min, Ar flow 350 mL/min, and the molar ratio of H2 and MTS of 10. Different layer thicknesses
are obtained by controlling the infiltration time. The detailed illustration for the above process
can be found in [3]. Elastic constants and CTEs of each material phase were taken from [3] and
listed in Table 2. In this study, three groups of layers thicknesses were designed by controlling
the infiltration time and are listed in Table 3. The fiber volume fractions of three samples were
19.7%, 19.7%, and 19.1%, respectively. Here, it should be noted that there indeed exists discrepancy
between the designed thickness and the measured thickness, due to the complexity of the CVI process.
However, since the purpose of this experiment is to verify the micromechanical model in an efficient
manner, the discrepancy between the designed and true thickness values is neglected to simplify
the experiment implementation (i.e., avoid the complex measurement of layer thicknesses in the
SEM microphotographs).
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Table 2. Properties for each material phase.

Material Phase E11 GPa E33 GPa G12 GPa G23 GPa v12 v23 α11 10´6/˝C α33 10´6/˝C

T-300 carbon fiber 22 220 7.75 4.8 0.42 0.12 8.85 ´0.7
pyrolytic carbon 12 30 2.0 4.3 0.4 0.12 1.8 –
silicon carbide 350 – 145.8 – 0.2 – 4.5 –

Table 3. Comparison of measured and predicted modulus and coefficients of thermal expansion (CTEs).

Sample
Layer Thickness (µm) Modulus E33 (GPa) CTE α33 (10´6/˝C) CTE α11 (10´6/˝C)

d1 d2 d3 d4 d5 d6 Model Test Model Test Model Test

A 0.5 1.0 0.5 1.0 0.5 1.0 256.2 226.1 3.753 3.309 4.356 3.893
B 0.5 0.5 0.5 1.0 1.0 1.0 225.5 200.1 3.646 3.235 4.242 3.847
C 1.0 0.5 1.0 0.5 1.0 0.5 175.1 155.8 3.421 3.021 4.009 3.630

Uniaxial tensile tests were conducted at room temperature to obtain the longitudinal tensile
modulus of the composites. Quasi-static tension tests were performed on a DNS-100 electronic
universal testing system (CIMACH, Changchun, China). To measure the longitudinal and transverse
CTEs of composites, DIL 402C dilatometer made by NETZSCH Company (Selb, Germany) was
employed. Predictions based on the micromechanical model were compared with experimental data.
The diameter of T-300 carbon fiber is 7.0 µm. The modulus and CTEs obtained in the previous tests for
composite samples (denoted as A, B, and C) with different layer thicknesses, listed in Table 3, were
chosen for comparison.

Table 3 shows the comparison of measured and predicted modulus and CTEs for the various
composite samples. It can be seen that the predicted results coincide well with the experimental data.
The comparative results may highlight the predictive capacity of the proposed micromechanical model
for predicting the elastic modulus and CTEs of unidirectional C/C–SiC composite. However, it should
be pointed out that because rudimental cavities generated within the composite for the emission of
large infiltrated by-products during the infiltration are not considered in this paper; thus, the modulus
and CTEs computed numerically by the present model are larger than the experimental results.

3. Optimization Problem

In this paper, a unidirectional C/C–SiC composite consisting of six layers of matrices made up of
alternate PyC and SiC is used as a case study. In high temperature environments, one of the common
requirements is to use C/C–SiC composites with low thermal expansion behaviors and high elastic
modulus. Thus, the objective of this study is to minimize the CTE of composites with elastic modulus
constraints. The optimization problems given in the present study include two cases, which include,
respectively, the minimization of the longitudinal and transverse CTEs. A constant fiber volume
fraction of 30% is defined for the composites. Therefore, an equality constraint is imposed on the sum
of the thicknesses of matrix layers. Note that in order to simplify the programming implementation,
this equality constraint is transferred to inequality constraints, as illustrated in Equations (8) and (9)
(∆ = 0.01). D0 is a constant derived from the fiber volume fraction. In this study, D0 is equal to 5.168
for a 30% fiber volume fraction. In addition, since the load-bearing capability of C/C–SiC composite
structures in industrial applications is primarily related to the tensile modulus E33, another constraint
is imposed on the allowable value of E33 according to the real applications.
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Mathematically, the optimization problems can be formulated as follows:

Minimize α33 pXq
X “ pd1, d2, ..., d6q

0.2 ď di ď 1.0, 1 ď i ď 6

Subject to

$

’

&

’

%

200.0´ E33 pXq ď 0
d6 ` 2

ř5
i“1 di ´ pD0 ` ∆q ď 0

pD0 ´ ∆q ´ d6 ´ 2
ř5

i“1 di ď 0

(8)

Minimize α11 pXq
X “ pd1, d2, ..., d6q

0.2 ď di ď 1.0, 1 ď i ď 6

Subject to

$

’

&

’

%

200.0´ E33 pXq ď 0
d6 ` 2

ř5
i“1 di ´ pD0 ` ∆q ď 0

pD0 ´ ∆q ´ d6 ´ 2
ř5

i“1 di ď 0

(9)

The design variables are the thicknesses of the matrix layers. The fiber diameter ϕ f is 7.0 µm.
Elastic constants and CTEs of each material phase are listed in Table 2. The upper bound of matrix
layer thickness is 1.0 µm. The lower bound of thickness of matrix is set to 0.2 µm for reducing the
complexity of the fabrication process.

4. Back Propagation (BP) Neural Network Model

The proposed micromechanical modeling approach has shown favorable predicting capability
for the thermal-elastic properties of C/C–SiC composites. However, a high computational cost
would be induced due to the large number of elements of the complex multi-layered microstructure.
Especially in an optimization procedure, for each new situation, a finite element mesh has to be rebuilt
and an iterative finite element analysis has to be carried out. This is extremely time consuming and
computationally expensive. The most important benefit of an artificial neural network is the high
computing efficiency. Therefore, in this study a hybrid approach integrating the micromechanical
model and an artificial neural network is proposed for the determination of the CTE and elastic
modulus of the C/C–SiC composites.

The BP neural network has the powerful ability of non-linear interpolation to obtain the
mathematical mapping reflecting the internal law of the experimental data. In this study, a four-layer
BP neural network containing one input layer, two hidden layers and one output layer is developed
to construct the mapping between the layer thicknesses and the thermal-elastic properties of
unidirectional C/C–SiC composites. Every neural network has exactly one input layer and one
output layer. So we only need to determine the number of hidden layers. Heaton [31] summarized the
capabilities of neural network architectures with various hidden layers: the hidden layer is not needed
if the function is linearly separable; one hidden layer can approximate any function that contains a
continuous mapping from one finite space to another; two hidden layers can represent an arbitrary
decision boundary to arbitrary accuracy with rational activation functions and can approximate any
smooth mapping to any accuracy. Therefore, two hidden layers are used in this study. Although two
hidden layers increases the computational cost, their capability of representing functions with any
kind of shape provides a promising tool for our further study.

Figure 3 illustrates the BP neural network architecture used in this study. The network contains
three parts: one input layer having six neurons related to the layer thicknesses; two hidden layers with
20 neurons for each one, and one output layer having three neurons representing the transverse and
longitudinal CTEs α11 and α33 and the modulus E33. There are many general methods for determining
the number of neurons in the hidden layers. However, these rules just provide a starting point for
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users to consider. For the problem considered in this study, one of the commonly-used rules gives an
approximate range for the number of neurons in a hidden layer:

n “
?

ni ` no ` α (10)

where n is the number of neurons in the hidden layer, ni is the number of neurons in the input layer, no

is the number of neurons in the output layer, α is a constant from 1 to 10. According to the empirical
equation, in this study the number of neurons in the hidden layer is between 4 and 13. Considering a
BP neural network with more neurons in the hidden layer can give a higher precision solution [32]; the
number of neurons in the hidden layer is finally selected as 20 in this paper.Materials 2016, 9, 222 
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In the network, the total input, inj, received by the jth neuron in the hidden layer from all of the
neurons in the preceding layer is:

inj “

N
ÿ

j“0

ωijxi (11)

where N is the number of inputs to the jth neuron in the hidden layer, xi is the input from the ith
neuron in the preceding layer, and wij is the connection weight from the ith neuron in the forward
layer to the jth neuron in the hidden layer.

The neuron then processes the input through a transfer function fs as below to produces its
output outj:

outj “ fs
`

inj
˘

“
1´ e´inj

1` e´inj
(12)

Before the above BP neural network system can be used to predict the thermal-elastic properties of
the composite, it must be trained by the data obtained from the micromechanical model. The connection
weight wij will be calculated by minimizing the error between the predictive value and the actual value
during the training process. Details about the training process will be discussed in the following section.

4.1. Generation of Training Data

In this study, the training data are obtained from the micromechanical computations. In order to
reflect the inner relationship between the thermal-elastic properties and the matrix layer thicknesses, a
full factorial experimental design is no doubt an excellent idea. However, the full factorial experimental
design means that a large number of computations (15,625 in this study) should be taken, which will
obviously consume much time. Therefore, the Taguchi orthogonal array [33] which suggests using
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less simulation to find out the relationship between parameters is employed in this study. 25 samples
designed by the L25 orthogonal array as well as another 35 samples randomly generated by computer,
60 samples in sum, are used to train the designed network.

4.2. Neural Network Training

During the training process, the connection weights should be calculated by minimizing the mean
square error between network predictions and training data. Equation (13) [31] is used to update the
connection weights iteratively. At the beginning of the training, the weights are given at random,
and then they are iteratively updated until convergence to the certain values by using the gradient
descent method.

ωnew
ij “ ωold

ij ` ∆ωij

∆ωij “ ´η
BE
Bωij

outj
(13)

where E is the mean square error and is set as 1 ˆ 10´4. η is the learning rate parameter controlling the
stability and rate of convergence of the network, which is usually a constant between 0 and 1 and is
chosen to be 0.01 in this study. Totally, the number of the connection weights to be identified is 580.

The training process takes about 1200 s of CPU time on HP personal workstation for 4.0 ˆ 105

training iterations. Figure 4 gives the variation curve of the mean square error with the iteration of
connection weights (according to Equation (13)). It can be observed that with the updating of the
connection weights, the mean square error has been gradually declined and converged to 1 ˆ 10´4.
The mathematic mapping between the layer thicknesses and the CTE and elastic modulus is then
stored in the trained net. The mathematic function can be expressed as:

S piq “ fl

´

ÿ

w3 fs

´

ÿ

w2 fs

´

ÿ

w1X
¯¯¯

(14)

where S(i) (i = 1, 2, 3) represents the CTE and elastic modulus; X = [x1, x2, x3, x4, x5, x6] is the vector
consisting of the thickness values of six matrix layers; fl is the linear transfer function between hidden
layer 2 and the output layer; fs is the transfer function between the input layer and hidden layer 1, as
well as hidden layers 1 and 2; w1, w2, w3 represent the connection weights between the input layer and
hidden layer 1, hidden layer 1 and hidden layer 2, and hidden layer 2 and the output layer, respectively.
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4.3. Neural Network Testing

In order to demonstrate the ability of a neural network system to generalize the training data, the
neural network is used to estimate the modulus and CTEs of the input design parameter combination.
Twenty groups of layer thicknesses randomly generated by computer (not used in the training process)
are used in the testing and are listed in Table 4.
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Table 4. 20 groups of layer thicknesses used in the testing.

Nos.
Layer Thickness (µm)

d1 d2 d3 d4 d5 d6

1 0.2610 0.5662 0.2480 0.3919 0.9195 0.3899
2 0.4644 0.8772 0.2833 0.2048 0.2793 0.6328
3 0.4830 0.4023 0.4673 0.7826 0.4900 0.6968
4 0.5711 0.3550 0.9901 0.3457 0.3629 0.6663
5 0.7319 0.7946 0.5799 0.3282 0.7503 0.7479
6 0.9353 0.4803 0.8645 0.8642 0.6044 0.6487
7 0.8524 0.8761 0.7855 0.8279 0.2979 0.7361
8 0.9357 0.5894 0.7152 0.5864 0.2819 0.4140
9 0.7467 0.7546 0.2069 0.8498 0.8370 0.5739
10 0.7100 0.6951 0.9807 0.4282 0.9433 0.2059
11 0.7460 0.2228 0.2224 0.9292 0.3738 0.2794
12 0.7125 0.9604 0.9500 0.2565 0.9891 0.4261
13 0.8549 0.4947 0.8741 0.7923 0.8863 0.5873
14 0.3470 0.7968 0.8577 0.3749 0.9302 0.6073
15 0.8721 0.5665 0.3505 0.2041 0.4703 0.9845
16 0.8748 0.3878 0.8542 0.8348 0.5209 0.4124
17 0.9856 0.6024 0.3441 0.6426 0.7592 0.3716
18 0.9970 0.2374 0.4513 0.5714 0.9666 0.6571
19 0.8432 0.7456 0.8845 0.9966 0.4197 0.7483
20 0.2610 0.7432 0.4422 0.7643 0.6063 0.7591

Table 5 shows the comparison between the neural network prediction and micromechanical
computation. The forecast error is defined as:

Fe “ pSp ´ Smq {Sm (15)

where Fe represents the forecast error of the prediction system. Sp is the result of neural network
prediction, and Sm stands for the result of micromechanical computation.

Table 5. Comparison between the neural network prediction and micromechanical computation.

Nos.
CTE α33 (10´5/˝C) CTE α11 (10´5/˝C) Modulus E33 (GPa)

Sp Sm Fe (%) Sp Sm Fe (%) Sp Sm Fe (%)

1 0.2978 0.3115 ´4.40 0.4019 0.4163 ´3.46 211.031 220.368 ´4.24
2 0.3114 0.3218 ´3.24 0.4637 0.4459 3.99 243.368 251.517 ´3.24
3 0.3256 0.3390 ´3.96 0.4520 0.4369 3.47 228.380 236.248 ´3.33
4 0.3276 0.3164 3.54 0.4133 0.4306 ´4.01 190.841 200.759 ´4.94
5 0.3336 0.3451 ´3.33 0.4057 0.4194 ´3.25 202.234 209.252 ´3.35
6 0.3711 0.3581 3.62 0.4091 0.4234 ´3.36 215.198 207.463 3.73
7 0.3860 0.3681 4.88 0.4224 0.4358 ´3.06 225.689 233.787 ´3.46
8 0.3514 0.3392 3.58 0.4158 0.4296 ´3.20 206.528 213.309 ´3.18
9 0.3460 0.3584 ´3.47 0.4345 0.4188 3.74 237.316 228.926 3.66

10 0.3461 0.3338 3.68 0.4014 0.3871 3.69 173.465 179.566 ´3.40
11 0.3333 0.3226 3.31 0.4234 0.4380 ´3.35 242.812 233.045 4.19
12 0.3560 0.3438 3.56 0.4065 0.3927 3.51 191.179 185.067 3.30
13 0.3684 0.3552 3.73 0.4260 0.4118 3.45 202.535 196.341 3.15
14 0.3534 0.3409 3.67 0.3931 0.4085 ´3.78 211.295 203.589 3.78
15 0.3403 0.3283 3.64 0.4258 0.4412 ´3.49 227.551 218.387 4.20
16 0.3343 0.3456 ´3.27 0.4046 0.4213 ´3.98 197.096 204.209 ´3.48
17 0.3261 0.3430 ´4.91 0.4280 0.4127 3.69 213.942 206.342 3.68
18 0.3196 0.3311 ´3.47 0.4321 0.4163 3.80 193.728 187.862 3.12
19 0.3891 0.3715 4.76 0.4476 0.4319 3.62 236.370 228.074 3.64
20 0.3415 0.3592 ´4.93 0.4475 0.4290 4.29 224.879 232.518 ´3.29
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It is seen that the forecast errors of α11 and α33 are respectively inside the ranges of
(´4.01%, 4.29%) and (´4.93%, 4.88%). Here, if the relative fluctuation of Sm is defined as

(
ˆ

Sm
min ´

Sm
max ` Sm

min
2

˙

{
Sm

max ` Sm
min

2
,
ˆ

Sm
max ´

Sm
max ` Sm

min
2

˙

{
Sm

max ` Sm
min

2
), we can easily obtain

the relative fluctuations of α11 and α33 within the 20 groups of testing samples: (´10%, 10%) and
(´11%, 11%). The above results clearly indicate that both the forecast errors of α11 and α33 fall in the
range of fluctuations. Therefore we want to emphasize that although the neural network predictions
partly agree with the micromechanical model, the improvement of the current neural network is
still needed in future for an enhanced predicting capability. Possible refining approaches include
supplementing adequate training samples with a wider range and optimizing the neural network. The
running time of the prediction system is sharply decreased compared to that of the micromechanical
analysis. The average running time of one micromechanical computation (including 12 finite element
analyses) is about 2500 s and that of neural network prediction system is only about 0.001 s.

5. Particle Swarm Optimization Algorithm

In a PSO algorithm, each individual of the swarm is considered as a flying particle in the design
space that has a position and a velocity. The particles remember the best position that they have seen
during the flying. Members of a swarm remember the location where they had their best success and
communicate good positions to each other, then update their own position and velocity based on these
good positions as follows:

Vk`1
i “ ωVk

i ` c1r1

´

Pk
i ´ Xk

i

¯

` c2r2

´

Pk
g ´ Xk

i

¯

(16)

Xk`1
i “ Xk

i `Vk`1
i (17)

where Vi and Xi represent the velocity and the position of the ith particle, respectively (the subscripts k
and k + 1 refer to the recent and the next iterations, respectively). Pi is the best previous position of
the ith particle and Pg is the best global position among all the particles in the swarm. ω is the inertia
weight controlling the impact of the previous history of velocities on the current velocity and is set
to 0.875 in this study. c1 and c2 are acceleration constants indicating the stochastic acceleration terms
which pull each particle towards the best position attained by the particle or the best position attained
by the swarm. In this work, c1 = 2 and c2 = 2 are chosen. r1 and r2 are two random numbers between 0
and 1.

Most optimization problems include the problem-specific constraints and the variable limits.
For the present optimization, the problem-specific constraint is the elastic modulus, and the variable
limits are design bounds of the thicknesses of matrix layers. If the particle flies out of the variable
boundaries, the solution cannot be used even if the problem-specific constraint is satisfied, so it is
essential to make sure that all of the particles fly inside the variable boundaries, and then to check
whether they violate the problem-specific constraint.

5.1. Harmony Search Scheme: Handling the Variable Limits

A method introduced by Li et al. [34] dealing with the particles that fly outside the variable
boundaries is used in the present study. This method is derived from the harmony search (HS)
algorithm. In the HS algorithm, the harmony memory (HM) stores the feasible vectors, which are all in
the feasible space. The harmony memory size determines how many vectors can be stored. A new
vector is generated by selecting the components of different vectors randomly in the harmony memory.
Undoubtedly, the new vector does not violate the variables boundaries. When it is generated, the
harmony memory will be updated by accepting this new vector if it gets a better solution and deleting
the worst vector. Similarly, the PSO algorithm stores the feasible and “good” vectors (particles) in the
pbest swarm, as does the harmony memory in the HS algorithm. Hence, the vector (particle) violating
the variable boundaries can be generated randomly again by such a strategy: if any component of
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the current particle violates its corresponding boundary, then it will be replaced by selecting the
corresponding component of the particle from pbest swarm randomly. To highlight the presentation, a
schematic diagram is given in Figure 5 to illustrate this strategy.
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5.2. Penalty Functions Method: Handling the Problem-Specific Constraints

The most common method of handling the constraints is the use of a penalty function.
The constrained problem is transformed to an unconstrained one, by penalizing the constraints
and building a single objective function. Hence, the optimization problem becomes one of minimizing
the objective function and the penalty together. In this paper, a non-stationary, multi-stage penalty
function method implemented by Parsopoulos and Vrahatis [35] is adopted for constraint handling
with PSO. The penalty function is

F pXq “ f pXq ` h pkqH pXq , X P S Ă Rn (18)

where f(X) is the original objective function to be optimized. h(k) is a penalty value which is modified
according to the algorithm’s current iteration number k and is usually set to h pkq “

?
k. H(X) is a

penalty factor defined as:

H pXq “
m
ÿ

i“1

θ pqi pXqq qi pXq
γpqipXqq (19)

where qi(X) is a relative violated function of the constraints, which is defined as qi(X) = max {0, gi(X)}
(Note that gi(X) is the constraint), θ pqi pXqq is an assignment function, and γ pqi pXqq is the power of
the penalty function. Regarding the [10], the following values are used for the penalty function:
If qi pXq ă 1, then γ pqi pXqq “ 1;
otherwise γ pqi pXqq “ 2;
If qi pXq ă 0.001, then θ pqi pXqq “ 10;
else if qi pXq ď 0.1, then θ pqi pXqq “ 20;
else if qi pXq ď 1, then θ pqi pXqq “ 100;
otherwise θ pqi pXqq “ 300.

6. Results

The optimization problems illustrated in Section 3 are implemented by using the proposed hybrid
approach and PSO algorithm. For all the optimization problems, a population of 50 particles is used.
The stopping criterion can be defined based on the number of iterations without an update in the
best values of the swarm or the number of iterations the algorithm executes. Although the latter is
not a real physical stopping criterion, it is quite easy in programming implementation and hence is
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widely used in PSO algorithms. In this work, the maximum number of iterations is limited to 100 and
is adopted as the stopping criterion.

Figure 6 provides the convergence rates of the optimization procedure for minimizing the
longitudinal CTE. The algorithm achieves the best solution after about 50 iterations. The longitudinal
CTE has been effectively reduced to 2.89ˆ 10´6/˝C. The convergence of the design variables during the
iterations is shown in Figure 7. It is observed that the thicknesses of the first (PyC) matrix layer increases
to its higher bound. The third (PyC) and last (PyC) matrix layers both reach median values between
the lower and higher bounds. The second (SiC), fourth (SiC), and fifth (PyC) matrix layers all iterate
to values near the lower bound. The final optimized thicknesses are 0.999/0.259/0.557/0.215/0.276/
0.525 µm.
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Figure 8 provides the convergence rates of the optimization procedure for minimizing the
transverse CTE. The algorithm achieves the best solution after about 80 iterations. The transverse CTE
has been effectively reduced to 4.09 ˆ 10´6/˝C. The convergence of the design variables during the
iterations is shown in Figure 9. It is observed that the thicknesses of the first (PyC) and third (PyC)
matrix layers both iterate to median values between the lower and higher bounds. The second (SiC)
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and fifth (SiC) matrix layers iterate to values near the lower bound. The final optimized thicknesses
are 0.589/0.301/0.510/0.349/0.703/0.279 µm.
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7. Conclusions

In this study, optimal design of unidirectional C/C–SiC composites with respect to the
thermal-elastic properties is obtained by the use of the non-gradient PSO algorithm. A hybrid
methodology using a micromechanical model and a BP neural network is firstly proposed for
predicting the elastic modulus and CTEs. Numerical results demonstrate its ability to find out the
highly non-linear relationship between the multi-layers thicknesses and the CTEs and elastic moduli.
However, it should be mentioned that the forecast errors of the presented neural network model are
in the range of the relative fluctuations of testing samples. Therefore, although the neural network
predictions partly agree with the micromechanical model, the improvement of the current neural
network model is still needed in the future for an enhanced predicting capability.

Then, an optimization scheme which combines a PSO algorithm and the hybrid methodology
was used to minimize the CTE of composites with the constraint of elastic modulus by designing
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the thicknesses of matrix layers. The minimization procedures of the longitudinal and transverse
CTEs generate quite different thicknesses of matrix layers. The final optimized thicknesses are
0.999/0.259/0.557/0.215/0.276/0.525 µm for minimizing the longitudinal CTE, while for minimization
of the transverse CTE the final optimized thicknesses are 0.589/0.301/0.510/0.349/0.703/0.279 µm.

Here, we want to mention that the emphasis of this work was to develop an effective
optimization scheme for optimizing the thermal-elastic properties of unidirectional C/C–SiC
composites. Numerical examples have shown the effectiveness of the proposed method. However,
to obtain a variation law of the multi-layer thicknesses for the thermal-elastic design of C/C–SiC
composites, more optimization cases would need to be investigated in our further studies.
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