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Abstract: Hybrid materials of electrically conducting polymers and inorganic semiconductors form
an exciting class of functional materials. To fully exploit the potential synergies of the hybrid
formation, however, sophisticated synthetic methods are required that allow for the fine-tuning
of the nanoscale structure of the organic/inorganic interface. Here we present the photocatalytic
deposition of a conducting polymer (polyaniline) on the surface of silicon carbide (SiC) nanoparticles.
The polymerization is facilitated on the SiC surface, via the oxidation of the monomer molecules
by ultraviolet-visible (UV-vis) light irradiation through the photogenerated holes. The synthesized
core–shell nanostructures were characterized by UV-vis, Raman, and Fourier Transformed Infrared
(FT-IR) Spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy,
and electrochemical methods. It was found that the composition of the hybrids can be varied by
simply changing the irradiation time. In addition, we proved the crucial importance of the irradiation
wavelength in forming conductive polyaniline, instead of its overoxidized, insulating counterpart.
Overall, we conclude that photocatalytic deposition is a promising and versatile approach for
the synthesis of conducting polymers with controlled properties on semiconductor surfaces. The
presented findings may trigger further studies using photocatalysis as a synthetic strategy to obtain
nanoscale hybrid architectures of different semiconductors.

Keywords: photocatalysis; electrochemistry; hybrid materials; semiconductor; heterojunction;
conjugated polymer; optoelectronics

1. Introduction

Hybrid materials, based on conducting polymers (CP) and inorganic materials, attracted a lot of
interest in the past two decades [1,2]. Nanocomposite materials, exploiting the synergistic combination
of the CP and the incorporated component (for example, metal nanoparticles, carbon nanotubes, and
inorganic semiconductors (SC)) have been synthesized [3–6]. Hybrid assemblies of CPs and inorganic
SCs provide the possibility of constructing high quality CP/SC interfaces, enabling a wide range
of promising applications, such as photocatalysis, solar cells, sensors, and supercapacitors [7,8]. A
wide array of synthetic approaches have been deployed, from simple mechanical mixing and in situ
chemical polymerization, to electrochemical methods [9]. As shown in our recent review article,
however, sophisticated synthetic protocols are indeed necessary to obtain sufficient control over the
composition and morphology [9].
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Silicon carbide (SiC) is a wide bandgap SC (EBG = 2.4–3.1eV, depending on which polymorph
we are looking at) [10] with excellent physical and chemical properties, such as good mechanical
and chemical stability, biocompatibility, photoluminescent behavior, high thermal conductivity and,
last but not least, an affordable price [11–15]. Thus, SiC has been employed in a wide range
of applications, for example, as substrate for high-temperature and high-power electronics [16],
spintronics [17], optoelectronic devices [17] and quantum information processing [18]. As another
prominent application area, SiC nanoparticles have been used in photocatalytic environmental
remediation, for example, to degrade acetaldehyde [19] as a model compound. In addition, the
conduction band edge position of SiC allows this material to photocatalytically reduce water or CO2

(in the presence of a sacrificial electron donor), which was first demonstrated in 1979 [20].
SiC-based hybrid materials offer an attractive avenue to simultaneously harness the eminent

properties of SiC as well as those of the other component. In this vein, SiC has been already
combined with different CPs, such as polypyrrole (PPy) [21,22], polyaniline (PANI) [5,23], and
poly(3-thiophene-acetic-acid) [24]. PANI is particularly attractive, because of its versatile redox
behavior, excellent chemical and electrochemical stability, large capacitance, and electrochromic
properties [25–27]. The commonality in these reports is that every synthesis was carried out by in
situ oxidative chemical polymerization, differing only in the oxidizing agent employed (e.g., FeCl3).
In such procedures the oxidant reacts with the monomer to form a radical cation, which initiates the
polymerization by reacting with another monomer or radical cation. This method, however, gives only
very limited control over the structure and morphology of the synthesized composite material. On the
other hand, to efficiently harness the possible synergies of the components, the precise control over
composition, morphology and thus the interfacial properties is inevitable. Consequently, there is a
massive demand for new synthesis strategies, which allow hybrid materials with properties tailored
towards specific applications to be obtained.

Photocatalysis, occurring at the SC/electrolyte interface is a broadly studied phenomenon [28],
mostly in the field of solar energy conversion and environmental remediation. On the other hand, much
less attention is devoted to its utility as a synthesis tool. Biomass valorization using photocatalysis is a
promising example [29], but other areas still have to be explored. The limited number of studies on the
photocatalytic synthesis of hybrid materials of inorganic SCs and organic CPs is indeed surprising,
considering the photoactivity of both components. The most important beneficial feature of this
approach is that the CP is formed in situ, on the surface of the inorganic SC nanostructure, thus
bringing the two SCs into intimate contact [30].

The pioneering studies were performed on colloidal, or nanoparticulate, titanium dioxide (TiO2)
slurries [31,32], using pyrrole as the monomer. In these cases, the nanoparticles were dispersed
in the monomer- and supporting electrolyte-containing solution. The dispersion was exposed to
ultraviolet (UV) irradiation under continuous stirring and saturation with O2 (which acts as electron
scavenger). As the result of polymerization, a thin PPy film was deposited on the surface of TiO2.
Follow-up studies demonstrated the suitability of this method using other SCs, such as cadmium
sulfide (CdS) [33], cadmium telluride (CdTe) [33], cadmium sulfide@zinc sulfide CdSe@ZnS [34], and
polymers (e.g., poly(3,4-ethylenedioxytiophene)-PEDOT) [35], and also yielded further mechanistic
details [36]. Finally, we note that two sophisticated varients of this approach were also demonstrated:
(i) photoelectrochemical polymerization (where external electrical bias is employed instead of a
chemical electron scavenger) [9,37]; and (ii) the photocatalytic deposition of CdS on the surface of
poly(3-hexylthiophene) (in this case, the photoactivity of the CP is exploited in a similar manner) [38].

In this study we add another composite material, namely SiC/PANI, to the library of
photocatalytically prepared hybrid assemblies. A carefully designed synthetic protocol is presented,
which results in core–shell nanostructures, with a high quality organic/inorganic junction. Finally, it is
demonstrated that it is possible to tune the composition of the composite material by simply changing
the irradiation time.



Materials 2016, 9, 201 3 of 13

2. Materials and Methods

2.1. Chemicals

For the nanocomposite synthesis, SiC (U.S. Research Nanomaterials Inc, Houston, TX, USA
average diameter « 50 nm), aniline (Sigma-Aldrich), and sulfuric acid (95%–98%, Sigma Aldrich, Sigma
Aldrich, Budapest, Hungary) were used, along with O2 gas (99.995%, Messer, Budapest, Hungary). For
the preparation of the dispersions used for spray coating, Nafion solution (10%, Fuelcellstore.com) was
employed. All chemical reagents were of analytical grade and were used without further purification,
except for the aniline monomer, which was freshly distilled before use. Deionized water (MilliPore, 18
MΩ) was used to prepare all solutions.

2.2. Nanocomposite Synthesis

A solution (Vtotal = 5 mL), containing 0.2 M aniline, 10 mg SiC nanoparticles, and 0.5 M H2SO4

was prepared for each synthesis. In the two sets of experiments (with or without hard UV irradiation),
the slurries were put in a quartz or Pyrex® photoreactor, (custom designed and manufactured in
Hungary) depending on the type of illumination (Pyrex® absorbs all the components of the irradiating
light below 300 nm, while quartz transmits the whole spectrum). The dispersion was constantly stirred
and saturated with O2 during the synthesis, and illuminated by a 300 W Hamamatsu L8251 Hg-Xe
arc lamp (Hamamatsu Photonics, Hamamatsu, Japan). The time of irradiation was varied (5, 10, 30,
and 60 min). After the core–shell nanocomposite synthesis, the samples were centrifuged with a VWR
1814 centrifuge, then washed and centrifuged consecutively two more times. Finally, the samples were
dried under vacuum at 80 ˝C for 4 h.

For the electrochemical characterizations, the samples were spray-coated on an Au electrode
surface. The dispersion contained 2 mg/mL nanocomposite (or pristine SiC) and 25% Nafion®. The
mass of the material on the electrode surface was approximately 2 mg in each case.

2.3. Characterization

Thermoanalytical measurements (thermogravimetry-TG and differential thermogravimetry- dTG)
were performed on a TA Q800 thermogravimetric analysis (TGA) instrument. In a typical experiment,
3–5 mg of a sample was heated in synthetic air (20.5% O2 in N2) from room temperature to 800 ˝C with a
heating rate of 10 ˝C/min. Raman spectroscopy was performed on a DXR Raman microscope (Thermo
Scientific, Waltham, MA, USA) using a λ = 532 nm green laser with 10 mW laser power. Attenuated total
reflectance Fourier transformed infrared spectroscopy (ATR-FT-IR) studies were performed using a
Bio-Rad Digilab Division FTS-65A/896 Fourier transform infrared spectrometer (Bio-Rad Laboratories,
California, CA, USA), equipped with a Harrick’s Meridian® SplitPea single-reflection diamond
attenuated total reflectance (ATR) accessory. All presented spectra are an average of 256 interferograms
with 4 cm´1 optical resolution. Transmission electron microscopic (TEM) images were taken at various
magnifications on a FEI Tecnai G2 20 X-Twin instrument (FEI, Hillsboro, OR, USA), operating at an
acceleration voltage of 200 kV. For the scanning electron microscopy (SEM), a Hitachi S-4700 FE-SEM
instrument (Hitachi, Tokoy, Japan) was used. Cyclic voltammetric experiments were carried out on a
PGSTAT 10 (Autolab) instrument (Metrohm Autolab, Kanaalweg, Netherlands). A classical, sealed
three-electrode cell was used, purged with Ar gas during the measurements. An Au foil, spray-coated
with the hybrid materials, was used as a working electrode (A = 1 cm2). A Pt foil and a Ag/AgCl/3M
NaCl were used as counter and as reference electrodes, respectively. The measurements were carried
out in 0.5 M H2SO4 at a 25 mV/s sweep rate.
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3. Results and Discussion

3.1. Synthesis of the Core–Shell Nanocompostites

The schematic illustration of the nanocomposite synthesis is given in Figure 1. The SiC
nanoparticles were dispersed in the solution of the aniline monomer and the sulfuric acid supporting
electrolyte, and stirred constantly, ensuring that the incident photon flux evenly reached the surface
of the dispersed SiC nanoparticles. As a result of ultraviolet-visible (UV-vis) light irraditation,
electron-hole pairs are formed in the SiC nanoparticles. After charge separation, some of the
photogenerated charge carriers reach the particle surface before they could recombine. These charge
carriers can initiate various reactions at the SiC/electrolyte interface. In our case, the holes oxidize the
aniline monomers, generating radical cations. These first form oligomers in the solution, close to the
surface of the SC nanoparticles and, thereafter, a continuous ultrathin polymer coating is deposited on
the surface. Contrastingly, the photogenerated electrons react with dissolved O2, which is present in
the solution as an e´ scavenger. The polymerization can be terminated in two ways: (i) by turning off
the illumination; (ii) or by coating the surface of the SiC nanoparticles evenly (without any gaps) with
the gradually thickening PANI film, which causes optical shielding by absorbing the irradiating light.
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Figure 1. Schematic illustration of the nanocomposite synthesis.

The first spectacular difference between the two synthetic methods (i.e., with and without hard
UV light irradiation) is manifested in the color of the solution after centrifuging the SiC/PANI
nanoparticles. The first, irradiated with the full white light irradiation, turned dark red, while the
second one remained almost transparent. After centrifuging and filtering, the UV-vis spectra of the
two residual solutions were measured (Figure 2). Beyond the obvious low-wavelength band of the
monomer, two wide bands appeared in the case of the hard UV-illuminated sample: one corresponds
to the formed oligomers with low segment number, the other one to the polymer fragments in the
solution [39]. Contrastingly, on the spectrum recorded for the UV-filtered sample, no band appears
which could correspond to the polymer/oligomers. There are at least three possible factors contributing
to these observations: (i) because of the hard UV illumination, more polymer forms and the excess
stays in the solution causing the dark reddish color; (ii) when the hard UV illumination occurs, the
aniline is photopolymerized in the solution; (iii) finally, it is also possible that the high energy UV
illumination degrades PANI, which is already formed on the SiC surface of the nanoparticles, which
may therefore leach into the solution.
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Figure 2. Ultraviolet-visible (UV-vis) spectra of the filtered and centrifuged dispersion after 60 min of
illumination: (a) hard ultraviolet (UV)-filtered, (b) hard UV-illuminated.

Thermogravimetric analysis (TGA) was employed to determine the amount of the formed PANI
after certain irradiation time periods, and thus to assess the composition of the various nanocomposite
samples. As a first step, the pure SiC was studied, where an 18% mass increase was observed between
~330 ˝C–800 ˝C, attributed to the oxidation of SiC nanoparticles (the black line in Figure 3A). As for
the pure PANI sample, two major decomposition steps occurred in the range of 25 ˝C–660 ˝C. In the
first step (25 ˝C–275 ˝C), the weight loss of 22% can be ascribed to the water and SOx desorption (from
the HSO4

´ dopant ions) from the sample. In the second step (275 ˝C–660 ˝C), the complete oxidation
of the polymer backbone was observed (the blue trace in Figure 3A) [40].

For all SiC/PANI composites, a two-step weight loss occurred in the range of 25 ˝C–~485 ˝C
attributed to the thermal degradation of PANI. This is followed by a two-step weight increment
due to the oxidation of SiC in the range of 400 ˝C–800 ˝C. The TG curves are the superposition of
those registered for the pure materials in Figure 3A. In the first step (25 ˝C–250 ˝C), the water and
dopant content desorbed, followed by the degradation of the PANI polymer chain in the range of
~250–~500 ˝C. As the irradiation time was increased from 5 min to 60 min, the maximum weight loss
(at elevated temperatures) increased from 1.9% to 3.2%, showing the gradually growing portion of
PANI in the composites. In addition, at elevated temperatures (500 ˝C–800 ˝C), the oxidation of the SiC
occurred in a two-step process, as opposed to pure SiC, where only one-step oxidation was witnessed.
We suspect that some carbon-based residual of PANI may influence the oxidation and sintering of the
SiC nanoparticles.
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Figure 3. Weight loss curves registered during the thermogravimetric analysis (TGA) for (A) silicon
carbide (SiC) and polyaniline (PANI); (B) and the various SiC/PANI hybrids; (C) a comparison of the
PANI content of the various SiC/PANI hybrids as derived from TGA.
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3.2. Structural Characterization

3.2.1. Raman Spectroscopy

Figure 4A compares and contrasts the Raman spectra of the synthesized hybrid core–shell
SiC/PANI nanoparticles (the irradiation was cut below 300 nm), the bare SiC, and the pure PANI.
There are three strong bands on the Raman spectra of the SiC nanoparticles (Figure 4A, curve ”a”).
The one, centered at 790 cm´1, is attributed to the lattice vibration of the material, specifically to the
zone-center transverse optical (TO) phonons of 3C-SiC [41]. There are two additional characteristic
bands, centered at 1334 cm´1, and at 1595 cm´1, corresponding to the vibrational properties of isolated
carbon arrangements [41,42], indicating the existence of an ultrathin carbon film on the surface of the
SiC nanoparticles.

The characteristic Raman bands of PANI are summarized in Table 1. The bands, appearing on the
spectra of the nanocomposite samples (Figure 4A), are marked with grey. It is visible in the series of
spectra (b–e) that with increasing illumination time, the quantity of the deposited polymer increases
as well. Note that the intensity ratio of the bands, centered at 1334 cm´1, and 1595 cm´1 completely
flipped over (because these bands are overlapping with those of PANI). In addition, most of the
characteristic bands of PANI appeared on the spectra of the nanocomposite, proving the formation
of the SiC/PANI hybrid. When the hard UV component of the illumination was not removed, some
of the characteristic bands completely vanished, some others can still be identified (but with much
smaller intensities (see the comparison in Figure 4B)).
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Figure 4. (A) Raman spectra of the pure silicon carbide (SiC) and PANI, and the SiC/PANI
nanocomposites (with the UV component filtered below 300 nm): (a) SiC, (b) SiC/PANI, 5 min of
illumination, (c) SiC/PANI, 10 min of illumination, (d) SiC/PANI, 30 min of illumination, (e) SiC/PANI,
60 min of illumination, (f) PANI; (B) Raman spectra of the synthesized nanocomposite samples: (a) SiC,
(b) SiC/PANI 60 min of illumination, UV-illuminated, (c) SiC/PANI 60 min of illumination, UV-filtered.

Table 1. Characteristic Raman bands of PANI. The bands appearing on the spectra of the SiC/PANI
nanocomposites are marked with grey.

Wavenumber (cm´1) Assignment [43–45]

517 Amine in-plane deformation
610 Ring deformation
720 Imine deformation
818 Amine deformation (C-N-C bending)
868 Ring deformation

1180 C-H bending in leucoemeraldine
1418 C-C stretching in quinoid-type ring
1595 C-C stretching in quinoid-type ring
1625 C-C stretching in benzene-type ring
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3.2.2. Infrared Spectroscopic Studies

The infrared (IR) spectra of the synthesized samples with the longest irradiation time (60 min)
are presented in Figure 5. On the spectra of SiC (the black curve), only one sharp, characteristic band
is visible, which corresponds to the Si-C stretching vibration, and there is an additional, rather weak
band, centered around 1090 cm´1, which can be assigned to both the stretching vibration of Si-O-C and
Si-O-Si bonds [24]. Table 2 contains the characteristic IR vibrations of PANI, with the bands appearing
on the spectra of the SiC/PANI nanocomposites, marked with grey. Note that on the spectrum of
the UV-illuminated composite there are no characteristic PANI peaks, which may indicate that the
deposited polymer layer is overoxidized. Contrastingly, almost all the characteristic bands of the PANI
appear on the spectra of the UV-filtered sample, which is another direct evidence that this milder
synthesis procedure results in SiC/PANI nanocomposites containing high-quality PANI.
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Figure 5. Infrared (IR) spectra of the synthesized nanocomposite samples and their components:
(a) SiC; (b) SiC/PANI, 60 min UV-illuminated; (c) SiC/PANI, 60 min UV-filtered; (d) bare PANI.

Table 2. Characteristic IR bands of PANI. The bands appearing on the spectra of the nanocomposites
are marked with grey.

Wavenumber (cm´1) Assignment [46,47]

515 Aromatic ring deformation
828 C-H out-of-plane bending benzenoid-type ring
882 C-H out-of-plane bending

1070 NH2 rocking, ring deformation
1146 C-H in-plane-bending, ring deformation
1246 C-N stretching
1304 C-N stretching
1485 Benzenoid-type ring stretching
1568 Quinoid-type ring stretching
1610 N-H bending

3.3. Morphological Characterization

3.3.1. Transmission Electron Microscopic Studies

The morphological characteristics of the SiC/PANI samples were first investigated by TEM.
Figure 6 shows the TEM images recorded for the pristine SiC and for the SiC/PANI nanocomposites,
synthesized with the shortest (5 min) and with the longest (60 min) irradiation time. The first
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conspicuous difference between the SiC and the nanocomposite samples, which can be observed
on the images captured at a smaller magnification, is that the degree of aggregation is higher in the
PANI-containing materials, despite the thorough mixing during synthesis. The images, taken at higher
magnification, allow us to visualize both the lattice fringes of the SiC nanoparticles and the deposited
PANI as a few nm-thick amorphous film on the surface of the nanoparticles (NP). Note that in the case
of the pristine SiC, the lattice fringes are visible till the edges of the nanoparticles, but in the case of the
nanocomposites an outer shell can be spotted, corresponding to the formed PANI film.

After taking the images with the same magnifications for all the other samples, the thickness of the
deposited polymer layer was determined. Figure 7 shows the distribution of the PANI shell thicknesses,
thus allowing for quantitative comparison. It is visible that with increasing illumination time, the
average film thickness is increasing from 1.0 to 2.5 nm, indicating that the thickness of the deposited
PANI can be regulated by simply varying the illumination time. In addition, the forming PANI also
glues together the individual SiC nanoparticles, as seen in the High Resolution Transmission Electron
Microscopy (HR)-TEM images (Figure 6D,E). Importantly, there is no major difference between the
thickness of the PANI layers synthesized with different light irradiations (see above).
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Figure 6. Transmission electron microscopy (TEM) images, captured for (A) SiC; (B) SiC/PANI,
after 5 min of illumination; (C) SiC/PANI, after 60 min of illumination at 130,000x magnification;
HR-TEM images taken for the SiC/PANI nanocomposite synthesized with 60 min of irradiation. The
magnifications were (D) 255,000x; and (E) 530,000x, respectively.
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Figure 7. Distribution of the PANI layer thickness for the various SiC/PANI hybrids: (A) UV-irradiated
samples; (B) UV-filtered samples.

3.3.2. Scanning Electron Microscopic Studies

SEM images were taken to characterize the overall morphology of the samples. Figure 8 shows
SEM images for SiC and for the two hybrid SiC/PANI samples, synthesized with the longest irradiation
time (60 min), differing only in the type of irradiation. As shown in Figure 8, the pristine SiC sample
has a granular morphology, where the individual nanoparticles can be spotted. Contrastingly, in the
other two images (Figure 8B,C), a more coherent structure is seen, where the polymer covers the SiC
nanoparticles. In addition, it seems that PANI deposits not just on the surface, but also among the
nanoparticles, thus gluing them together.
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Figure 8. Scanning electron microscopy (SEM) images, taken for (A) SiC; (B) SiC/PANI UV-irradiated
sample (60 min); (C) SiC/PANI UV-filtered sample (60 min).

3.4. Cyclic Voltammetric Analysis

The electrochemical behavior of the samples was probed by cyclic voltammetry (Figure 9). It
is visible that SiC has only limited electroactivity in this potential window (the red curve), which is
comparable with the current densities measured for the SiC/PANI sample prepared under full UV
irradiation. The shape of this latter voltammogram (the blue curve), however, is more pronounced:
it has one anodic and one cathodic peak. If the synthesis procedure was milder (UV-filtered), the
shape of the voltammogram clearly exhibits the features of the electrochemical transformation of
PANI [26,27]. The most important conclusions to be drawn from these observations is that the
SiC/PANI nanocomposite, prepared with filtering all the hard-UV component of the irradiation, was
much more electroactive compared to its counterpart prepared using the full output of the lamp. This
observation is in perfect agreement with the vibrational spectroscopic data presented above, namely
that the hard UV component degrades the conjugated structure of PANI.
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Figure 9. Cyclic voltammograms of the SiC nanoparticles and the synthesized nanocomposites recorded
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4. Conclusions

In this study we demonstrated how photoexcitation of SiC nanoparticles can be used to deposit
a conductive PANI coating on the particles’ surface. The presented photocatalytic polymerization is
a facile and versatile approach to obtain hybrid organic/inorganic semiconductor assemblies. The only
requirement is that the valence band edge of the semiconductor (e.g., TiO2 or CdS) is positive enough,
so that the photogenerated holes can oxidize the monomer molecules to initiate (and sustain) the
polymerization. As it was shown in the example of SiC/PANI, the thickness of the polymer shell can be
varied between 1.0 nm and 2.5 nm (as confirmed via TEM analysis), simply by changing the irradiation
time. This increasing PANI content was also corroborated by the TGA data, which additionally
confirmed that there is no bulk PANI in the hybrid samples. As gleaned from vibrational spectroscopic
and electrochemical studies, it was key to filter out the irradiation below 300 nm during synthesis.
While polymer formation was evidenced even when the full UV-vis output of the lamp was utilized,
the formed polymer was of low quality, both in terms of structure and electroactivity. This effect is
mostly related to the formation of insulating polymer upon direct photopolymerization (i.e., not by
the photogenerated holes in SiC), as well as to the degradation caused by the high energy irradiation.
In contrast, such problems did not occur when the hard UV component was filtered out during the
synthesis. Overall, this study adds to the library of hybrid organic/inorganic materials obtained
via photocatalytic synthesis. We hope that the presented results will encourage other researchers to
exploit this attractive method to synthesize such hybrid nanoarchitectures with controlled composition
and morphology.
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Abbreviations

The following abbreviations are used in this manuscript:

ATR-FT-IR Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy
CP Conducting Polymer
HR-TEM High Resolution Transmission Electron Microscopy
NP Nanoparticle
PANI Polyaniline
PPy Polypyrrole
SC Semiconductor
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
TGA Thermogravimetric Analysis
TO Transverse Optical
UV-vis Ultraviolet-visible
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