Supplementary Materials: Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries

Bingqing Xu, Jingwei Li, Rujun Chen, Yuanhua Lin, Cewen Nan and Yang Shen

Figure S1. SEM images of as-electrospun precursor nanofibers at different resolutions: (**a**) overall morphology of fibrous structures; (**b**) fibrous structures at specific area with higher resolution and (**c**) single nanofiber structure.

Figure S2. Low resolution SEM images of whole structure for all samples after different heat treatments stages: (a) P-250; (b) P-275; (c) P-300; (d) F-250; (e) F-275; (f) F-300.

Figure S3. Cyclic voltammogram at a scanning rate of 0.1 mV·s⁻¹ of F-275 sample after 95 cycles at $100 \text{ mA} \cdot \text{g}^{-1}$.

Figure S4. Rate capability of pure Co₃O₄.

Figure S5. Equivalent electrochemical circuits. *R*_b: Bulk resistance, mainly reflecting the resistance of electrode and electrolyte. *R*_{ct}: Charge transfer resistance. CPE1: Constant phase element, related to the roughness of the particle surface. *Z*_w: Warburg impedance, related to the lithium ion diffusion within the particles.

Figure S6. SEM images of electrodes with F-275 after 500 cycles at 1000 mA·g⁻¹ at different resolutions. (**a**) Overall morphology of the electrodes and (**b**) specific area morphology of electrodes at higher resolution.