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Abstract: The fracture behaviors of quasi-brittle materials are commonly specimen size (size effect)
and crack size (boundary effect) dependent. In this study, a new failure model is developed for
characterizing the size and boundary effects. The derivative of the energy release rate is firstly
introduced to predict the nominal strength dominated by the strength mechanism. Combined
with the energy criterion for the energy mechanism, an asymptotic model is developed to capture
the effect of any crack size on the nominal strength, and its expression for geometrically similar
specimens is also established, which is able to characterize the size effect. Detailed comparisons
of the proposed model with the size effect law and the boundary effect model are performed,
respectively. The nominal strength predictions based on the proposed model are validated with the
experimental results of cracked three-point bending beam specimens made of concrete, of limestone
and of hardened cement paste and compared with the model predictions given by the size effect law
and the boundary effect model.
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1. Introduction

Nominal strengths of quasi-brittle materials, like concretes, rocks, some types of ceramics, etc.,
are commonly specimen size (size effect) [1–4] and crack size dependent (boundary effect) [5–8].
The phenomena exist due to the fact that there is a micro-crack region called the Fracture Process Zone
(FPZ) around the tip of the defect. The fracture behavior starts to be size dependent when the FPZ is
relatively large relative to the specimen size, while for sufficiently small FPZ with respect to the size
of the specimen, the failure prediction can be easily achieved by the Linear Elastic Fracture Mechanics
(LEFM). On the other hand, the boundary effect is determined by the size of a fully-developed FPZ,
its distance to the front boundary measured by the crack length and its distance to the back boundary
measured by the un-cracked ligament. When the crack length or un-cracked ligament is smaller
than a certain size, the fracture behavior is affected by the specimen boundaries [7]. Quasi-brittle
materials commonly have relatively large values of FPZ. Therefore, it is important to have a better
understanding of the size and boundary effects of quasi-brittle materials.

In order to characterize the size and boundary effects induced by the specimen size and crack
size, several elastic stress field-based models, fracture mechanics-based models, combined stress and
energy models and asymptotic approaches have been established by researchers. The first three
models are classified as Theories of Critical Distance (TCDs), because they are associated with a length
scale usually proportional to Irwin’s characteristic length lch [9], which reads:

lch =
GcE

f 2
t

=
K2

c

f 2
t

(1)
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where Gc is the material fracture energy, E is Young’s modulus, Kc is the fracture toughness and ft is
the material tensile strength.

Based on the stress criterion, the point and line stress methods state that crack propagation
occurs when circumferential stress at some critical distance from the crack tip reaches a given critical
value [10–13]. The fracture mechanics-based models, such as the imaginary crack model [14,15],
finite fracture mechanics [16] and the volume-based strain energy density criterion [13,17], use only
the energy or energy density for the failure analysis. The combined stress and energy models [18,19]
assume that failure occurs when both criteria are fulfilled. The length scale in these models usually
depends on the properties of the material and proportional to Irwin’s characteristic length lch.
However, for quasi-brittle materials, the value of the characteristic length scale may become too large
when compared to the specimen size, which makes the direct implementation of these approaches
impossible [12].

In terms of the asymptotic approaches, such as Hu–Duan’s boundary effect model, and Bažant’s
size effect law, all are able to characterize the size and boundary effects induced by the crack size
and specimen size. The size effect models emphasize the influence of the physical sample size on
the nominal strength, and the crack length dependence of the fracture properties is not emphasized.
The most commonly-known specimen size-based model is the Size Effect Law (SEL) proposed by
Bažant [1–4,20]. SEL is defined by asymptotically matching the extreme responses of geometrically
similar specimens of different sizes. It was initially developed for cracked specimens (Type 2 SEL) and
has been extended to un-cracked specimens (Type 1 SEL). The other models proposed by Carpinteri
and Chiaia [21,22], Carpinteri et al. [23] and Karihaloo [24] are also able to characterize effectively the
transition of quasi-brittle failure from the maximum tensile strength criterion to the LEFM criterion
for geometrically similar specimens. Each size effect model has at least two experimental parameters
that can be adjusted to fit the experimental results.

The boundary effect model is based on a hypothesis about the effect of crack length on the
nominal strength. According to boundary effect and using an equivalent crack length, Hu and
Duan [6,7] proposed a Boundary Effect Model (BEM) different from the specimen size-based models,
which can be used to predict the nominal strengths of a finite or infinite width specimen containing
different crack sizes. The boundary effect model is not restricted to geometrically similar specimens,
and it proves that the boundary effect induced by the crack length can exist even in large specimens.
Based on this point, Hu and Duan concluded the common size effect associated with geometrically
similar specimens is only a special case of the boundary effect [7]. However, this model was critically
examined by Yu et al. [25]. Significant theoretical objections were raised, and the further experimental
verification [26] proved that BEM is distinctly inferior to the Type 1 SEL and Type 2 SEL. In the
later improved model of the Universal Size Effect Law (USEL), Bažant and Yu [27] believe that the
dependence of the nominal strength of structure on the crack length at constant specimen size is a
special case of the USEL, and USEL is more realistic than the boundary effect model.

In this study, a new size and boundary effect model is developed for characterizing the fracture
dependence on the specimen size and crack size. The derivative of energy release rate G′ is firstly
introduced to give the nominal strength prediction by the strength mechanism. Combined with the
LEFM criterion that predicts the nominal strength based on the energy mechanism, an asymptotic
model is developed to capture the full process of crack initiation and crack propagation. In Section 3,
a geometrical correction factor H(α) for the derivative of energy release rate G′ is defined, and then,
the expressions for the derivative of energy release rate G′ and equivalent crack length ae are derived.
Based on this information, the proposed model is established and compared with the boundary
effect model and the Type 2 size effect law. In Section 4, the nominal strength predictions based
on the proposed model are compared with the experimental results of Cracked Three-Point Bending
(C-TPB) beam specimens made of concrete, of limestone and of hardened cement paste and the model
predictions of the Type 2 size effect law and boundary effect model.
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2. Size and Boundary Effects

2.1. Size Effect Induced by Specimen Sizes

Quasi-brittle materials obey on a small scale the strength theory, characterized by material
strength ft, and on a large scale the LEFM, characterized by toughness Gc. The combination of
ft and Gc yields Irwin’s characteristic length lch = GcE/ f 2

t [9] and separates the small and large
scales. Based on an approximate energy release analysis, SEL was derived for geometrically similar
specimens (Figure 1a) in 1984 [1] and reformulated in 1991 [4]. For Type 2 failures, which are occurring
when there is a notch or a large stress-free crack formed before reaching the maximum loading,
the law reads:

σN = B̂ ft

(
1 +

h
h0

)−1/2
(2)

where B̂ is a positive dimensionless constant depending on the geometry of the structure; ft is the
material tensile strength; h0 is a constant proportional to Irwin’s characteristic length lch, at which
the failure laws based on material strength and LEFM intersect, as shown in Figure 1b. h0 and B̂
characterize the structure geometry.

1

h
L o g  h 0

T y p e  2  S E L

L E F M

M a t e r i a l  s t r e n g t h

Lo
g σ

N

L o g  h
(a) (b)

Figure 1. (a) Similar cracked structures and (b) Size Effect Law (SEL) bridging the failure mechanisms
of material strength and Linear Elastic Fracture Mechanics (LEFM).

Since Type 2 SEL is not valid when the crack to height ratio α tends to zero, the Type 1 SEL [28]
was proposed after Type 2 SEL and applied to structures failing at crack initiation from a smooth
surface. The Type 1 SEL reads [26]:

σN = fr,∞

(
1 +

rhb
h + lp

)1/r
(3)

where fr,∞, hb, lp and r are constants of the model whose values need to be determined empirically.
In order to describe the continuous transition between these two types of size effects,

the Universal Size Effect Law (USEL) was firstly defined by Bažant [29] and then improved by
Bažant and Yu [27]. USEL has been validated with various experimental results and shown to fit
the test results quite well [30].

2.2. Boundary Effect Induced by Crack Sizes

Figure 2 shows typical test results measuring the nominal strength of a specimen of Silicon
Carbide (SiC) containing different crack sizes [12]. The energy criterion of LEFM works for sufficiently
large cracks, while the tensile strength seems to be the failure stress when the crack length is below
0.001 mm. Between these two conditions, both the stress criterion and energy criterion are not
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applicable. The stress criterion would provide a null strength due to the stress singularity at the
crack tip, while the energy criterion would give an unreal nominal strength, which is higher than
the material tensile strength. The test results shown in Figure 2 indicate that the nominal strength
transits smoothly from the tensile strength to LEFM. The intersection of the LEFM line and the line
corresponding to the tensile strength is defined as the transition crack length, which can be calculated
by the following expression [7]:

at =
GcE

(1.12 ft)
2 π

=
lch

1.122π
(4)

The transition crack length at is proportional to Irwin’s characteristic length lch. Therefore,
it is also a material-dependent parameter relating to toughness Gc and tensile strength ft. It should be
noticed that SiC is a brittle material with a small value of at. Quasi-brittle materials commonly have
larger values of at, which can be around 40 mm for concrete material. The example of SiC is taken
here to illustrate the influence of crack size on the nominal strength, which are the same for brittle
and quasi-brittle materials.
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Figure 2. Nominal strengths versus crack length in SiC (modified from [12]).

3. Proposed Failure Model

It is known that the local stress criterion and energy criterion are unable to predict the failure of
a specimen containing relatively small or intermediate cracks [7,12]. In this section, the derivative of
energy release rate G′ is introduced to predict the nominal strength given by the strength mechanism.
On the other hand, the energy criterion is sufficient to give a good prediction for the material rupture
dominated by the energy mechanism. Based on the derivative of the energy release rate and energy
criterion, the asymptotic model is found to cover the nominal strength prediction for any crack
size. The proposed model is established based on the Cracked Three-Point Bending (C-TPB) beam
specimen, but can be easily generalized to many other structures and different boundary conditions,
such as a center or edge cracked plate, a cracked pure bending specimen, a compact tension test
specimen, etc.

3.1. Derivative of the Energy Release Rate

Consider a C-TPB beam (Figure 3) with a crack to height ratio α = a/h. The energy release rate
G can be written as [31]:

G =
[A(α)σ]2πa

E
(5)
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where σ = (3PS)/(2h2t); A(α) is the geometrical correction factor for the energy release rate;
a is the crack length; h, S and t are the height, span and thickness of the beam, respectively;
E is the Young’s modulus of the material. The geometrical correction factor A(α) can be found
numerically or analytically. The empirical formulas for different structures have been derived by
many researchers [31]. For the beam with a span to height ratio S/h = 4, Equation (6) gives 0.5%
accuracy of G for any crack to height ratio α,

A(α) =
1√
π

1.99− α(1− α)(2.15− 3.93α+ 2.7α2)

(1 + 2α)(1− α)3/2 (6)

S

P
t

h

a

Figure 3. Cracked Three-Point Bending (C-TPB) beam specimen.

The product rule is used to find the derivative of the energy release rate with respect to the
crack length a. In Equation (5), σ2π/E is a constant, and the derivative of A2(α)a equals A2(α) +

2A(α)A′(α)α′a, with α′ = 1/h (α′a = α). Therefore, the derivative of the energy release rate with
respect to the crack length a can be written as follows:

G′ =
[H(α)σ]2π

E
(7)

where H(α) is defined as the correction factor for the derivative of energy release rate G′, which reads:

H(α) =
√

A2(α) + 2A(α)× dA(α)/dα× α (8)

Figure 4 shows the values of two correction factors A(α) and H(α) for G and G′ with respect to
the crack to height ratio α. When α < 0.01, the difference of the two factors is very small, and they all
tend to infinity when α→ 1.

The derivative of the energy release rate, as shown in Equation (7), is proportional to the
geometrically corrected stress value H(α)σ, where σ is obtained as the stress at the bottom of the
mid-span without considering the crack; H(α) can be regarded also as a correction factor, which can
take the crack into consideration. The critical value of the derivative of energy release rate G′c is
obtained when σ0 → ft and a0 → 0. For the C-TPB specimen with a span to height ratio equal to
four, G′c can be calculated by Equations (6) and (7), as shown in Equation (9). G′c is a material constant
related to the tensile strength ft and Young’s modulus E. In other words, the critical value for the
corrected stress H(α)σ is 1.12 ft.

G′c =
(1.99 ft/

√
π)2π

E
≈ (1.12 ft)2π

E
(9)

By relating Equations (7) and (9), the nominal strength σN based on the derivative of energy
release rate G′ can be calculated by the following expression:
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σN =
1.12 ft

H(α)
(10)

or one can simply consider that the failure is reached when the corrected stress value H(α)σ = 1.12 ft.
Hence, the nominal strength σN of the strength mechanism can be predicted by Equation (10). When
α < 0.01, as shown in Figure 4, H(α) ≈ 1.12; therefore, σN ≈ ft. It should be noted that H(α) has
different expressions for different structures, which is related to A(α), and can be found analytically
or numerically. The same as the boundary effect model, Equation (10) can capture the boundary
effect when the distance from the fracture process zone to the lower boundary (crack length) is small;
the rupture behavior is mainly dominated by the strength mechanism. It should also be pointed
out that Equation (10) is not able to give the nominal strength predictions for intermediate cracks,
because H(α) experiences a slight decrease before it increases towards infinity. This would lead to
the unreal nominal strength predictions being higher than the material tensile strength by simply
using Equation (10) for intermediate crack sizes.
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Figure 4. Correction factors A(α) and H(α) versus the crack to height ratio α.

3.2. Asymptotic Model

For a relatively large crack in a large specimen, the material rupture is dominated by the energy
criterion. By taking the definition of H(α) into account, the expression for the energy release rate
shown in Equation (5) can be written as follows:

G =
[A(α)σH(α)/H(α)]2πa

E
=

[H(α)σ]2πae

E
(11)

where:

ae =
A2(α)

H2(α)
a (12)

ae is defined as the equivalent crack length, which depends on the initial crack length a and the
crack to height ratio α. After introducing the concept of equivalent crack length ae, the cracked beam
specimen with initial crack length a and loading P is equivalent to the beam with crack length ae and
loading [H(α)/A(α)]P (see Figure 5a). Hence, the energy release rate at the tip of the equivalent
crack is the same as the value of the initial crack. Figure 5b illustrates the variation of equivalent
crack length ae with respect to real crack length a for the beam specimen with h = 1 m and S = 4 m.
ae tends to zero when α→ 0 and α→ 1.
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Figure 5. (a) Beam with equivalent loading and equivalent crack length ae and (b) equivalent crack
length ae versus real crack length a.

The critical energy release rate is the material toughness Gc; along with the definition of
transition crack length at shown in Equation (4), the nominal strength given by the energy criterion
can be written as Equation (13).

σN =
1.12 ft

H(α)

(
ae

at

)−1/2
(13)

It is noticed that Equations (10) and (13) can be bridged together to predict the material rupture
from the strength mechanism to the energy mechanism; thus, an asymptotic model is developed,
as shown in Equation (14):

σN =
1.12 ft

H(α)

(
1 +

ae

at

)−1/2
(14)

Same as the Hu–Duan boundary effect model [7], Equation (14) is also a crack size-based
model, which estimates the effect of crack length on the nominal strength. Despite the similarity
in their shapes, the definitions and expressions of the equivalent crack length and the geometrical
correction factor in Equation (14) are fundamentally different from those in the boundary effect
model. The differences between the proposed model and the Hu–Duan boundary effect model has
been presented in Appendix A.

It is interesting to notice that the ratio of nominal strength σN given by Equations (14) and (10)
tends to one for very small and very large crack to height ratios α, as shown in Figure 6.
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This phenomenon indicates that for these two extreme cases, the derivative of energy release rate
G′ is the dominant factor for the rupture. Take the beam shown in Figure 5a for instance; when
the real crack length approaches one, on the contrary, the equivalent crack length ae tends to zero;
hence, the contribution of the energy release rate part in Equation (14) on the nominal strength σN

becomes much weaker than the derivative of energy release rate G′ and can be eventually neglected
at a certain moment.
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Figure 6. Ratio of nominal strength σN given by Equations (14) and (10) versus the crack to height
ratio α.

Figure 7 presents the nominal strength to tensile strength ratios of the cracked beam structure
versus equivalent crack length ae (beam height h = 1 m). When α < 0.0279 and α > 0.909,
the rupture behavior is mainly dominated by the strength mechanism (derivative of the energy
release rate), which has already been discussed. This phenomenon can be explained as the boundary
effect [7], because the distances of the fracture process zone to the lower boundary measured by
the crack length (α < 0.0279) and to the upper boundary measured by the un-cracked ligament
(α > 0.909) are too small; therefore, the fracture behaviors are influenced by the specimen boundaries
and dominated by the strength mechanism. When equivalent crack length ae is bigger than the
transition crack length at, the rupture behavior is mainly dominated by the energy mechanism.
α = 0.275 provides the strongest contribution of the strength mechanism on the failure of the beam.

The asymptotic model shown in Equation (14) can be used to predict the failure stress for any
crack size (or any crack to height ratio α), which is able to give a smooth transition from small,
intermediate cracks to large cracks. Figure 8 presents an example of the nominal strength versus
crack to height ratio α for beam height h = 0.1 m, 1 m, 10 m, 100 m. By using Equation (14) and the
information of the material parameters, including tensile strength ft = 3.0 MPa, fracture toughness
Kc =

√
GcE = 1.0 MPa ·m1/2 and transition crack length at = 28.2 mm, the nominal strengths can be

easily predicted; they are plotted in Figure 8. For beam height h = 100 m, a smaller crack to height
ratio α is needed to have the nominal strength approximately equal to the tensile strength ft.
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Figure 7. Nominal strength to tensile strength ratios versus equivalent crack length ae.
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Figure 8. Nominal strengths versus the crack to height ratio α for various beam heights.

Due to the size effects, the material parameters may vary for different specimen shapes and
sizes. Analogous to SEL, the material and geometrical information, including H(α)/(1.12 ft) and at,
can also be identified from the test results (geometrically similar tests) if they are not sufficient or not
easy to calculate. By setting Y = 1/(σ2

N), Equation (14) gives a linear regression plot Y = JX + C,
shown in Equation (15), from which J and C can be identified as the slope and intercept.

Y =
1
σ2

N
=

[
H(α)

1.12 ft

]2 ae

at
+

[
H(α)

1.12 ft

]2

(15)

with ae = X, [H(α)/(1.12 ft)]2/at = J, [H(α)/(1.12 ft)]2 = C.
It should be pointed out that J and C are constants only for geometrically similar specimens

(same crack to height ratio α), due to the identical correction factor H(α).
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3.3. Proposed Failure Model for Geometrically Similar Specimens

The asymptotic model in Equation (14) can predict the nominal strength for different crack sizes
and has a similar shape as the Type 2 SEL shown in Equation (2). Since a0 = αh, the equivalent crack
length ae in Equation (14) can be replaced by ae = [A(α)/H(α)]2αh. Then, a transition beam height
ht can be defined as:

ht =
at

α

[
H(α)

A(α)

]2

(16)

ht is a function of transition crack length at and the crack to height ratio α, which is proportional to
the characteristic length lch. Hence, the asymptotic model of the proposed model for geometrically
similar specimens is developed, which reads:

σN =
1.12 ft

H(α)

(
1 +

h
ht

)−1/2
(17)

Equation (17) has the same shape as Type 2 SEL. ht and h0 are the transitional sizes where the
material strength and LEFM intersect and are all proportional to Irwin’s characteristic length lch.
B̂ in Equation (2) is a positive dimensionless constant depending on the geometry of the structure,
the same as 1.12/H(α) in Equation (17). Therefore, the proposed model is able to predict the rupture
of geometrically similar specimens, the same as Type 2 SEL. A detailed comparison of the proposed
model and Type 2 SEL is presented in Appendix B, proving that when the length scale parameter is
the same, the proposed failure model shown in Equations (14) and (17) and Type 2 SEL are identical,
although the proposed model is presented in two different forms.

Figure 9 presents an example of the nominal strengths with respect to beam heights for various
crack to height ratios. The material parameters are identical as the parameters adopted in Figure 8.
By using Equation (14) or (17), the nominal strength can be predicted for both geometrically similar
specimens (Figure 9) and a certain beam size with various crack to height ratios α (Figure 8).
However, not like the Type 1 SEL, the proposed model of Equations (14) and (17) cannot predict
the size effect of crack initiation from the free surface, because it will give the same nominal strength
for different specimen sizes.
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Figure 9. Nominal strengths versus beam height for various crack to height ratios.
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4. Model Validations

4.1. Concrete Experiments

Bažant et al. [32,33] carried out a series of experiments with a C-TPB specimen with a similar
geometry, to investigate the size effects in concrete specimens. The eight specimens have the same
crack to height ratio α = 0.33, the same span to height ratio S/h = 4 and a fixed thickness t = 25.4 mm.
The concrete presents the following mechanical properties: average tensile strength ft = 3.0 MPa
and fracture toughness Kc =

√
GcE = 1.23 MPa ·m1/2. The corresponding transition crack length

at = 42.66 mm. The two correction factors A(α) and H(α) are 1.08 and 1.42, respectively, and then,
the equivalent crack length ae for each beam can be calculated accordingly.

The beam dimensions, equivalent crack length ae, failure loads Pmax and the nominal strengths
σN for the eight specimen are listed in Table 1. The nominal strengths σN can be written for the C-TPB
specimen as:

σN =
3PmaxS

2h2t
(18)

Table 1. Concrete specimen and test results.

Specimen Dimensions (mm) [32] ae (mm) Pmax (N) [32] σN (MPa)

152.4× 38.1× 25.4 7.32 366.53 2.27
304.8× 76.2× 25.4 14.63 721.28 2.24

609.6× 152.4× 25.4 29.27 1065.79 1.65
914.4× 228.6× 25.4 43.90 1759.72 1.82

1219.2× 304.8× 25.4 58.53 2179.63 1.69
1524× 381× 25.4 73.16 2288.61 1.42

1828.8× 457.2× 25.4 87.80 2470.99 1.28
2133.6× 533.4× 25.4 102.43 3113.76 1.38

With the geometrical information and mechanical parameters, the failure load Pmax can be
calculated by Equations (14) and (18). The predicted failure loads are plotted in Figure 10, showing
good agreement with the test results and the predictions of Type 2 SEL. B̂ ft and h0 in Type 2
SEL are obtained from the linear regression; therefore, the predictions of the Type 2 SEL deviate
slightly from the predictions of the proposed model. However, if the length parameter cf in
Type 2 SEL equals the transition crack length at and the material tensile strength ft is known,
then without any help of the experimental work, Type 2 SEL and the proposed model will give the
same predictions of the failure loads. With the given material parameters, the boundary effect model
gives predictions that are always smaller than the test results and the predictions of the proposed
model and Type 2 SEL, which means the boundary effect model may underestimate the load bearing
capacity of the cracked structure if the material parameters used in the model, including the tensile
strength ft and fracture toughness Kc, are measured from the standard tests.

For geometrically similar specimens, the mechanical properties can be identified from the test
results. Figure 11 shows the fitted linear curve with slope J = [H(α)/(1.12 ft)]2/at = 4.04× 10−3 and
intercept C = [H(α)/(1.12 ft)]2 = 1.72× 10−1. The calculated transition crack length at = 42.70 mm;
tensile strength ft = 3.06 MPa; fracture toughness Kc =

√
GcE = 1.21 MPa ·m1/2; which are all very

close to the experimental measurements. For Type 2 SEL, the transitional height h0 = 22.24 mm is
obtained by the best fit, which contains the information of length parameter cf = h0 A2(α)α/H2(α)

= 42.70 mm. Since the measured transition crack length at = 42.66 mm ≈ cf, the predictions given
by the proposed model and Type 2 SEL are almost identical. In terms of the boundary effect model,
in order to have the optimal fit for the test results, the fitted material parameters are ft = 5.42 MPa,
Kc = 1.26 MPa ·m1/2 and at = 13.61 mm. The fitted tensile strength is much higher than the direct
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measurement, which indicates that the predictions of the strength mechanism in the boundary effect
model are inappropriate.
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Figure 10. Model predictions of failure load versus beam height comparing with Type 2 SEL
predictions, boundary effect model predictions and the test results of concrete.
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Figure 11. Linear regression on the test results of concrete.

4.2. Limestone Experiments

Bažant et al. [34] tested four different sizes of C-TPB specimens made of Indiana limestone to
investigate the size effect. The specimens have the same crack to height ratio α = 0.4, the same
span to height ratio S/h = 4 and a fixed thickness t = 13 mm. The measured fracture toughness
is Kc =

√
GcE = 0.97 MPa ·m1/2. The tensile strength ft shows different values: Bažant obtained

3.45 MPa with the splitting tensile test; Jenq and Shah [35] got 5.0 MPa from the large double-edge
cracked direct tensile test; and Schmidt obtained [36] 5.38 MPa by six “direct pull” tests on
“dog-bone specimens”.
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The two geometrical correction factors A(α) and H(α) are 1.18 and 1.72, respectively. The beam
dimensions, equivalent crack length ae, failure loads Pmax and the nominal strengths σN are listed in
Table 2.

Table 2. Limestone specimens and test results.

Specimen Dimensions (mm) [34] ae (mm) Pmax (N) [34] σN (MPa)

52× 13× 13 2.35 78 2.77
82 2.91
85 3.02

100× 25× 13 4.52 134 2.47
140 2.58
140 2.58

204× 51× 13 9.22 238 2.15
243 2.20
243 2.20

408× 102× 13 18.44 394 1.78
405 1.83
418 1.89

In order to obtain the reasonable tensile strength ft, the linear regression plot, as shown by
the solid line in Figure 12, gives slope J = [H(α)/(1.12 ft)]2/at = 1.08 × 10−2 and intercept
C = [H(α)/(1.12 ft)]2 = 1.02 × 10−1. The calculated transition crack length at = 9.39 mm; and
the tensile strength ft = 4.91 MPa, which is inside the range of the measured results; the calculated
fracture toughness Kc =

√
GcE = 0.99 MPa ·m1/2, being very close to the experimental measurement

of 0.97 MPa ·m1/2. For the boundary effect model, the fitted material parameters are ft = 8.72 MPa,
Kc = 0.95 MPa ·m1/2 and at = 29.83 mm, which are not close to nor inside the range of the measured
values from the standard tests.
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Figure 12. Linear regression on the test results of limestone.

With the transition crack length at and tensile strength ft obtained from the linear regression
of the proposed model, the failure loads Pmax then can be estimated and compared with the
experimental results, the predictions of Type 2 SEL and the boundary effect model, as shown in
Figure 13. It is not a surprise that the proposed model gives almost the same predictions as Type 2
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SEL, because in Equation (17), the fitted ht and (1.12 ft)/H(α) are exactly the same as the h0 and B̂ ft

in Equation (2).
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Figure 13. Model predictions of failure load versus beam height comparing with Type 2 SEL
predictions, boundary effect model predictions and test results of limestone.

4.3. Hardened Cement Paste Experiments

Karihaloo et al. [37] performed the C-TPB tests on cracked beams made of hardened cement
paste with a span to height ratio of S/h = 4. The heights of the beams are 50 mm, 100 mm
and 200 mm, respectively, and the thickness t = 100 mm is fixed for all of the specimens. The crack
to height ratios α are 0.1, 0.3 and 0.5. The hardened cement paste presents the following mechanical
properties: averaged tensile strength ft = 3.53 MPa, Young’s modulus E = 20.8 GPa and fracture
energy Gc = 13.5 N/m, which is calculated by Equation (5) based on the measured failure load of
the largest specimen. The corresponding transition crack length at = 5.72 mm. The predicted failure
loads given by the proposed model, Type 2 SEL and the boundary effect model and the test results are
plotted in Figure 14, which shows that all of the models are capable of predicting acceptable results,
but with different accuracies.

The Type 2 SEL parameters are provided by Yu et al. [25], which are calibrated for a/h = 0.3.
The fracture energy Gc = 18.1 N/m, length scale cf = 7.2 mm, B̂ ft and transition size h0 in Equation (2)
are calculated by Equations (B1) and (B2) for crack to height ratios α = 0.1, α = 0.3 and α = 0.5,
respectively. For SEL, the results for small crack to height ratio α = 0.1 are worse than the
predictions of the proposed model and the boundary effect model; this is because the Type 2 SEL
is not recommended for such small crack to height ratios, as it belongs to the transition of Type 1 SEL
to Type 2 SEL. It should be noticed that the results for small crack to height ratios α ≤ 0.1 should be
properly fitted by the universal size effect law, which can describe this transition, but with much more
complicated formulas [25,27]. In contrast to Type 2 SEL, The proposed model is easier to implement,
and acceptable model predictions can be obtained for not only large crack to height ratios, but also
for small ratios, for which Type 2 SEL is not recommended.

In terms of the boundary effect model, the material parameters Gc = 18.2 N/m and ft = 4.58 MPa
are obtained by the optimal fit. It is shown in Figure 14 that the proposed model works better than the
boundary effect model for α = 0.1. A smaller tensile strength ft ≈ 3.50 MPa, which is almost equal
to Karihaloo’s direct measurement, is required to fit the test results better for α = 0.1. However,
if this tensile strength is adopted, the predictions given by the boundary effect model for larger α
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values would deviate more from the test results than the predictions given by the proposed model
and Type 2 SEL. The boundary effect model is easy to implement, the same as the proposed model,
but a higher material tensile strength is required, for example 29.7% higher than the measured result
for the hardened cement paste experiments studied in this section.
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Figure 14. Model predictions of failure load versus beam height comparing with Type 2 SEL
predictions, boundary effect model predictions and test results of hardened cement paste. The error
bars indicate the standard deviations of the experimental results.

5. Conclusions

This article presents a new failure model to investigate the size effect and boundary effect in
quasi-brittle materials. The model adopts the derivative of energy release rate G′ to predict the
failure of the strength mechanism and the energy criterion for the failure of the energy mechanism.
An asymptotic model is developed to capture the effect of any crack size on the nominal strength σN,
and its expression for geometrically similar specimens is also established, which is able to characterize
the size effect induced by the specimen size.

The proposed model is compared with the boundary effect model and Type 2 SEL. The first
expression (Equation (14)) of the proposed model is similar to the boundary effect model, which
captures effectively the boundary effect. However, these two models are fundamentally different, due
to the different assumptions for the strength mechanisms. An alternative expression (Equation (17))
of the proposed model for geometrically similar specimens is established and then compared with
the Type 2 SEL, proving that when the length scale parameters in the proposed model and Type 2
SEL are identical, two models will give the same predictions. The advantage of the proposed model
in contrast to Type 2 SEL is that the length parameter can be directly calculated from the measured
material parameters of the standard tests, instead of being fitted from the geometrically similar tests.
The model can be used for both geometrically similar specimens, as good as the Type 2 SEL, and the
finite width specimen containing different crack sizes. What is more, the proposed model can give
good predictions also for small crack to height ratios (α ≤ 0.1), where Type 2 SEL is not recommended,
and much more complicated formulas of USEL are required. Therefore, the scope of Type 2 SEL is
somewhat extended. However, the proposed model is not a universal one like USEL, due to the fact
that it cannot predict all of the size effects; for example, it cannot predict the size effect observed in
un-cracked geometrically similar specimen tests, that is the crack initiation from the free surface.
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In order to validate the proposed model, three sets of experimental results in the literature for
limestone, for concrete and for hardened cement paste are used. It is shown that the predictions
of the nominal strengths obtained from the proposed model are in very good agreement with the
experimental results both for concrete and for limestone.
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BEM: Boundary Effect Model
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SEL: Size Effect Law
SiC: Silicon Carbide
TCDs: Theories of Critical Distance
USEL: Universal Size Effect Law

Appendix A. Comparison of the Proposed Model with the Hu–Duan Boundary Effect Model

According to boundary effect and using an equivalent crack length, Hu and Duan [6,7] proposed
a Boundary Effect Model (BEM), which can be used to predict the nominal strengths of a finite or
infinite width specimen containing different crack sizes. The boundary effect model for the rupture
of a finite size specimen reads:

σN = B(α) ft

[
1 +

(
ae1

at

)]−1/2
(A1)

where B(α) = (1− α)2 for the cracked three-point bending beam, ae1 is referred to as the equivalent
crack length in the boundary effect model and its value depends on the specimen geometry and crack
length, which reads:

ae1 =

[
B(α)× A(α)

1.12

]2

(A2)

Equations (A1) and (14) are crack size-based models, which estimate the effect of crack length
on the nominal strength. Figure A1 shows the variation of equivalent crack length with respect to the
real crack length a (beam height h = 1 m). For the same crack length, the equivalent crack length ae

in the proposed model is higher than the definition of equivalent crack length ae1 in the boundary
effect model. Since the transition crack length at shares the same definition in both models, the higher
equivalent crack length ae (higher ae/at) in the proposed model indicates that by using the proposed
model, the rupture of the beam with a wider range of the crack length a will be dominated by the
energy criterion.

The nominal strength given by the strength mechanism σ
strength
N in the boundary effect model

is B(α) ft, while the proposed model believes that the strength mechanism is better characterized
by the derivative of the energy release rate. Figure A2 presents the nominal strength predicted by
the strength mechanism to tensile strength ratios σ

strength
N / ft, for various crack to height ratios α.

The derivative of the energy release rate provides a higher nominal strength σ
strength
N than the

boundary effect model for the same crack to height ratio α; while for the energy mechanism, both
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models give the same nominal strength σ
energy
N , because a simple energy criterion is used in the

two models.
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Figure A1. Equivalent crack length in the boundary effect model and the proposed model.
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Figure A2. The ratio of the nominal strength predicted by the strength mechanism and tensile
strength σ

strength
N / ft for various crack to height ratios.

The difference of the nominal strength given by the strength mechanism σ
strength
N will finally lead

to the different nominal strengths predicted by the boundary effect model and the proposed model.
Figure A3 shows the nominal strength predicted by the boundary effect model and the proposed
model to tensile strength ratios σN/ ft, for various crack to height ratios, indicating that the proposed
model gives higher nominal strength than the boundary effect model.

Figure A4 shows the percentages of the difference of the nominal strength given by the boundary
effect model and the proposed model. With the increase of the crack length (fixed beam height),
the difference of the nominal strength given by the two models will be larger and can reach more
than 40% when α approaches one.
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Figure A3. The ratio of nominal strength predicted by BEM and the proposed model and tensile
strength σN/ ft for various crack to height ratios.
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Figure A4. Percentages of the difference of the nominal strength given by the boundary effect model
and the proposed model.

The same as the proposed model, BEM can also identify the material information from the
test results. By setting Y′ = 1/(σ2

N), Equation (A1) gives a linear regression plot Y′ = J′X′ + C′,
with X = ae1, J′ = 1/[at(B(α) ft)2] and C′ = 1/[(B(α) ft)2. Hence, transition crack length at = C′/J′,
material tensile strength ft =

√
1/C′/B(α) and fracture toughness Kc = (1.12 ft)

√
atπ.

Appendix B. Comparison of the Proposed Model with Type 2 SEL

In the expression of Type 2 SEL, h0 is a constant proportional to Irwin’s characteristic length lch,
and B̂ is a dimensionless constant characterizing the structure geometry. The expressions of these two
values are given as follows [3]:

h0 =
cfg′(α)

g(α)
(B1)
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B̂ ft =

√
EGc

g′(α)cf
(B2)

where g(α0) = K2
I (α)h(b/P)2 = A2(α)πα is the dimensionless energy release function of linear

elastic fracture mechanics; cf is the effective size of the fracture process zone, which is proportional
to the characteristic length lch and transition crack length at and equals the total crack length, which
gives the same (according to LEFM) specimen compliance as the actual crack with its process zone
minus the initial crack length or traction free crack length a0 [3], or approximately equals half length
of FPZ [2]. Normally, cf is identified from the tests results of geometrically similar specimens, along
with the transitional size h0. It should be pointed out that when cf is known, Type 2 SEL can be
applied to structures or specimens that are not geometrically similar.

Recall the definition of the correction factor for the derivative of energy release rate H(α)

(Equation (8)); g′(α0) can be simplified as follows:

g′(α) = H2(α)π (B3)

After the substitution of Equations (4), (12), (B1)–(B3) into Equation (2) and some algebraic work,
one gets:

σN =
1.12 ft

√
at/cf

H(α)

(
1 +

ae

cf

)−1/2
(B4)

When cf = at, the proposed failure model shown in Equations (14) and (17) and Type 2 SEL are
identical, although the proposed model is presented in two different forms. However, as a fitted
parameter form of the test results, cf is not guaranteed to be equal to the transition crack length
at [26], which means two models will provide different nominal strength predictions when cf 6= at.
It should be noticed that at can also be identified from the test results, instead of calculating from the
material tensile strength ft and fracture energy Gc. In such cases, the proposed model and Type 2 SEL
will provide the same nominal strengths, but the material properties ( ft and Gc) fitted from the test
results may be different.
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