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Abstract: Understanding the adsorption properties of DNA bases on metal surfaces is fundamental for
the rational control of surface functionalization leading to the realisation of biocompatible devices for
biosensing applications, such as monitoring of particular parameters within bio-organic environments
and drug delivery. In this study, the effects of deposition rate and substrate temperature on the
adsorption behavior of adenine on Cu(110) surfaces have been investigated using scanning tunneling
microscopy (STM) and density functional theory (DFT) modeling, with a focus on the characterization
of the morphology of the adsorbed layers. STM results revealed the formation of one-dimensional
linear chains and ladder-like chains parallel to the [110] direction, when dosing at a low deposition
rate at room temperature, followed by annealing to 490 K. Two mirror related, well-ordered chiral
domains oriented at ±55◦ with respect to the [110] direction are formed upon deposition on a substrate
kept at 490 K. The molecular structures observed via STM are rationalized and qualitatively described
on the basis of the DFT modeling. The observation of a variety of ad-layer structures influenced by
deposition rate and substrate temperature indicates that dynamic processes and hydrogen bonding
play an important role in the self-assembly of adenine on the Cu(110) surface.
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1. Introduction

Molecular self-assembly on solid surfaces is a research topic of extensive experimental [1–9]
and theoretical studies [10,11], owing to the promising applications in future organic-based
nanoelectronics [1,12,13]. Organic molecules, including DNA and RNA bases, are capable of forming a
range of nanostructures from well-ordered, two-dimensional (2D) molecular networks to one-dimensional
rows upon deposition on a surface [1,2]. Investigations of molecule-molecule and molecule-surface
interactions that govern the structural and electronic properties of the molecular nanostructures formed
upon adsorption are relevant, not only to control surface functionalization for biocompatible and
biosensor applications [12,13], but also to understand the complex biomolecule-surface interactions in
general [14].

The adsorption of adenine on well-defined single crystal surfaces has been studied as a prototype
example to understand DNA base-surface interactions. Unlike other DNA base molecules, such
as guanine, thymine, and cytosine, the adenine molecular structure consists of only one functional
group, i.e., an amino (–NH2) group, and a larger aromatic ring, which are favorable for flat-lying
molecular orientation when interacting with substrates [5]. For example, on HOPG (0001) [15–17],
Ag terminated Si(111) [18], Cu(111) [19,20], and Au(111) surfaces [21,22], adenine has been shown to
form a variety of extended 2D hexagonal networks driven predominantly by intermolecular hydrogen
bonding. Experimental measurements [18,20,22] and DFT calculations [23] both show that adenine
adopts a flat-lying orientation in these supramolecular structures and the interaction with the substrate
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is weak. However, on Cu(110) [24–26] surfaces, since the first observation of one-dimensional chiral
dimer chains aligning along the (1, ±2) directions by Qiao et al. [5], there has been some debate
regarding the adsorption geometry and binding nature of adenine to copper. For instance, vibrational
studies [5,27] and related theoretical calculations [11,25] indicate that adenine interacts relatively
strongly with copper via the amino N atoms, and has its molecular plane oriented at ~26◦ away from
the surface. Spectroscopic studies by Feyer et al. [28] and Bussolotti et al. [29] have reported a coverage
dependent orientation transition from flat-lying to upright, in which both imino and amino N atoms
participate in binding adenine to the copper substrate, therefore contributing to local charge transfer
induced electrostatic interactions. Although these surface sensitive spectroscopic techniques are able
to provide structural information on adenine ad-layer structures, they lack the direct imaging of
surface adsorption structures provided by STM. A recent study also suggested that the most commonly
observed chains growing along the (1, ±2) directions are composed of metastable dimers and chains
formed by stable dimers grow along the (±4, 1) directions instead, because of the minimization of
the repulsive van der Waals interactions between adjacent dimers [4]. Moreover, different adenine
ad-layer structures, including double chains and hexagonal networks, have been shown to coexist
and be influenced by the deposition rate on Cu(111) surfaces [30]. Therefore, an investigation of the
effects of the preparation conditions is of considerable importance and may shed light on the debate
on adenine adsorption geometry on Cu(110) surfaces as well as the fundamental understanding of the
interaction between biomolecules and metal substrates.

Here, an investigation on the effects of annealing treatments up to 490 K on adenine overlayers
on Cu(110), prepared by dosing at a low deposition rate with the substrate held at room temperature
to achieve a medium coverage (θ ~0.60 monolayers, ML), is presented. A comparison is made with
the deposition on a substrate maintained at 490 K. The features imaged via STM are compared with
the geometries of various gas-phase dimers optimized via DFT calculations, allowing us to propose
models for the observed structures.

2. Results and Discussion

2.1. Adenine Self-Organization at Low Deposition Rate

Figure 1a,b show STM images of adenine ad-layer structures obtained at a deposition rate of
~0.018 ML/min after deposition and following annealing to 490 K, respectively. Upon deposition,
adenine molecules aggregate to form large disordered islands on the terraces (Figure 1a). Within the
islands, adenine molecules appear as bright circular features seemingly interacting with surrounding
molecules in a relatively random manner, although showing some partial ordering preferentially
parallel to the [110] direction. At the island boundaries, some areas of dark contrast are seen; these are
likely to represent adsorbate induced surface etching. The surface coverage of adenine is estimated
to be about 0.6 ML. The formation of aggregated adenine islands is in contrast with the observation
of some smaller distributed adenine clusters formed at the higher deposition rate of ~0.04 ML/min
(Figure S1a), which then re-organized into chiral chains upon annealing to 490 K, similar to the
structures previously reported [5]. However, after annealing to 490 K the preparations obtained at
the slower deposition rate (Figure 1b), additional new molecular assemblies aligned along the [110]
equivalent directions can be observed. Figure 1c shows an area where three types of molecular
assemblies are identified and are referred as: chiral chains I, which are oriented along the (1, ±2)
directions and essentially localized on terraces; single linear chains II, and ladder-like chains III, both
found to condense along the substrate step edges, aligned along the [110] azimuth and commonly
found adjacent to each other. These ordered adenine chain structures are thermally stable due to the
strong adenine-substrate interactions (Figure S1), and our STM images suggest that the desorption of
adenine starts upon annealing at 520 K, consistent with previous infrared studies by McNutt et al. [24].
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Figure 1. STM images of adenine ad-layer structures formed on the Cu(110) surface (~0.6 ML), after 
deposition and annealing to 490 K, at a deposition rate of ca. 0.018 ML/min. (a) (0.18 nA, −0.95 V,  
33 × 33 nm2); (b) (0.143 nA, −1.1 V, 47 × 47 nm2); (c) STM image (0.145 nA, −1.14 V, 17 × 17 nm2) of the 
previously reported chiral I and the newly observed linear II and ladder-like chains III; (d) line profiles 
of chain structures II and III along the [110] direction; in the inset, the geometrically optimized adenine 
molecule with approximated dimension. 

Chiral chains I have been well-characterized and are commonly observed on a surface that is 
prepared by dosing at a relatively high rate and is then annealed to ca. 490 K. They consist of rows of 
dimers aligning along the (±1, 2) directions [4,5]. Linear chains II and ladder chains III have been 
observed here for the first time. Within a linear chain II, although individual intramolecular features 
are not readily resolved on the STM topographic image in Figure 1c, the periodicity along the [110] 
direction is estimated to be around 10.1 ± 0.5 Å (black line profile in Figure 1c,d) and the chain width 
is estimated to be 6.7 ± 0.5 Å. Because the footprint of an individual flat-lying adenine molecule can 
be approximated to its gas-phase dimensions based on the atomic van der Waals radii, ca. 6.4 × 5.1 Å 
(model in Figure 1d), these values indicate that adenine is likely to adsorb in a flat-lying or, at most, 
at a slightly tilted orientation with its short axis aligned almost parallel to the chain growth direction. 
Ladder chains III are composed of parallel chains with cross-linking rungs and have a width of  
16.3 ± 0.5 Å (Figure 1c, blue line) and 14.5 ± 0.5 Å (Figure 1c, green line), respectively. The periodicity 
along the [110] direction is 10.1 ± 0.5 Å (Figure 1d, blue and green line profiles), which is nearly equal 
to four copper unit cells, indicating that the ladder-like chain may be commensurate with the 
substrate. Within each parallel row, the molecular features dimension along the [100] direction is  
5.0 ± 0.5 Å. As this value is very close to the short dimension of an isolated adenine molecule, ~5.1 Å, 
it may indicate that adenine is likely to orient with its short axis aligned almost parallel to the [100] 
direction. Although the orientation of adenine molecules is thought to be different in chains II and 
III, the two chains have a similar periodicity of 10.1 ± 0.5 Å, as seen from the line profiles in Figure 
1d. Additionally, the molecular features representing chains II and III appear to be brighter than those 
in the chiral chains I. This corresponds to a height increase of ca. 0.8 Å in comparison to that of the 
chiral chains I, in which adenine molecules are proposed to be lying flat on the metal surface with 

Figure 1. STM images of adenine ad-layer structures formed on the Cu(110) surface (~0.6 ML), after
deposition and annealing to 490 K, at a deposition rate of ca. 0.018 ML/min. (a) (0.18 nA, −0.95 V,
33 × 33 nm2); (b) (0.143 nA, −1.1 V, 47 × 47 nm2); (c) STM image (0.145 nA, −1.14 V, 17 × 17 nm2) of
the previously reported chiral I and the newly observed linear II and ladder-like chains III; (d) line
profiles of chain structures II and III along the [110] direction; in the inset, the geometrically optimized
adenine molecule with approximated dimension.

Chiral chains I have been well-characterized and are commonly observed on a surface that is
prepared by dosing at a relatively high rate and is then annealed to ca. 490 K. They consist of rows
of dimers aligning along the (±1, 2) directions [4,5]. Linear chains II and ladder chains III have been
observed here for the first time. Within a linear chain II, although individual intramolecular features
are not readily resolved on the STM topographic image in Figure 1c, the periodicity along the [110]
direction is estimated to be around 10.1 ± 0.5 Å (black line profile in Figure 1c,d) and the chain width
is estimated to be 6.7 ± 0.5 Å. Because the footprint of an individual flat-lying adenine molecule can
be approximated to its gas-phase dimensions based on the atomic van der Waals radii, ca. 6.4 × 5.1 Å
(model in Figure 1d), these values indicate that adenine is likely to adsorb in a flat-lying or, at most,
at a slightly tilted orientation with its short axis aligned almost parallel to the chain growth direction.
Ladder chains III are composed of parallel chains with cross-linking rungs and have a width of
16.3 ± 0.5 Å (Figure 1c, blue line) and 14.5 ± 0.5 Å (Figure 1c, green line), respectively. The periodicity
along the [110] direction is 10.1 ± 0.5 Å (Figure 1d, blue and green line profiles), which is nearly
equal to four copper unit cells, indicating that the ladder-like chain may be commensurate with the
substrate. Within each parallel row, the molecular features dimension along the [100] direction is
5.0 ± 0.5 Å. As this value is very close to the short dimension of an isolated adenine molecule, ~5.1 Å,
it may indicate that adenine is likely to orient with its short axis aligned almost parallel to the [100]
direction. Although the orientation of adenine molecules is thought to be different in chains II and III,
the two chains have a similar periodicity of 10.1 ± 0.5 Å, as seen from the line profiles in Figure 1d.
Additionally, the molecular features representing chains II and III appear to be brighter than those
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in the chiral chains I. This corresponds to a height increase of ca. 0.8 Å in comparison to that of the
chiral chains I, in which adenine molecules are proposed to be lying flat on the metal surface with
weaker π-metal interactions [22,31]. This increased height could be attributed to a tilted molecular
orientation with respect to the copper substrate [11,26]. Nevertheless Near Edge X-ray Absorption
Fine Structure (NEXAFS) measurement shows that the adenine molecular plane is nearly parallel to
the Cu(110) surface [10].

In contrast to the chiral chains of structure I, both structures II and III are relatively less ordered
and include some defects represented by individual molecules randomly missing within the chains.
For structure III the defects often correspond to missing cross-linking rungs. In addition, two types of
ladder chains can be observed, with one (indicated by the blue profile in Figure 1d) being ca. 1.8 Å
wider than the other (green profile). This is tentatively ascribed to a different molecular orientation
of the molecules constituting the rails of the ladder, as will be described in more detail in the DFT
section (Figure 1c). The lengths of most of the ladder chains along the [110] direction is over 80 Å
and longer than that of chiral chains I. The increased length may be favored by the formation of
molecular structures commensurate with the substrate lattice, in addition to the existence of relatively
stronger intermolecular hydrogen bonds that can contribute to the long range molecular ordering
along the chain growth direction. This is consistent with the findings of Preuss et al. who considered
both hydrogen bonding and molecular registry with the copper substrate as important factors to be
accounted for in the formation of extended, long-range ordered molecular structures [26].

The appearance of chains II and III has some similarities with the hexagonal structures and parallel
chains observed on a Cu(111) substrate [19,20] in terms of the chain width and lateral dimensions of
each individual feature comprising the chains. However, the less ordered molecular chains formed on
the Cu(110) surface are most likely related to the strong interaction between the amino N atom with
the copper, plus the large Coulomb attraction originating from electron redistribution between adenine
and substrate [5,25], which not only can cause a greater structure distortion than that predicted by
the theoretical model, but also exert a more dominant force in anchoring the molecular registry on
the copper atoms. Experimental results also found that the formation of linear and ladder chains
along the [110] direction is most likely related to the disordered molecular aggregations, with an
area of ~100 nm2, observed on copper terraces after deposition at room temperature and at a low
deposition rate. Our STM observation of less ordered and short range adenine adlayer assemblies
are also distinct from those ordered chain structures found with other nucleotides in terms of the
molecule-substrate binding nature and molecular orientation. This is most likely caused by their
different molecular structures. Since adenine only has one functional amino group that is available
for anchoring the molecule to the substrate, and the existence of a more aromatic ring favors stronger
π-substrate interactions [5], therefore, adenine tends to lie flat at most metal surfaces with H-bonding
as the dominant inter-molecular interaction, whereas other nucleobases such as cytosine and guanine
have both oxo and amino groups that tend to interact with copper more strongly, which lead to
almost upright-molecular orientations with the formation of ordered molecular assemblies driven by
dispersion interactions [32]. DFT calculations of possible adenine dimers, in terms of stabilization
energy and optimized geometry, are helpful in the interpretation of the observed chains. In fact, each
adenine molecule has six pairs of nearest N and H atoms which are referred to as binding sites S1–S6,
as shown in Figure 2a. A binding site belonging to one adenine molecule can interact via double
hydrogen bonds with a binding site on a neighbouring molecule to form an adenine dimer. Table 1
summarises gas-phase dimerization energies, ∆Edim, which are defined as the total energy of the
relaxed dimer minus the total energy of two adenine molecules relaxed separately. Dimer geometries
and stabilization energies, ∆Edim, are reported in Figure S2.
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Figure 2. (a) Adenine molecular structure highlighting the six pairs of nearest N and H atoms referred 
to as binding sites S1–S6, and the most stable dimer, A55A, formed by connecting two molecules via 
binding site S5. Hydrogen bonds are color coded for ease of identification. Atom color scheme: H, 
light grey; C, dark grey; N, blue; (b) Model of linear chains II formed by connecting two adjacent 
A55A dimers via sites 1 or 2, labeled as chain -[A55A11A]- and -[A55A22A]- respectively; (c) Ladder 
chain III models formed by connecting -[A55A33A]- to an additional molecule through binding sites 
S5 or S1, giving rise to chains expressed as -[A55A(15A)33A]- and -[A55A(11A)33A]- respectively. 

Table 1. Gas-phase adenine dimerization energies, ∆Edim/eV. 

Dimer Type A55A A22A A11A A66A A44A A33A A15A 
This work −1.02 −0.72 −0.62 −0.27 −0.16 −0.16 −0.82 

Reference [5] −0.44 −0.19 −0.27 −0.03 −0.03 −0.02 – 
Reference [26] −0.85 −0.77 – −0.17 – −0.08 – 
Reference [33] −0.79 −0.6 −0.49 −0.18 −0.1 −0.09 – 

The formation of adenine dimers has been studied by several authors [5,26,33], as the dimers are 
regarded as the main building blocks for the construction of the ad-layers structures. Dimerization 
energies ∆Edim calculated in this work follow a similar trend of those previously reported [5,26,33], 
and identify A55A (Figure 2a) as the most stable dimer, with a stabilization energy of −1.02 eV. Figure 2b 
shows the two possible structural models for a one-dimensional linear chain II aligned along the [110] 
direction. These chains are formed by connecting two A55A dimers through binding site 1 or 2, to 
develop into a one-dimensional homochiral chain, denoted as -[A55A11A]- or -[A55A22A]-. 
According to our DFT calculations, the gas-phase stabilization energies of hydrogen bonded dimers 
A11A and A22A are −0.62 eV and −0.72 eV, respectively, therefore a chain based on the -[A55A22A]- 
monomer is likely to be more stable than one based on -[A55A11A]-. Gas-phase optimization, 
however, does not account for the effects of the registry of the chain on the substrate, which could 
play an important role in stabilizing the final structure. The lateral widths of the constructed 
homochiral chains for each model are ~6.5 Å, which is in good agreement with the measured lateral 
chain dimension of 6.7 ± 0.5 Å observed via STM. Preuss et al. [26] have calculated the energetics of 
various chains adsorbed in the registry on the Cu(110) surface and found that one dimensional chains 
based on -[A22A]- and -[A55A]- are more favorable in terms of their adsorption energies and 
stabilization energies. This is in line with the present findings. The structural model proposed here is 
also consistent with similar molecular features observed via STM by Furukawa et al. [30]. 

Figure 2. (a) Adenine molecular structure highlighting the six pairs of nearest N and H atoms referred
to as binding sites S1–S6, and the most stable dimer, A55A, formed by connecting two molecules via
binding site S5. Hydrogen bonds are color coded for ease of identification. Atom color scheme: H, light
grey; C, dark grey; N, blue; (b) Model of linear chains II formed by connecting two adjacent A55A
dimers via sites 1 or 2, labeled as chain -[A55A11A]- and -[A55A22A]- respectively; (c) Ladder chain III
models formed by connecting -[A55A33A]- to an additional molecule through binding sites S5 or S1,
giving rise to chains expressed as -[A55A(15A)33A]- and -[A55A(11A)33A]- respectively.

Table 1. Gas-phase adenine dimerization energies, ∆Edim/eV.

Dimer Type A55A A22A A11A A66A A44A A33A A15A

This work −1.02 −0.72 −0.62 −0.27 −0.16 −0.16 −0.82
Reference [5] −0.44 −0.19 −0.27 −0.03 −0.03 −0.02 –

Reference [26] −0.85 −0.77 – −0.17 – −0.08 –
Reference [33] −0.79 −0.6 −0.49 −0.18 −0.1 −0.09 –

The formation of adenine dimers has been studied by several authors [5,26,33], as the dimers are
regarded as the main building blocks for the construction of the ad-layers structures. Dimerization
energies ∆Edim calculated in this work follow a similar trend of those previously reported [5,26,33],
and identify A55A (Figure 2a) as the most stable dimer, with a stabilization energy of −1.02 eV.
Figure 2b shows the two possible structural models for a one-dimensional linear chain II aligned along
the [110] direction. These chains are formed by connecting two A55A dimers through binding site 1
or 2, to develop into a one-dimensional homochiral chain, denoted as -[A55A11A]- or -[A55A22A]-.
According to our DFT calculations, the gas-phase stabilization energies of hydrogen bonded dimers
A11A and A22A are −0.62 eV and −0.72 eV, respectively, therefore a chain based on the -[A55A22A]-
monomer is likely to be more stable than one based on -[A55A11A]-. Gas-phase optimization, however,
does not account for the effects of the registry of the chain on the substrate, which could play an
important role in stabilizing the final structure. The lateral widths of the constructed homochiral chains
for each model are ~6.5 Å, which is in good agreement with the measured lateral chain dimension
of 6.7 ± 0.5 Å observed via STM. Preuss et al. [26] have calculated the energetics of various chains
adsorbed in the registry on the Cu(110) surface and found that one dimensional chains based on
-[A22A]- and -[A55A]- are more favorable in terms of their adsorption energies and stabilization
energies. This is in line with the present findings. The structural model proposed here is also consistent
with similar molecular features observed via STM by Furukawa et al. [30].
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To describe the ladder-like chains of structure III, a number of different geometries were
considered, in order to construct the structural model with the best fit molecular geometries observed
in STM. The models shown in Figure 2c were considered as the closest match to the observed structures.
In these models, two homochiral dimers A55A are connected through site 3 to yield a chain based
on a -[A55A33A]- unit, with a periodicity of 10.16 Å along the chain growth direction. This value is
close to the value of 10.2 ± 0.5 Å measured via STM shown in Figure 1c,d and, as already highlighted,
nearly equal to four copper unit cells, strongly indicating that the chain may be commensurate with
the substrate. A33A has a stabilization energy of about −0.16 eV, therefore it has a small contribution
in the stability of the total system, and this could account for the random missing molecule in this
position. Nevertheless, a strong stabilization effect may be exerted by the commensurability of the
chain with the substrate. To complete the description of the ladder-like chains, a further adenine
molecule has to be included. This has two coordination possibilities through hydrogen bonding,
namely A11A and A15A. The stabilization energies of dimers A15A and A11A are −0.82 eV and
−0.62 eV, respectively. The inclusion of these two dimers yields two calculated widths of 15.1 Å
and 14.4 Å for ladders -[A55A(15A)33A]- and -[A55A(11A)33A]-, respectively. The wider ladder
chain dimension is approximately 1.0 Å narrower than the corresponding measured value, ca. 16.3 Å;
however, this small difference might be induced by structural relaxation upon adsorption, since the
periodic potential well of the Cu(110) surface can constrain the molecular arrangement in the process
of molecular registry on specific sites [25]. In fact, it is reported that an increase in the intermolecular
distance with respect to the values calculated for gas-phase models by up to ~0.5 Å [18] may occur
because of the interaction with the substrate. Preuss et al. [26] also found an increase in the length of the
intermolecular distance upon interaction with the Cu(110) lattice. STM images show a higher number
of wider chains, based on -[A33A(15A)55A]-, than narrower chains, based on -[A33A(11A)55A]-, which
are more likely due to the inclusion of the relatively more energetically favorable dimer of A15A.

2.2. Chiral Domains Formed on a Substrate Held at 490 K

When adenine is dosed on the substrate maintained at ca. 490 K, two distinct domains composed of
ordered adenine rows are observed, labelled as I and II in Figure 3a. Previous studies of the adsorption
of adenine are commonly carried out at room temperature and followed by annealing to form ordered
adenine chain structures. However, the dosage of adenine at higher substrate temperatures is also
fundamentally interesting to help understand the molecule-substrate interactions within adenine
adlayers at a low thermal barrier surface.
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Figure 3. STM image of adenine chiral domains I and II formed on a Cu(110) surface maintained at 490 K. 
(a) (0.61 nA, −1.2 V, 45 × 45 nm2); (b) Magnification of the adenine molecular structure in domain I (0.68 nA, 
−1.1 V, 5.8 × 5.8 nm2) with superposed models consisting of adenine chains based on the -[A55A22A]- unit. 
The red sphere refers to single adenine molecular feature composed of the chiral chains; Vector a refers to 
the inter-molecular periodicity, and b is the inter-chain separation observed within the adenine structures 
in domain I.  

Figure 3. STM image of adenine chiral domains I and II formed on a Cu(110) surface maintained
at 490 K. (a) (0.61 nA, −1.2 V, 45 × 45 nm2); (b) Magnification of the adenine molecular structure
in domain I (0.68 nA, −1.1 V, 5.8 × 5.8 nm2) with superposed models consisting of adenine chains
based on the -[A55A22A]- unit. The red sphere refers to single adenine molecular feature composed of
the chiral chains; Vector a refers to the inter-molecular periodicity, and b is the inter-chain separation
observed within the adenine structures in domain I.
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Since the adsorption of pro-chiral molecules on surfaces typically produces equal amounts of each
enantiomer, if there is chiral segregation, mirror related domains are formed. Each domain consists of
adenine molecules of the same chirality. Here, the angle between the chain growth directions in the
two domains is approximately 110◦. Each domain is orientated at 55◦ with respect to the [110] axis of
the substrate, indicated with a black arrow in Figure 3a.

A magnified STM image of domain I is shown in Figure 3b. Within this domain, there exists only
one type of feature, the dimensions of which are 4.4 Å by 7.2 Å; this size matches the approximate
footprint of a single flat lying or slightly tilted adenine molecule. Therefore, each of the features
observed in the domain is assigned to a single adsorbed adenine molecule. The periodicity of the
molecules along the chain is a = 12.8 ± 0.5 Å, and in the other direction is b = 11.2 ± 0.5 Å. The unit
cell vectors are not aligned along the high symmetry directions of the substrate and so the unit cell is
assigned a C2 symmetry; this finding is consistent with the observation of two mirror related domains.
The rhombic unit cell shape and periodicities of the overlayer structures are also shown in Figure 3b,
and the angle between the two unit cell vectors is 70◦ ± 2◦.

A proposed model overlaid on the electron density map of the ordered structure in domain I is
shown in Figure 3b. Along the rows, the chains are formed by alternation of the hydrogen bonded
pairs A55A and A22A and the resulting rows are homochiral. The stabilization energy of dimer A55A
is −1.02 eV as already highlighted; this is the basic unit employed to construct the models for most of
the observed adenine structures. Dimer A22A has a stabilization energy of −0.72 eV; therefore, it is
less stable than dimer A55A. Both A55A and A22A dimers have the nitrogen atoms participating in
the formation of hydrogen bonds, therefore the proposed isolated units -[A55A22A]- are considered as
energetically favorable for the construction of a model that agrees well with the features observed in
the STM images. According to the DFT geometrical optimization, the periodicity along the adenine
rows is 12.29 Å and is determined by the hydrogen bonding. The intermolecular distance is 6.14 Å,
consistent with the length of vector a determined from the periodicity of the ad-layer features in the
two domains. In each row, adjacent molecules are stabilized by intermolecular hydrogen bonds that
dictate the growth direction; the proposed molecular arrangements are in good agreement with the
features observed via STM. Additionally, the hydrogen bonding interaction of molecules in adjacent
rows is excluded, as indicated by the large inter-row separation. In fact, the periodicity along vector b
is more likely to arise from a combination of van der Waals interactions between adjacent chains [4]
and strong substrate-adsorbate interaction [26].

The rationality of the proposed model is further confirmed by the registry of the model over the
Cu(110) lattice. As shown in Figure 4, two mirror related domains are produced, each consisting of
adsorbed species of the same chirality.
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Figure 4. Proposed molecular registry of adenine on the Cu(110) substrate: one amino and one
imino N atom of each adsorbed molecule are located at on-top positions in order to maximize the
molecule-substrate interactions. The two domains have opposite chirality and are related by the
mirror plane aligned along the [110] direction (blue dashed line). The red sphere represents the Cu
atoms arranged in Cu(110) crystal lattice; Vector a refers to the inter-molecular periodicity, and b is the
inter-chain separation within the proposed adenine structures in adenine chiral domains.
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The structures can be described in matrix notation as

(
3 ±3
−4 ±1

)
with a unit cell of 139 Å2

containing one adenine dimer. The growth direction of each adenine row is closely related to its
chirality; molecules of opposite chirality are arranged at an angle of ±55◦ with respect to the [110]
direction and grow along the (1, ±1) directions; this is consistent with the experimental results
mentioned above. Given the proposed registry, the imino N–Cu interactions are also significantly
facilitated by accommodating the two imino N atoms on each side of the amino group closely to
the on-top sites, in addition to the amino N–Cu on-top interaction indicated by previous theoretical
calculations [5,25]. Density functional Theory-Generalized Gradient approximations (DFT-GGA)
calculations by E. Rauls et al. [11] predict that the orientation where the molecules bind via two imino
N atoms to the substrate in the same way as in our proposed model is more energetically favorable
than the interaction taking place between the amino N atom and copper atoms.

Therefore, we tentatively propose that the observed large two-dimensional ordered domains
originate from more than one pair of N–Cu interactions, particularly along vector b. This is mainly
derived from the large inter-row distance, 10.8 Å, estimated from the proposed model, which is in
good agreement with the measured values. Along vector a, the balance between short range double
hydrogen bond interactions and strong substrate-adsorbate interactions leads to the formation of
longer chains.

3. Materials and Methods

All experiments were performed in an ultra-high vacuum (UHV) system equipped with an
Omicron variable temperature scanning tunneling microscope (VT-STM), Ar ion sputtering and
annealing facilities, a quadrupole mass spectrometer, and low energy electron diffraction (LEED).
A clean Cu(110) crystal surface was obtained by cycles of argon ion sputtering (typically 800 V,
1.5 × 10−5 mbar, 20 µA) followed by annealing to 800 K; surface cleanliness was assessed by the
appearance of a sharp (1 × 1) LEED pattern with low diffuse background and flat terraces on STM.
Adenine (99% purity, Sigma-Aldrich Ltd., Gillingham, UK) crystalline solid was dosed on the clean
Cu(110) substrate by thermal sublimation at 313 K from a home-built evaporator. The sublimation
temperature remained constant during deposition and was monitored via a K-type thermocouple
sensor to ensure reproducibility. The deposition rate employed (~0.018 ML/min) is about half of what
was used by Qiao et al. [5,34] to obtain chiral, one-dimensional adenine dimeric chains. The deposition
rate was evaluated by noting the deposition time taken to obtain a specific coverage; monolayer
coverage refers to the surface fully saturated by one monolayer of adenine. The background pressure
in the chamber was typically below 1 × 10−10 mbar and increased to ca. 1 × 10−9 mbar during
deposition. All STM measurements were performed in UHV at a base pressure of ca. 1 × 10−10 mbar
and at room temperature. STM images were collected in constant current mode using electrochemically
etched tungsten tips and were processed using the WSxM 4.0 software package [35]. Proposed adenine
gas-phase dimers were geometrically optimized using the Gaussian-03 software package [36] with
the 6-31G basis set using hybrid density functional theory (DFT) with the non-local Becke’s three
parameter functional (B3LYP) [37].

4. Conclusions

Adenine self-assembly on the Cu(110) surface has been investigated using scanning tunneling
microscopy under different preparation conditions and the resulting structures were modeled via
gas phase DFT calculations. Both the deposition rate and the annealing temperature, as well as the
coverage, were found to influence the formation of adenine ad-structures. At a low deposition rate
(ca. 0.018 ML/min) and medium coverage (~0.6 ML), adenine structures evolved from disordered
islands to double chains with increasing annealing temperature, up to ca. 430 K. Increasing the
annealing temperature up to ca. 490 K leads to the formation of ordered linear and ladder-like chain
structures along the [110] direction, in addition to the previously reported chiral chains oriented
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along the (1, ±2) directions. Ordered mirror related domains were created when depositing adenine
onto the substrate maintained at 490 K. For all the observed ad-layer structures, models based on
connecting the stable dimer A55A via a variety of hydrogen bonding sites have been proposed.
The formation of different chains after thermal treatments is thought to be closely related to the
initial molecular aggregation achieved at a low deposition rate. The preferred registry and alignment
of the stable dimer A55A with respect to the substrate upon annealing determines the orientation
according to which the other dimers connect, via directional hydrogen bonds. This results in the
formation of different chain structures. Upon deposition at an elevated substrate temperature, 490 K,
substrate-adsorbate interactions, originating from the interaction of the amino N atom with copper
and a partial contribution from imino N–Cu interactions, account for the formation of the observed
well-ordered two-dimensional domains. This study provides an insight into the complex scenario of
the interactions occurring between adenine molecules and the Cu(110) substrate.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/12/1016/s1.
Figure S1: STM images of adenine chiral chains obtained at a faster deposition rate and proposed structural model;
Figure S2: Gas phase adenine dimers DFT optimized; Table S1: Stabilization energy per molecule of adenine n-mer
species. Gaussian 03 software package full reference.
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