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Abstract: This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels
utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer,
PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT
template was removed by simple washing with water, leaving behind the hydrogel in the desired
physical shape. A hierarchical 3D structure such as “Matreshka” boxes were successfully prepared by
simply repeating the “self-healing” and “photo-irradiation” processes. We have also explored the
potential of the SHT system for the manipulation of cells.
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1. Introduction

Polymeric hydrogels are a widely-studied class of biocompatible soft materials that have
attracted increasing attention over the last few decades because of their promising applications
in broad fields such as food, cosmetics, and biomaterials [1–3]. Hydrogels are typically prepared
by the polymerization of monomers and cross-linkers in a mold. The resulting gel shape readily
depends on the shape of the mold, with relatively simple shapes such as discs, cubes, cylinders,
or spheres [4–7]. However, constructions of complicated, multicomponent self-standing 3D objects
with arbitrary shapes have been a big challenge for soft and water-rich hydrogels. New material
engineering approaches have to be considered to construct arbitrary shaped gels. In recent years,
several sophisticated techniques have been reported for the fabrication of hydrogels with various
3D structures, including photolithography [8,9] and 3D printing [10,11]. Another approach is to
attach different blocks or layers after gel fabrication [12,13]. However, these are time consuming and
cost-inefficient, and sometimes difficult to produce. Therefore, a stimuli-responsive polymer-based
approach has emerged as an alternative method to manufacture complex 3D structures, due to the
polymer’s ability change shape in response to external stimuli [14,15].

The idea is that a 3D object is obtained by folding, bending, or twisting a programmed 2D
structure that consists of stimuli-responsive materials [16,17].

Here, we demonstrate the ability of self-healing polymers to act as a template of 3D hydrogel
structure with arbitrary shapes (self-healing template; SHT). There has been a growing interest in
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dynamically-reconstructing or self-healing polymers in recent years because they can undergo automatic
healing to repair damage, while stimuli-responsive polymers were designed to function as passive
structures. Intrinsic self-healing polymers [18,19], which have a dynamic dissociation and re-association
of bonds, are especially an increasingly active research area, because they do not require any curing or
adhesive agents. Such dynamic bonds can be accomplished through selective or specific interactions
of two complementary compounds, called host–guest interactions [20,21]. Recently, metal–ligand
interactions [22] have also gained much attention because they are not only thermodynamically
stable, but also kinetically labile. Self-healing hydrogels at room temperature, for example, have been
demonstrated using ditopic ligands and lanthanide ions [23]. The combination of catechol–Fe3+ bonds
have also been known to reconstruct bonds spontaneously [24]. We have recently reported bio-inspired
metallo-supramolecular hydrogels using phosphate-terminated poly(ethylene glycol) (PEG-phos) and
various trivalent metal ions, such as Fe3+, V3+, Al3+, Ti3+, and Ga3+ [25]. In this study, we report a new
hydrogel fabrication method utilizing our previously developed self-healing hydrogel as a template.

2. Results and Discussion

2.1. Preparation of Self-Healing Template (SHT)

In the present work, arbitrarily shaped hydrogels were fabricated from photo-crosslinkable
polymers using the PEG-phos as the SHT. The SHT was first prepared using metal–ligand interactions
between trivalent metal ions and four-arm PEG-phos in the presence of a photo-crosslinkable
solution, in which PEG-diacrylate (PEGDA) and the photo-initiator irgacure 2959 were added
(Figure 1A and Scheme S1). Next, the SHT was fabricated into a certain shape by folding and
bending (Figure 1B). The arbitrarily-shaped SHT was then exposed to UV irradiation to crosslink the
loaded PEGDA and fix the arbitrary shapes (Figure 1C). Finally, the crosslinked gel samples were
transferred into water to remove the SHT from the PEGDA gel (Figure 1D). In the present study,
various trivalent metal ions, such as Fe3+, V3+, Ti3+, and Ga3+ were examined as crosslinkers. All ions
successfully gelated the PEG-phos; however, the gelation time was significantly affected by ion species.
For example, gelation quickly occurred within seconds for Fe3+, Ti3+, and Ga3+, while it took 40 s
for V3+, as previously reported [25]. These phenomena have been explained by their coulomb potential
values and water substitution rates [25]. In this study, we have chosen V3+ because an optimal period of
time is required for shaping and manipulating the hydrogels. In addition, V3+ is relatively transparent
to UV compared with other metal ions (Figure S1).
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Figure 1. Fabrication processes of 3D hydrogel object using self-healing template (SHT). (A) The SHT
was first prepared using metal–ligand interactions between trivalent metal ions and four-arm PEG-phos
in the presence of PEGDA; (B) The SHT was fabricated into a certain shape by folding and bending or
assembling each piece; (C) The arbitrarily-shaped SHT was then exposed to UV irradiation to crosslink
the PEGDA; (D) Finally, PEG-phos and metal ions were extracted from the PEGDA gel.
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2.2. Evaluation of Self-Healing Effect on Mechanical Property of Photo-Crosslinked Hydrogels

Figure 2A shows the dynamic fluidic nature of the PEG-phos SHT at room temperature,
as observed by optical microscopy. The scratch gradually disappeared with time, suggesting that
the SHT behaves as a liquid-like substrate. However, the SHT did not deform its shape during UV
irradiation because of the high viscosity of the SHT. To investigate the time-dependent self-healing
process, two pieces of SHT were attached together (Figure 2B). One of them was stained with
Fluorescein isothiocyanate-dextran (FITC-dextran; Mw = 3000–5000). After the interfaces came into
contact with each other, FITC-dextran started to migrate to the other piece of the SHT. This means
that diffusion and reformation of metal–ligand interactions successfully occurred at the interface.
To quantify the effect of healing time on the adhesion strength of the joint surface, tensile testing
experiments were performed using virgin and healed slab gel samples. The virgin gel samples of
SHT containing PEGDA were cut in the middle, and then the two halves were merged together.
After standing for 30, 60, 90, and 180 min, they were exposed to UV light for 10 min; 15 mW·cm−2

of intensity. The adhesive strength was measured by a loading-to-failure tensile test (Figure 2C).
The adhesive strength of PEGDA gels increased with time and reached the same value as virgin gel
sample. Thus, it was found that the mechanical strength of a gel was controlled by the diffusion
time of the PEGDA. Figure 2D shows the results of an erosion experiment of PEG-phos SHT gel in
water. The SHT swelled rapidly, approaching a plateau after 30 min. Then, the SHT started to lose its
weight steadily for up to 3 h incubation time. At 4 h, the SHT completely dissolved in water. Although
it should take more time for SHT to be extracted from crosslinked PEGDA hydrogels, this result
suggested that the metal–ligand interactions between V3+-PEG-phos can be easily dissociated by
dilution. To determine whether the SHT can be applied for creation of multicomponent hydrogels,
two types of SHT gels containing PEGDA with different molecular weights (Mn = 3350 and 10,000)
were prepared. The two gels were held in contact with each other and incubated for 180 min and then
exposed to UV light for 10 min. The healed hydrogel was immersed in water for 24 h.
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Figure 2. (A) Microscopic observation of the fluidic behavior of SHT (scale bar = 200 µm).
Time-lapse images show the capability of scratch repair; (B) Two SHT samples were prepared, and each
sample was cut into two pieces. One of them was colored with Fluorescein isothiocyanate-dextran
(FITC-dextran) for clarity. After pressing the fractured surfaces together, they merged into a single
piece (scale bar = 1 cm); (C) Effect of self-healing time before UV irradiation on the adhesive strength
of the resulting PEGDA gels after UV irradiation (n = 3, p < 0.05); (D) Erosion behavior of SHT
(scale bar = 1 cm). Mass changes were plotted at the predetermined time (n = 3, p < 0.05).



Materials 2016, 9, 864 4 of 9

2.3. Arbitrary Hydrogel Preparation with the Use of SHT

As shown in Figure 3A, a swelling mismatch of the gels was observed. This mismatch
induces a large internal stress, because the large swelling region experiences a compression from
the less-swelling region. Oppositely, the less-swelling region experiences an extension from the
large-swelling region. However, the adhered gels were not broken, and the healed interface did not
detach. We have also prepared a mosaic hydrogel using three types of SHT gels containing PEGDA
with different molecular weights (Mn = 3350, 6000, and 10,000). The samples with Mn of 3350 and
6000 were stained with blue (methylene blue) and red (methyl red), respectively. The preparation of
the mosaic hydrogel was performed in the same way as in Figure 3A. The interfaces of each piece did
not detach by the swelling mismatch (Figure 3B). SEM images also confirm there was no fracturing
at the adhesive interface (Figure 3C). These results indicate that the SHT system can be utilized to
mend two or more different types of hydrogels to create multicomponent objects. In addition to the 2D
multicomponent hydrogels, the SHT system can be used to fabricate sophisticated 3D objects.
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Figure 3. (A) Photographs of two SHT samples containing different molecular weights of PEGDA
(Mn = 3350 and 10,000). After cutting into two pieces and pressing the fractured surfaces together
for 3 h, PEGDA was crosslinked by UV irradiation; (B) Photographs of a mosaic-type hydrogel.
Three SHT samples containing different molecular weights of PEGDA (Mn = 3350, 6000, and 10,000).
After attaching these pieces together, PEGDA was crosslinked by UV irradiation (scale bar = 10 mm);
(C) SEM image of adhesive interfaces in the mosaic hydrogel (scale bar = 1 mm).

We used “paper folding” or “origami” technology to create cubic boxes. First, we prepared the
2D planar figure for a 3D cube using a SHT with PEGDA (Figure 4A). Then, the pre-patterned figure
was folded to make a cubic hydrogel (Figure 4B). After the self-healing process to seal the defect
areas, the gel was photo-irradiated. SEM images show that the adhesive interfaces were tightly sealed
(Figure 4C). To test the air-tightness, the gel box was put into water. The gel box floated in water,
and no air or water leakage was observed.

2.4. Biomedical Applications of Arbitrarily-Shaped Gels

To test the applicability of the SHT system, we encapsulated an ant in the box and placed the gel
into hexane. After five minutes, the ant was taken out of the box and found to be alive (Figure 4D).
We have additionally created hierarchical structures, such as nesting “Matreshka” boxes, by repeating
the self-healing and photo-irradiation processes. Figure 4E shows the photographs of the PEGDA
hydrogel boxes before and after nesting. Because a facile but tight fixation of the adhered interfaces
is considered to be a key point in the creation of hierarchical 3D objects, this SHT system identifies
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a solution in the field of spatially arranged hydrogel fabrications. Finally, the encapsulated cells using
the PEGDA box prepared by the SHT system was demonstrated. Suspension of NIH 3T3 fibroblasts
with a density of 1.0 × 106 cells mL−1 was placed in the box. The box was then immersed in acidic
solution (HCl 0.01 M) for 10 min (Figure 5A). The encapsulated cells were collected and reseeded on
tissue culture polystyrene (TCPS) dishes. A live/dead assay of the collected cells showed that almost
all the cells were alive, whereas very few cells were alive when they were directly injected into the HCl
solution without the gel box (Figure 5B and Figure S2).

An alamar blue (AB) assay was also performed to determine the proliferation of the collected cells.
The collected cells were reseeded on TCPS dishes, and proliferation was observed. The proliferation
profile did not differ from that of control cells that were directly injected into cell culture medium
(Dulbecco’s Modified Eagle’s medium, DMEM) without the gel box (Figure 5C). As expected,
HCl treated cells without the gel box did not proliferate due to the acute toxicity of the acidic conditions.
Figure 5D shows time-dependent changes in pH within the gel box when it was immersed in HCl
solution. Although the pH gradually decreased due to the diffusion of proton ions through the gel,
the pH value was still maintained for 10 min.
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Figure 4. (A) A photograph of a 2D planar figure prepared from SHT for a 3D gel cube
(scale bar = 1 cm); (B) A photograph of a cubic hydrogel box prepared by folding the pre-patterned
2D figure (scale bar = 1 cm); (C) SEM images of the adhered interface of the cubic hydrogel box
(scale bar = 1 mm and 50 mm); (D) Photographs of the cubic hydrogel box floated in hexane (top).
An ant was encapsulated in the box. After five minutes, the ant was taken out of the box and was found
to be alive (bottom) (scale bar = 1 cm); (E) Photographs of the hydrogel boxes before and after nesting
(scale bar = 1 cm). Each box was stained with blue (methylene blue) or red (methyl red) for clarity.
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3. Methods 

3.1. Materials 

Four-arm poly(ethylene glycol) (4-arm PEG) (Mn = 40,000) and linear PEG (Mn = 6000) were 
provided by NOF Co., Ltd. (Tokyo, Japan) and purified by precipitations in hexane. 
2-Hydroxy-4′-(2-hydroxyehoxy)-2-methylpropiophenone (irgacure 2959) and linear PEG (Mn = 3350 
and 10,000) were purchased from Sigma-Aldrich Co., LLC. (St. Louis, MO, USA). Tetrahydrofuran 
(THF) ultradehydrated, diisopropylamine, titanium(III) chloride solution (20%), iron(III) chloride 
hexahydrate, and phosphoryl chloride were purchased from Wako Pure Chemical Industries Ltd. 
(Osaka, Japan) and used as received. Acryloyl chloride was purchased from Tokyo Chemical 
Industry Co., Ltd. (Tokyo, Japan) and used as received. Vanadium(III) chloride hexahydrate was 
purchased from Thermo Fisher Scientific Chemicals Inc. (Waltham, MA, USA) and used as 
received. 

3.2. Polymer Synthesis 

The preparation of terminal phosphorylated four-arm PEG (4-arm PEG-phos) was carried out 
as follows. Four-arm PEG (Mn = 40,000) with hydroxyl end group was dissolved in 300 mL of THF 
(1.67% w/v). POCl3 was dissolved in 200 mL of super dehydrated THF (5% v/v), and the solution 
was kept at ca. 0 °C with an iced bath. The PEG solution was then added into the POCl3 solution. 
Diisopropyl amine was also added to the PEG and POCl3 mixture to remove the generated HCl. 
The mixture was then stirred at room temperature for 24 h. After the reaction, THF was totally 
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Linear poly(ethylene glycol) (Mn = 3350, 6000, or 10,000, 1 eq. mole amount) was dissolved in 
50 mL of THF. Acryloyl chloride of 132.5 eq. molar relative to the terminal group of poly(ethylene 
glycol) was diluted with dichloromethane. The acryloyl chloride was slowly added into the PEG 
solution by cooling with an ice bath. The reaction solution was gently bubbled by N2 gas overnight 

Figure 5. (A) Digital photographs of NIH 3T3 cells in Dulbecco’s Modified Eagle’s medium (DMEM),
HCl (0.01 M), and in a gel box floating in HCl (0.01 M); (B) Live and dead cell assay after each
treatment (red; dead, green; alive) (scale bars = 200 µm). The encapsulated cells were collected and
reseeded on tissue culture polystyrene (TCPS) dishes; (C) Alamar blue assay was used to assess
the proliferation of the collected cells after each treatment. Data are presented as mean ± standard
deviation (n = 2 per condition); (D) Time-dependent pH changes of the cell suspended HCl solution
without (open) and with (closed) gel box. The gel boxes were self-healed for 0 (circle), 60 (triangle),
and 180 (square) min prior to UV crosslink.

3. Methods

3.1. Materials

Four-arm poly(ethylene glycol) (4-arm PEG) (Mn = 40,000) and linear PEG (Mn = 6000)
were provided by NOF Co., Ltd. (Tokyo, Japan) and purified by precipitations in hexane.
2-Hydroxy-4′-(2-hydroxyehoxy)-2-methylpropiophenone (irgacure 2959) and linear PEG (Mn = 3350
and 10,000) were purchased from Sigma-Aldrich Co., LLC. (St. Louis, MO, USA). Tetrahydrofuran (THF)
ultradehydrated, diisopropylamine, titanium(III) chloride solution (20%), iron(III) chloride hexahydrate,
and phosphoryl chloride were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan) and
used as received. Acryloyl chloride was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan) and used as received. Vanadium(III) chloride hexahydrate was purchased from Thermo Fisher
Scientific Chemicals Inc. (Waltham, MA, USA) and used as received.

3.2. Polymer Synthesis

The preparation of terminal phosphorylated four-arm PEG (4-arm PEG-phos) was carried out
as follows. Four-arm PEG (Mn = 40,000) with hydroxyl end group was dissolved in 300 mL of THF
(1.67% w/v). POCl3 was dissolved in 200 mL of super dehydrated THF (5% v/v), and the solution
was kept at ca. 0 ◦C with an iced bath. The PEG solution was then added into the POCl3 solution.
Diisopropyl amine was also added to the PEG and POCl3 mixture to remove the generated HCl.
The mixture was then stirred at room temperature for 24 h. After the reaction, THF was totally
evaporated using a rotary evaporator, and the residue was dissolved in 200 mL of water. This aqueous
solution was then dialyzed for 3 days against water using a dialysis membrane (molecular weight cut
off = 3500). The dialyzed aqueous solution was then lyophilized to obtain phosphate-terminated PEG
as a white powder.

3.3. Preparation of Poly(ethylene glycol) Diacrylate (PEGDA)

Linear poly(ethylene glycol) (Mn = 3350, 6000, or 10,000, 1 eq. mole amount) was dissolved in
50 mL of THF. Acryloyl chloride of 132.5 eq. molar relative to the terminal group of poly(ethylene
glycol) was diluted with dichloromethane. The acryloyl chloride was slowly added into the PEG
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solution by cooling with an ice bath. The reaction solution was gently bubbled by N2 gas overnight to
remove HCl from the solution. After the reaction, the excess amount of acryloyl chloride was removed
by precipitating into diethyl ether three times. A white precipitate was collected by vacuum filtration
and then dried in vacuo.

3.4. Hydrogel Preparation Using Self-Healing Templates (SHTs)

The 4-arm PEG-phos and PEGDA were dissolved in an irgacure 2959 (10 wt %) solution at
concentrations of 41.3 g/L and 125 g/L, respectively. A 0.3 M vanadium chloride aqueous solution
was prepared, and PEGs solution (800 µL) and vanadium chloride solution (50 µL) were mixed
together. The mixed solution was immediately poured into a mold that was made from a glass slide
(50 mm × 50 mm) with silicone rubber of 1 mm thickness. The solution was then incubated for a few
minutes to cross-link the self-healing hydrogel network.

3.5. Optical Analysis of Metal Ion Solutions

Aqueous solutions of titanium(III) chloride, iron(III) chloride hexahydrate, and vanadium(III)
chloride hexahydrate at a concentration of 8.3 × 10−3 M were prepared. Absorbance of these solutions
was characterized from 300 to 600 nm using a Jasco V-650 spectrophotometer (Jasco Co., Tokyo, Japan).

3.6. Tensile Tests

Dumbbell-shaped SHTs were cut in half using a razor blade. Two pieces were pushed together
so that their surfaces came into contact with each other. After standing for a predetermined time
(0, 30, 60, 90, and 180 min), the samples were exposed to UV irradiation (using Optical Modulex
SX-U1251HQ, Ushio, Tokyo, Japan) to cross-link the PEGDA gel. The gel was immersed in water for
1 day to dissolve the self-healing network. The gel samples were subjected to tensile tests utilizing
a tensile testing machine (EZ-S 500N, Shimadzu, Kyoto, Japan). These samples underwent tensile tests
at 3 mm/min until the gel specimens fractured.

3.7. Preparation of Arbitrarily-Shaped Hydrogels

Prepared SHTs were cut, folded, and then attached to form a predetermined shape. The interfaces
underwent the self-healing process for an appropriate amount of time, typically 60 min. The self-healed
SHTs were exposed to UV light (15 mW·cm−2) for 10 min in order to form photo cross-linked hydrogel
networks. Photo cross-linked networks were then immersed in water for at least one day to remove
V3+ ions.

3.8. Cell Culture

Suspension of NIH 3T3 fibroblasts with a density of 1.0 × 106 cells mL−1 were put in a box
(1 cm3)-shaped gel with an injection pump, and then the gel was placed in 4 mL of HCl (0.01 M) for
10 min. The encapsulated cells were collected and reseeded on tissue culture polystyrene (TCPS) dishes
in Dulbecco’s Modified Eagle’s medium (DMEM) in the presence of 10% fetal bovine serum (FBS) at
37 ◦C for 72 h. A live/dead assay was performed to determine the number of viable and non-viable
cells. The collected cells were treated with 500 µL of 2 µM calcein AM (positive) and 4 µM EthD-1
(negative) solution for 30 min at room temperature, and then observed by fluorescence microscopy
(IX71, Olympus, Tokyo, Japan). Calcein AM and EthD-1 produced green and red fluorescence at
488 nm and 543 nm, respectively. For the evaluation of cell viability, the cells underwent an alamar
blue (AB) assay after 3 h, 24 h, 48 h, and 72 h. As negative and positive control, the same type of
cells were treated by 4 mL of 0.01 M HCl for 10 min and DMEM containing 10% FBS, respectively.
The collected cells were treated with an AB solution. The supernatants were placed into a 96-well micro
plate, and the absorbance was measured at 590 nm using a micro-plate reader (Bio-Rad Laboratories).
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4. Conclusions

A self-healing template-based approach was successfully demonstrated for the creation of
arbitrarily-shaped hydrogels. By using this technique, multicomponent 2D gels were successfully
prepared. In addition, it has also been applied to fabricate sophisticated 3D objects, such as “Matreshka”
boxes. The prepared hydrogels showed tight sealing of the adhesive interfaces without the use of
sutures. This approach will provide a robust and facile method for the manipulation and delivery of
living cells as well as the formation of tissues mimicking native tissue constructs.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/11/864/s1.
Scheme S1 shows schematic illustration for synthesis of 4-arm PEG-phos and PEGDA. Figure S1 indicates
the result of absorbance spectra of FeCl3, TiCl3 and VCl3 aqueous solution (8.3 × 10−3 M each). FeCl3 solution
shows the absorbance wavelength of 300–400 nm. This wavelength range is utilized for UV crosslinking of PEGDA
gel. Figure S2 shows the result of Cell viabilities obtained from live/dead assays.
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