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Abstract: The photoelectrical properties of two dyes—ethyl red and carminic acid—as sensitizers
of dye-sensitized solar cells were investigated in experiments herein described. In order to reveal
the reason for the difference between the photoelectrical properties of the two dyes, the ground
state and excited state properties of the dyes before and after adsorbed on TiO2 were calculated via
density functional theory (DFT) and time-dependent DFT (TDDFT). The key parameters including
the light harvesting efficiency (LHE), the driving force of electron injection (∆Ginject) and dye
regeneration (∆Gregen), the total dipole moment (µnormal), the conduction band of edge of the
semiconductor (∆ECB), and the excited state lifetime (τ) were investigated, which are closely related to
the short-circuit current density (Jsc) and open circuit voltage (Voc). It was found that the experimental
carminic acid has a larger Jsc and Voc, which are interpreted by a larger amount of dye adsorbed
on a TiO2 photoanode and a larger ∆Gregen, excited state lifetime (τ), µnormal, and ∆ECB. At the
same time, chemical reactivity parameters illustrate that the lower chemical hardness (h) and higher
electron accepting power (ω+) of carminic acid have an influence on the short-circuit current density.
Therefore, carminic acid shows excellent photoelectric conversion efficiency in comparison with
ethyl red.

Keywords: photoelectric conversion efficiency; density functional theory; excited state; chemical
reactivity parameters; dye-sensitized solar cell

1. Introduction

Solar energy, as a clean and renewable energy, has many advantages including inexhaustibility,
no pollution, and large-scale applications. In recent decades, how to effectively use solar energy has
become the focus of researchers at domestic and international levels. Since 1991, Grätzel et al. [1]
introduced the nanocrystalline porous electrode with a great ratio surface area and an organic
electrolyte to a dye-sensitized solar cell (DSSC) for the first time. Its photoelectric conversion efficiency
(PCE) reached 7.9%, and this technology has opened new doors to effectively utilizing solar energy.

Generally, the DSSC consists of four parts [2,3]: a nanocrystalline photoanode, a redox electrolyte,
a counter electrode, and dye, of which the dye is crucial to determine the PCE of the DSSC. The dyes
can be divided into metal-bearing, metal-free, and natural dyes. Up to now, the PCE of DSSCs based
on ruthenium polypyridine has exceeded 10% [4], and that of DSSCs with zinc porphyrin complexes
have surpassed 12% under standard global AM 1.5 solar conditions [5,6] However, the ruthenium
dyes have such disadvantages: it is rare and expensive, it has relatively low extinction coefficients,
it only absorbs visible light, and dye aggregates on the semiconductor. This has limited the application
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of metal-bearing dyes for DSSCs [7]. Recently, much research has focused on the study of metal-free
organic DSSCs due to the rich raw materials, flexible molecular design, easy synthesis, low cost [8–14],
and organic optoelectronic materials [15,16]. It is worth noting that Yao and co-workers [11] synthesized
a metal-free organic dye (C281), which showed over 80% external quantum efficiency in a broad spectral
range from 480 to 735 nm, and a high PCE of 13.0% under irradiance of simulated AM 1.5G sunlight
(100 mW·cm−2). Moreover, Gao et al. [12] designed and synthesized three novel oligothiophene-linked
phenothiazine dyes JY31, JY32, and JY33 by introducing alkyl chains on oligothiophene π-bridge and
4-butoxyphenyl group as the secondary donor, which significantly improved the open-circuit voltage
and short-circuit current density, and the highest PCE for JY33 was 7.48%. Besides, Karlsson and
coworkers [13] synthesized and tested a series of metal-free organic dyes with a core phenoxazine
chromophore as sensitizers in DSSCs, and the results indicated that a dye with a furan-conjugated linker
showed a shorter lifetime relative to dyes with the acceptor group directly attached to the phenoxazine.
In addition, natural dyes such as chlorophylls [17–19], flavonoids [20,21], anthocyanins [22,23], and
carotenoids [24,25] have also been applied to the research and development of DSSC owing to their
environmental friendliness, relative abundance, easy preparation, and large absorption coefficients’
invisible region [26,27]. Kumara et al. [28] reported the research of black tea waste extract (BTE) as a
potential sensitizer, and the DSSC sensitized with pigment complexes of BTE showed a PCE of 0.20%,
while a significant increase (η = 0.46%) was observed when the pH of the pigment solution was
lowered. Li and co-workers [29] investigated three natural dyes (Forsythia suspensa, Herba Violae, and
corn leaf) as potential sensitizers, and the highest PCE was 0.96%, with open circuit voltage of 0.66 V,
a short-circuit current density of 1.97 mAcm−2, and a fill factor of 0.74 among the three DSSCs.

In recent years, quantum chemical methods have become a feasible means to reveal the
relationship between structures and properties of dye molecules, which provide a reliable theoretical
basis for the rapid screening of highly efficient dye molecules [30,31]. Many researchers have succeeded
in predicting the photoelectric properties of dyes and organic molecules based on the quantum
chemical methods [32–37]. Zhang and collaborators presented a systematical investigation on the
key parameters including the open circuit voltage and short-circuit current density of two dyes
(1 and 2) based on density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations,
and the results showed that the insertion of phenyl ring in 2 enlarged the distance between the dye
cation hole and the semiconductor surface, and made the benzothiadiazole (BTDA) unit far away
from the semiconductor, resulting in a decreased charge recombination rate compared with that
of 1. Feng and co-workers [38] investigated the aggregation effects of two organic dyes (WS-2 and
WS-6) via DFT, TD-DFT, and density functional tight binding (DFTB) methods, implying that the
aggregation had an greater influence on emission spectra compared with absorption spectra, and
stronger aggregation induced larger intermolecular electronic coupling. In addition, Zarate et al. [39]
reported a computational investigation about the role of the donor motif in the photo-injection
mechanism displayed from a series of A-bridge-D structured dyes adsorbed on a (TiO2)15 anatase
cluster in the DFT framework with the B3LYP, PW91, PBE, M06L, and Cam-B3LYP functionals,
which successfully predicted the efficiency of the studied dyes in DSSC devices.

Ethyl red, as a kind of non-cyanine dye, possesses a simple structure and has a low synthetic cost,
and it has not been used in the field of DSSCs according to our current knowledge. Moreover, carminic
acid, often used as colorant in food and cosmetics or pigment for painters, has a wide range of raw
material sources and does no damage to the environment. In this work, we selected these two dyes as
sensitizers to investigate the optical and electrical properties of DSSCs in experiments aiming to explore
the relationship between molecular structures and photoelectric properties. In order to analyze the
experimental results in depth, the absorption spectra, electronic properties, and energy gaps of the two
dyes before and after absorption on TiO2 were calculated via DFT and TD-DFT. The key parameters
of the dyes absorbed on TiO2 were investigated to reveal the intrinsic reason for the difference in the
PCE of the two dyes, and those parameters are closely related to the short-circuit current density (Jsc)
and open circuit voltage (Voc), including the light harvesting efficiency (LHE), the driving force of
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electron injection (∆Ginject) and dye regeneration (∆Gregen), the total dipole moment (µnormal), and
the conduction band of edge of the semiconductor (∆ECB). In addition, the excited state lifetime
(τ) and total static first hyperpolarizability of the two dyes were calculated. The three-dimensional
(3D) real-space analysis method was adopted to describe the charge transfer process in the dye/TiO2

complexes. Finally, the chemical reactivity parameters of the two dyes including electron affinity (A),
ionization potential (I), chemical hardness (h), electrophilicity index (ω), electron donating power
(ω−), and electron accepting power (ω+) were calculated. The elaborated calculations will provide a
basis for explaining the experimentally different photoelectrical properties between the two dyes and
develop the potential utility in DSSCs.

2. Experimental and Theoretical Methods

2.1. Experiment

Ethyl red (ER) with a purity of greater than 98.0% was obtained from TCI (TCI (Shanghai)
Development Co., Ltd., Shanghai, China), which was used without further purification. Carminic acid
(CA) was obtained from Dr. Ehrenstorfer GmbH (Germany) and used without further purification.
The chemical structures of the two dyes are shown in Figure 1. The ethanol and tetrahydrofuran (THF)
solvents were used as received from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China).
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the active area of the cell was 0.16 cm2; after ethanol bathing and drying, the anode electrodes were 
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Figure 1. Chemical structures of (a) ethyl red (ER); and (b) carminic acid (CA).

UV-Vis spectra were measured with a TU-1900 spectrometer (Beijing Purkinje General Instrument
Co., Ltd., Beijing, China). FT-IR spectra were measured with a FT-IR 360 spectrometer (Nicolet,
Madison, WI, USA). Cyclic voltammetry experiments were performed using CH Instruments CHI615E
Electrochemical Workstation (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). The redox
potentials of the dyes were measured in a tetrahydrofuran (THF) solution, using 0.1 M KNO3 as the
supporting electrolyte. The scan range was between −1000 mV and +1000 mV, and the initial scan
potential was −1000 mV, at a scan rate of 50 mV/s, with a three-electrode system consisting of a glassy
carbon working electrode, a platinum counter electrode, and an Ag/AgCl reference electrode.

The fabricated DSSC structure mainly includes dyes, an electrode, and an electrolyte, and the
details of manufacturing process are as follows. (a) The TiO2 electrode was prepared by adding 10 mL
isopropyl tianate to water and keeping hydrolysis for 3 h, and then adding nitric acid and acetate to
the solution and placing it in an environment of 80 ◦C; the mixed solution was stirred until it became
a transparent blue solution; later, the hydrothermal reaction was executed at 200 ◦C for 12 h. After
cooling, spin steaming, and centrifuging, terpineol ethyl and cellulose were added to the ball grinder;
the paste was prepared completely via ball mill, rotary steam, and three roll; (b) The screen printing
technology was adopted to print the TiO2 paste to the clean surface of conductive glass, and the active
area of the cell was 0.16 cm2; after ethanol bathing and drying, the anode electrodes were sintered
and then treated in a TiCl4 solution. After this, the anode electrodes were sintered again. By the
measurement of a surface roughness tester (TIME3100, Tiancheng Technology Co. Ltd., Beijing, China),
the thickness of the TiO2 anode layer was about 16–18 µm. In later processing, the anode electrodes
were immediately removed after naturally cooling to 80 ◦C, and the anode electrodes were soaked
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in the natural dye without light for 24 h; (c) The anode electrode and the platinum plating counter
electrode were fitted together into the cell; in the middle of the two electrodes, the electrolyte solution
(including 0.5 mol/L LiI, 0.05 mol/L I2 TBP, GUSCN) was added. The photoelectric conversion
efficiency measurements of the DSSCs were carried out using a solar simulation instrument (Pecell-15,
Peccell Technologies, Inc., Yokohama, Japan), and light intensity was tinkered up via a reference
standard Si-solar solar cell at 1 sun light intensity of 100 mW·cm−2. Moreover, to determine the
adsorbed amount of the two dyes on TiO2 thin films, adsorption–desorption experiments of the two
dyes were performed according to previous research works [40–42]. The measurement of the incident
photon-to-current conversion efficiency (IPCE) was performed by a Hypermonolight (SM-25, Jasco Co.
Ltd., Tokyo, Japan).

2.2. Theory

In theory, the ground state structures of ethyl red (ER) and carminic acid (CA) were optimized via
DFT [43,44], using B3LYP [45–47] functional with a 6-31G(d) basis set. On this basis, FT-IR spectra, the
total static first hyperpolarizability and the frontier molecular orbital energies of the dyes in vacuum
and solvent were obtained. The total static first hyperpolarizability can be written as follows [48]:

βtot =
√
β2

x + β
2
y + β

2
z , (1)

Individual static component in the above equation is calculated from

βi = βiii +
1
3 ∑

i 6=j

(
βijj + βjij + βjji

)
, (2)

where βijk (i, j, k = x, y, z) are tenser components of the total static first hyperpolarizability. Due to
Kleinman symmetry, one finally obtains the following equation:

βtot =

[(
βxxx + βxyy + βxzz

)2
+
(
βyyy + βyzz + βyxx

)2
+
(
βzzz + βzxx + βzyy

)2
]1
/

2
. (3)

Moreover, the transition properties of the dyes in solvents were calculated using the
TD-DFT [49,50] method based on the optimization of the ground state structures in the solvent.
In order to select the appropriate functional and basis set to calculate the transition characteristics
of dyes, the absorption properties of ethyl red and carminic acid in solvents were performed with
different functional and basis set. The calculated results are listed in Table S1 (see Supplementary
Materials Table S1). Finally, according to the simulated results, we selected PBEPBE/6-311++G(d,p) and
MPW1PW91/6-311++G(d,p) to calculate the transition properties of ethyl red (ER) and carminic acid
(CA), respectively. All calculations in solvents adopted the Conductor-like PCM (C-PCM) model [51]
in this work. In addition, the ground state and excited state properties of dye/Ti(OH)3H2O complexes
were calculated with the model proposed by Peng and co-workers [52], and other researchers have
demonstrated the reliability of this simple model being used to analyze the properties of dyes [53,54].
The three-dimensional (3D) real-space analysis method [55,56] was used to describe the charge transfer
process in dye/TiO2 complexes. Meanwhile, the diagrams of the density of state (DOS) and partial
density of state (PDOS) of the two dyes adsorbed on TiO2 were presented using the Multiwfn 3.3.7
program (Beijing Quanton Technology Co. Ltd., Beijing, China) [57]. All calculations were performed
using Gaussian 09 package [58].
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3. Results and Discussion

3.1. Optical Characteristics of the Dyes

The experimental absorption spectra of the two dyes in ethanol and the dyes with TiO2 are
presented in Figure 2a,b, and the corresponding absorption peaks are listed in Table 1. As shown
in Figure 2a,b, ethyl red (ER) and carminic acid (CA) all show the relatively strong absorption
at 400–550 nm, at which the maximum absorption peaks of ethyl red and carminic acid are located
on 502.50 and 499.00 nm, respectively (see Table 1). It is worth noting that the absorption ranges of the
two dyes mainly distribute at the visible region, which is conducive to the effective use of solar energy.
In addition, it can be found from Table 1 that the absorption peak of ethyl red with TiO2 has little
change compared with that of the isolated dye. However, for carminic acid with TiO2, the absorption
peak has a red shift of 32 nm in comparison with that of the isolated dye.

Table 1. Experimental absorption peaks and calculated transition properties of the two dyes in ethanol
using the TD-DFT method, with PBEPBE/6-311++G(d,p) and MPW1PW91/6-311++G(d,p) for ethyl
red (ER) and carminic acid (CA), respectively.

Dye State λabs (nm/eV) Contribution MO Strength f Exp. a Exp. b

ER

S1 516.42/2.4009 (0.55904)H-1→L 0.2843

502.50 499.00

S2 483.18/2.5660 (0.54705)H→L 0.6403
S3 396.25/3.1289 (0.66579)H→L+1 0.0578
S4 364.76/3.3991 (0.53490)H-2→L 0.0182
S5 353.83/3.5040 (0.54898)H-1→L 0.0242
S6 341.12/3.6346 (0.60041)H-4→L 0.0353

CA

S1 485.78/2.5523 (0.70012)H→L 0.2331

499.00 531.00

S2 394.10/3.1460 (0.67917)H-1→L 0.0111
S3 379.66/3.2657 (0.59339)H-4→L 0.0001
S4 352.82/3.5141 (0.61934)H-2→L 0.1365
S5 340.32/3.6432 (0.65265)H-9→L 0.0003
S6 333.64/3.7161 (0.55417)H→L+1 0.0785

a the measured absorption peaks in the experiments (concentration in 2 × 10−4 M); b the measured absorption
peaks of dye/TiO2.
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In order to deeply investigate the excited state properties of the dyes, the transition properties
of the two dyes were calculated in ethanol using the TD-DFT method, with PBEPBE/6-311++G(d,p)
and MPW1PW91/6-311++G(d,p) for ethyl red and carminic acid, respectively, based on the optimized
ground state structures. The calculated absorption peaks and corresponding oscillator strengths are
listed in Table 1. It can be seen from Table 1 that, for the dye ethyl red, the excited state S2 corresponds
to the first strongest absorption 483.18 nm (f = 0.6403), which is composed by electrons transferring
from H→L. The excited state S1 corresponds to the second strongest absorption 516.42 nm (f = 0.2843),
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which comes from the electrons transferring from H-1→L. The excited states S3, S4, S5, and S6 originate
from the electrons transferring from H→L+1, H-2→L, H-1→L, and H-4→L, respectively, in spite of
their negligible absorption intensity. Meanwhile, it can be seen from Table 1 that, for the transition
properties of carminic acid, the excited state S1 corresponds to the first strongest absorption 485.78 nm
(f = 0.2331), which originates from the electron transition from H→L. The excited state S4 corresponds
to the second strongest absorption 352.82 nm (f = 0.1365), which has the contribution of electrons
transition from H-2→L. Moreover, the excited states S2, S3, S5, and S6 correspond to the electrons
transition from H-1→L, H-4→L, H-9→L, and H→L+1, respectively, ignoring their weak absorption.

Moreover, the selected frontier molecular orbitals of the two dyes are shown in Figure 3,
which are used to explain the electronic excitation and transition characteristics of dyes. It can
be found from Figure 3 that, for ethyl red, the molecular orbitals of the HOMO and HOMO-2
spread over the entire molecule, whereas the molecular orbital of HOMO-1 mainly distributes at
the 2-diazenylbenzoic acid unit. The molecular orbital of HOMO-4 mainly localizes on the benzene
ring and 2-diazenylbenzoic acid unit. In addition, the molecular orbital of LUMO is mainly located on
the benzene ring and the 2-diazenylbenzoic acid unit, whereas the molecular orbital of LUMO+1 is
mainly distributed at the 2-diazenylbenzoic acid unit. From the distribution of the above molecular
orbitals, electron injection is most likely to occur from the diethylamine unit to the 2-diazenylbenzoic
acid unit. Simultaneously, for carminic acid, the molecular orbitals of HOMO and HOMO-9 are
located on the 1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit, and that of HOMO-1 mainly
spreads over the molecular backbone. At the HOMO-2 level, the molecular orbital is located on
the (2R,3S,4R,5S)-2-(hydroxymethyl)-tetrahydro-2H-pyran-3,4,5-triol unit and the toluene of the
1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit. The molecular orbitals of HOMO-3 and HOMO-4
spread almost over the entire molecule. Meanwhile, the molecular orbitals of LUMO and LUMO+1 are
located on the 1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit.

Materials 2016, 9, 813  6 of 22 

 

excited states S2, S3, S5, and S6 correspond to the electrons transition from H-1→L, H-4→L, H-9→L, 
and H→L+1, respectively, ignoring their weak absorption. 

Moreover, the selected frontier molecular orbitals of the two dyes are shown in Figure 3, which 
are used to explain the electronic excitation and transition characteristics of dyes. It can be found 
from Figure 3 that, for ethyl red, the molecular orbitals of the HOMO and HOMO-2 spread over the 
entire molecule, whereas the molecular orbital of HOMO-1 mainly distributes at the 
2-diazenylbenzoic acid unit. The molecular orbital of HOMO-4 mainly localizes on the benzene ring 
and 2-diazenylbenzoic acid unit. In addition, the molecular orbital of LUMO is mainly located on the 
benzene ring and the 2-diazenylbenzoic acid unit, whereas the molecular orbital of LUMO+1 is 
mainly distributed at the 2-diazenylbenzoic acid unit. From the distribution of the above molecular 
orbitals, electron injection is most likely to occur from the diethylamine unit to the 2-diazenylbenzoic 
acid unit. Simultaneously, for carminic acid, the molecular orbitals of HOMO and HOMO-9 are 
located on the 1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit, and that of HOMO-1 mainly 
spreads over the molecular backbone. At the HOMO-2 level, the molecular orbital is located on the 
(2R,3S,4R,5S)-2-(hydroxymethyl)-tetrahydro-2H-pyran-3,4,5-triol unit and the toluene of the 
1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit. The molecular orbitals of HOMO-3 and 
HOMO-4 spread almost over the entire molecule. Meanwhile, the molecular orbitals of LUMO and 
LUMO+1 are located on the 1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit.  

ER 

 
H 

 
H-1 

 
H-2 

 
H-4 

 
L 

 
L+1 

  

CA 

 
H 

 
H-1 

 
H-2 

 
H-4 

 
H-9 

 
L 

 
L+1 

 

Figure 3. Selected frontier molecular orbitals of ethyl red (ER) and carminic acid (CA) in ethanol. 
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in Figure S1, the characteristic peaks at 1148.33 cm−1 and 1600.81 cm−1 mainlyoriginate from the 
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1267.70 cm−1 mainly comes from the vibration of C–H located on the benzene ring of the molecular 
middle and the 2-diazenylbenzoic acid unit. The characteristic peaks 1354.54 cm−1 and 1383.86 cm−1 
mainly derive from the vibration of C–H on the diethylamine unit and the 2-diazenylbenzoic acid 
unit, respectively. Moreover, the characteristic peak at 3435.10 cm−1 stems from the stretching 

Figure 3. Selected frontier molecular orbitals of ethyl red (ER) and carminic acid (CA) in ethanol.

3.2. FT-IR Spectra

The experimental and simulated FT-IR spectra of the two dyes and dye/TiO2 complexes
in the range of 400–4000 cm−1 are shown in Figure 4. It can be seen from Figure 4a,b that,
for ethyl red, the strong IR intensity mainly distributes in the region of 1000–2000 cm−1 and
3000–4000 cm−1, including the characteristic peaks for ethyl red 1148.33 cm−1, 1267.70 cm−1,
1354.54 cm−1, 1383.86 cm−1, 1600.81 cm−1, and 3435.10 cm−1. The vibration analysis corresponding
to the characteristic peaks of the two dyes are displayed in Figures S1 and S2 (see Supplementary
Materials Figures S1 and S2). As shown in Figure S1, the characteristic peaks at 1148.33 cm−1 and
1600.81 cm−1 mainlyoriginate from the vibration of C–H located on the benzene ring of the molecular
middle. The characteristic peak at 1267.70 cm−1 mainly comes from the vibration of C–H located on
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the benzene ring of the molecular middle and the 2-diazenylbenzoic acid unit. The characteristic peaks
1354.54 cm−1 and 1383.86 cm−1 mainly derive from the vibration of C–H on the diethylamine unit and
the 2-diazenylbenzoic acid unit, respectively. Moreover, the characteristic peak at 3435.10 cm−1 stems
from the stretching vibration of O–H on the carboxyl unit. As can be seen from Figure 4a, compared
with the FT-IR spectrum of isolated dye ethyl red, the peak located at about 3500.00 cm−1 in the FT-IR
of dye/TiO2 complex become weaker, indicating that the O–H bond on the carboxyl unit of ethyl red
ruptures. In response to this, the characteristic peak appears in the 400–700 cm−1 region (see Figure 4a),
corresponding to the stretching vibration of the Ti–O bond, which means that the Ti–O bond is formed;
the dye had adsorbed on the TiO2. These features can also be supported by the results of theoretical
simulation (see Figure 4b): there is a peak at 3689.71 cm−1 in the FT-IR of the isolated dye, originating
from the stretching vibration of O–H bond on the carboxyl unit, which disappeared in the FT-IR of
the dye/TiO2 complex; a peak at 487.69 cm−1 appears in the FT-IR of the dye/TiO2 complex, which
corresponds to the stretching vibration of the Ti–O bond. From the experimental and theoretical results,
it can be seen that the dye ethyl red had adsorbed on the TiO2 film.
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Meanwhile, it can be found from Figure 4c,d that, for carminic acid, the strong IR intensity
mainly distributes in the region of 1000–2000 cm−1 and 3000–4000 cm−1, i.e., 1081.97 cm−1,
1249.99 cm−1, 1446.34 cm−1, 1574.08 cm−1, 1621.35 cm−1, and 3439.51 cm−1. As shown in Figure S2,
the characteristic peaks at 1081.97 cm−1, 1249.99 cm−1, and 1446.34 cm−1 are mainly produced by the
vibrations of C–H and O–H on the (2R,3S,4R,5S)-2-(hydroxymethyl)-tetrahydro-2H-pyran-3,4,5-triol.
Moreover, the characteristic peaks at 1574.08 cm−1 and 1621.35 cm−1 are due to the vibration
of C–H and O–H on the 1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit. In addition,
the characteristic peak at 3439.51 cm−1 comes from the stretching vibration of O–H on the
1,2,4-trihydroxy-5-methylanthracene-9,10-dione unit. Furthermore, the peak located at about
3500.00 cm−1 in the FT-IR of the dye/TiO2 complex becomes weaker compared with that of the
isolated dye, implying that the O–H bond on the carboxyl unit of carminic acid ruptures (see Figure 4c).
Similarly, the peak at 3602.72 cm-1 in the simulated FT-IR spectrum of the isolated dye, which originates
from the stretching vibration of O–H on the carboxyl unit of carminic acid, disappears from that of the
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dye/TiO2 complex. Moreover, the characteristic peak, which corresponds to the stretching vibration
of the Ti–O bond, appears in the 400–700 cm−1 region (see Figure 4c); it also can be found from the
simulated results that the peak at 729.47 cm−1 appears in the FT-IR of the dye/TiO2 complex, which
corresponds to the stretching vibration of the Ti–O bond. It also shows that the dye is adsorbed on the
TiO2 film effectively.

3.3. Photovoltaic Properties of Fabricated DSSCs

The overall photoelectric conversion efficiency, η, isdefined as follows [59]:

η =
JSC × VOC × f f

P
, (4)

where Jsc is short-circuit current density, Voc is open circuit voltage, f f is the fill factor, and P is the
intensity of the incident light.

The fill factor ( f f ) is defined as the ratio of the maximum power obtained from the DSSC and the
theoretical maximum power, which is formulated as

f f =
Im ×Vm

JSC × VOC
, (5)

where Im and Vm are current and voltage related to the maximum power, respectively.
Here, the photovoltaic characteristics of the DSSCs sensitized with the two dyes and referenced

N719 are listed in Table 2, consisting of open circuit voltage (Voc), short-circuit current density (Jsc), fill
factor ( f f ) and photoelectric conversion efficiency (η%). In addition, the current–voltage characteristics
of the DSSCs sensitized with the two dyes and N719 are shown in Figure 5a. As listed in Table 2,
compared with the photovoltaic characteristics of the DSSC sensitized with ethyl red, the DSSC
sensitized with carminic acid shows a higher photoelectric conversion efficiency of 0.30%, with a
higher open circuit voltage of 0.53 V, a short-circuit current density of 0.66 mA cm−2 and a fill factor of
0.84. It should be noted that the photoelectric conversion efficiency of carminic acid is six times that of
ethyl red. The statistical amounts of the two dyes adsorbed on the TiO2 photoanode, tested via dye
desorption, are also listed in Table 2. It can be found that the amount of carminic acid adsorbed on the
TiO2 photoanodeis higher than that of the ethyl acid adsorbed on the TiO2 photoanode, indicating that
the carminic acid dye is more easily adsorbed on the TiO2 photoanode. According to previous research
works by Cojocaru et al. [42] and Jena et al. [60], the greater the amount of dye adsorbed on the TiO2

photoanode is, the higher the short-circuit current density is, thereby improving the photoelectric
conversion efficiency, which is in agreement with the experiment.

The incident photo-to-current conversion efficiency (IPCE) measurement contributes to the further
understanding for the photovoltaic characteristics of DSSC. By measuring the IPCE spectra of the
DSSCs sensitized with the two dyes in the visible light region, we found that the DSSCs sensitized with
ethyl red were too weak in the visible light region; therefore, the IPCE spectrum of the DSSC sensitized
with carminic acid is mainly discussed in this paper. The IPCE spectrum of the DSSC sensitized with
carminic acid is shown in Figure 5b. It can be found from Figure 5b that, for the dye carminic acid,
the IPCE spectrum of the dye has a peak when the wavelength of incident light is at 500–600 nm,
which may cause a greater short-circuit current density for carminic acid.

Table 2. Photovoltaic parameters of DSSCs based on ethyl red (ER), carminic acid (CA), and N719.

Dyes A × 10−8 (mol·cm−2) a VOC (V) JSC (mA·cm−2) ff η%

ethyl red (ER) 1.16 0.46 0.21 0.54 0.05
carminic acid (CA) 3.08 0.53 0.66 0.84 0.30

N719 – 0.74 18.91 0.62 8.74
a Amount of chemisorbed dyes.
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3.4. Electrochemical Characteristic

The investigation of electrochemical properties can reflect the characteristics of electron transition
from an excited state of dye to the conduction band of the semiconductor and the ability of dye
regeneration. The electrochemical characteristics of ethyl red and carminic acid were investigated by
cyclic voltammetry measurements in a tetrahydrofuran (THF) solvent using KNO3 as a supporting
electrolyte, and the cyclic voltammograms of the two dyes are shown in Figure 6. Because the cyclic
voltammetry measurements of the two dyes in ethanol solvent were imperfect, we replaced the
ethanol solvent by the tetrahydrofuran solvent. After calculation, the onset oxidation potentials of
the two dyes were 0.06 V for ethyl red and 0.28 V for carminic acid, respectively, which is obtained
by the intersection of two tangent lines for the rising current curve and the starting current curve,
respectively. The HOMO energy corresponds to the onset oxidation potential of the dye, when an
Ag/AgCl electrode was adopted as the reference electrode, and the HOMO energy can be calculated
according to the following formula [61]: HOMO = −e (EOX + 4.40) (eV), where EOX represents the
onset oxidation potential of dye. Therefore, the HOMO energies of the two dyes are −4.46 eV for ethyl
red and −4.68 eV for carminic acid, respectively. In general, the electron donor with strong donating
ability will shift the HOMO level more negative [62]. In view of this, the dye carminic acid has the
greater donating electron ability.
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In order to compare the experimental values, the calculated HOMOs, LUMOs, and energy gaps
(∆Hn ) of the two dyes in vacuum and solvent were obtained based on the optimized molecular
structures. The results are presented in Figure 7, and the data are listed in Table S2 (see Supplementary
Materials Table S2). If the DSSC intends to have high photoelectric conversion efficiency, the dye will
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be sure to have suitable HOMO and LUMO energies. The LUMO energy should be higher than the
conduction band edge of TiO2 (about −4.0 eV) to ensure that the electrons in the dye excited state can
be injected into the conduction band of the semiconductor, and the HOMO energy would be lower
than that of I−/I3

− (about −4.8 eV) to ensure that the dye in the oxidation state can be deoxidated by
the electrolyte [63,64]. It can be found from Figure 7 that the HOMOs of the two dyes in solvent are
higher than that in vacuum, and the HOMOs of the two dyes in solvent are lower than the energy of
I−/I3

− (−5.30 eV for ethyl red and −6.00 eV for carminic acid, respectively, see Table S2), implying
that the two dyes in the oxidation state can be deoxidated by the electrolyte. Moreover, it can be seen
from Figure 7 that the LUMOs of the two dyes in solvent are higher than that in vacuum, and the
LUMOs of the two dyes in solvent are higher than the conduction band edge of TiO2 (−2.18 eV for
ethyl red and −3.12 eV for carminic acid, respectively, see Table S2), indicating that the electrons in the
excited state of the two dyes can be effectively injected into the conduction band of the semiconductor.
In addition, carminic acid has a lower HOMO in vacuum compared with that of ethyl red, which is
similar to the phenomenon in solvent.

Materials 2016, 9, 813  10 of 22 

 

should be higher than the conduction band edge of TiO2 (about −4.0 eV) to ensure that the electrons 
in the dye excited state can be injected into the conduction band of the semiconductor, and the 
HOMO energy would be lower than that of I−/I3− (about −4.8 eV) to ensure that the dye in the 
oxidation state can be deoxidated by the electrolyte [63,64]. It can be found from Figure 7 that the 
HOMOs of the two dyes in solvent are higher than that in vacuum, and the HOMOs of the two dyes 
in solvent are lower than the energy of I−/I3− (−5.30 eV for ethyl red and −6.00 eV for carminic acid, 
respectively, see Table S2), implying that the two dyes in the oxidation state can be deoxidated by 
the electrolyte. Moreover, it can be seen from Figure 7 that the LUMOs of the two dyes in solvent are 
higher than that in vacuum, and the LUMOs of the two dyes in solvent are higher than the 
conduction band edge of TiO2 (−2.18 eV for ethyl red and −3.12 eV for carminic acid, respectively, see 
Table S2), indicating that the electrons in the excited state of the two dyes can be effectively injected 
into the conduction band of the semiconductor. In addition, carminic acid has a lower HOMO in 
vacuum compared with that of ethyl red, which is similar to the phenomenon in solvent. 

 
Figure 7. Calculated HOMOs, LUMOs and energy gaps (∆ୌି୐) of ethyl red (ER) and carminic acid 
(CA) in vacuum and solvent. 

Moreover, it can be seen from Figure 7 that the energy gaps of the two dyes in solvent (3.12 eV 
for ethyl red and 2.82 eV for carminic acid, respectively) are smaller than that in vacuum (3.51 eV for 
ethyl red and 2.94 eV for carminic acid, respectively). It is worth noting that the energy gaps of 
carminic acid in vacuum and solvent are all narrower than that of ethyl red. Therefore, carminic acid 
will show the red-shifted absorption spectrum, which may be beneficial for obtaining higher 
short-circuit current density and photoelectric conversion efficiency [65]. 

3.5. Theoretical Analysis for ܬ௦௖ and ௢ܸ௖ 
From Equation (4), it can be found that the photoelectric conversion efficiency of DSSC is 

mainly determined by the short-circuit current density (ܬୱୡ), open circuit voltage ( ୭ܸୡ), and fill factor 
(݂݂). It is known that theshort-circuit current density (ܬୱୡ) is determined by the light harvesting 
efficiency (LHE) of dye, the injection efficiency of the electrons in the excited state (Φ୧୬୨), the charge 
collection efficiency of TiO2 electrode (ηୡ୭୪୪), and the regeneration efficiency of the dye (η୰ୣ୥) [59,66], 
which is formulated as ܬୱୡ = e׬ LHE(λ)Φ୧୬୨ηୡ୭୪୪η୰ୣ୥ܫୱ(λ)dλ. (6)

For a given DSSC, it can be interpreted that the charge collection efficiency (ηୡ୭୪୪) has little 
difference because of the same semiconductor electrode (usually TiO2) [54]. Hereto, the short-circuit 
current density (ܬୱୡ) is determined by three parameters: the light harvesting efficiency (LHE), the 
injection efficiency of the electrons in the excited state (Φ୧୬୨), and the regeneration efficiency of the 
dye (η୰ୣ୥), in which the light harvesting efficiency (LHE) can be described by [67,68]: LHE = 1 − 10ି௙, (7)

where f is the calculated oscillator strength. According to Equation (7), the calculated LHE of the two 
dyes are 0.7711 and 0.3840 for ethyl red and carminic acid, respectively. Although ethyl red presents 

Figure 7. Calculated HOMOs, LUMOs and energy gaps (∆H−L) of ethyl red (ER) and carminic acid
(CA) in vacuum and solvent.

Moreover, it can be seen from Figure 7 that the energy gaps of the two dyes in solvent (3.12 eV for
ethyl red and 2.82 eV for carminic acid, respectively) are smaller than that in vacuum (3.51 eV for ethyl
red and 2.94 eV for carminic acid, respectively). It is worth noting that the energy gaps of carminic
acid in vacuum and solvent are all narrower than that of ethyl red. Therefore, carminic acid will show
the red-shifted absorption spectrum, which may be beneficial for obtaining higher short-circuit current
density and photoelectric conversion efficiency [65].

3.5. Theoretical Analysis for Jsc and Voc

From Equation (4), it can be found that the photoelectric conversion efficiency of DSSC is mainly
determined by the short-circuit current density (Jsc), open circuit voltage (Voc), and fill factor ( f f ). It is
known that theshort-circuit current density (Jsc) is determined by the light harvesting efficiency (LHE)
of dye, the injection efficiency of the electrons in the excited state (Φinj), the charge collection efficiency
of TiO2 electrode (ηcoll), and the regeneration efficiency of the dye (ηreg) [59,66], which is formulated as

Jsc = e
∫

LHE (λ)Φinjηcollηreg Is (λ)dλ. (6)

For a given DSSC, it can be interpreted that the charge collection efficiency (ηcoll) has little
difference because of the same semiconductor electrode (usually TiO2) [54]. Hereto, the short-circuit
current density (Jsc) is determined by three parameters: the light harvesting efficiency (LHE),
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the injection efficiency of the electrons in the excited state (Φinj), and the regeneration efficiency
of the dye (ηreg), in which the light harvesting efficiency (LHE) can be described by [67,68]:

LHE = 1− 10− f , (7)

where f is the calculated oscillator strength. According to Equation (7), the calculated LHE of the
two dyes are 0.7711 and 0.3840 for ethyl red and carminic acid, respectively. Although ethyl red
presents a higher LHE compared with that of carminic acid, we cannot arbitrarily think that ethyl red
will have a higher short-circuit current density due to the LHE of the two dyes obtained by different
calculation methods.

In addition, the effect of injection efficiency of the electrons in an excited state (Φinj) on the
short-circuit current density (Jsc) was investigated. The Φinj is related to the driving force of the
electron injection (∆Ginject). According to Preat’s method [69], the ∆Ginject can be expressed as

∆Ginject = Edye∗
OX − ECB, (8)

where Edye∗
OX is the excited state oxidation potential, and ECB is the reduction potential of the conduction

band of the semiconductor. In general, the anatase TiO2 is used as the electrode for DSSCs, and the
reported ECB for anatase TiO2 (about 4.0 eV) [70] was adopted in this work as reference value. Moreover,
the Edye∗

OX can be calculated by the following equation [71]:

Edye∗
OX = Edye

OX − λmax, (9)

where Edye
OX is the ground state oxidation potential, and λmax is the maximum absorption. The calculated

Edye
OX , Edye∗

OX , and ∆Ginject are listed in Table 3, and it can be found that the ∆Ginject of the two dyes are
1.27 eV and 0.55 eV for ethyl red and carminic acid, respectively. In terms of the research work of
Islam et al. [72], the injection efficiency of the electrons in the excited state (Φinj) tends to 1 when the
∆Ginject is greater than 0.2 eV. Therefore, it can be consideredthat the two dyes have the same Φinj.

Table 3. Calculated driving force of electron rejection and dye regeneration, ∆ECB and excited state
lifetimes (τ).

Dyes Edye (eV) λmax (eV) Edye∗ (eV) ∆Ginj (eV) ∆Greg (eV) µnormal (Debye) ∆ECB (eV) τ (ns)

ER −5.30 2.57 −2.73 −1.27 −0.50 2.20 0.337 14.05
CA −6.00 2.55 −3.45 −0.55 −1.20 7.77 0.410 15.20

Meanwhile, the regeneration efficiency of the dye (ηreg) is determined by the driving force of the
dye regeneration (∆Gregen). The ∆Gregen can be described by [73]

∆Gregen = Edye
OX − Eelectrolyte

redox , (10)

where Eelectrolyte
redox is the redox potential of the electrolyte. In this work, the Eelectrolyte

redox of redox couple
iodide/triiodide (about 4.80 eV) [63,64] was adopted to evaluate the ∆Gregen. The calculated ∆Gregen

are listed in Table 3, and it can be seen that carminic acid has the higher ∆Gregen (1.4 eV) compared with
that of ethyl red (0.7 eV), which would result in carminic acid’s higher short-circuit current density.
Through the analysis of the light harvesting efficiency (LHE) of the dye, the injection efficiency of the
electrons in the excited state (Φinj), and the regeneration efficiency of the dye (ηreg), the improved ηreg
of carminic acid is caused by the fact that larger ∆Gregen is favorable to the greater short-circuit current
density, which is in agreement with the experimental value.
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The open circuit voltage (Voc) is the difference between the quasi-Fermi level of the electron in the
TiO2 conduction band and the redox potential of electrolyte, which can be expressed as [74]

VOC =
ECB + ∆ECB

q
+
κbT

q
ln
(

nc

NCB

)
− Eredox

q
, (11)

where q is the unit charge, ECB represents the conduction band edge of the semiconductor, κbT is
the thermal energy, nc is the number of electrons in the conduction band, NCB represents the density
of accessible states in the conduction band, and Eredox stands for the electrolyte Fermi level. ∆ECB

represents the shift of ECB when the dyes are adsorbed on the semiconductor substrate and can be
described by [75,76]

∆ECB =
−qµnormalγ

ε0ε
(12)

where γ is the concentration of the dyes absorbed on the surface of the semiconductor, µnormal is the
dipole moment component of the dye molecules perpendicular to the surface of TiO2, and ε0 and
ε present the dielectric constant in vacuum and the organic monolayer, respectively. According to
Equations (11) and (12), the µnormal and ∆ECB have a close relationship with Voc. Obviously, the dyes
with larger µnormal and ∆ECB will generate a larger Voc. The calculated µnormal of the two dyes are
listed in Table 3, in which it can be seen that carminic acid has the larger µnormal (7.77 D) compared
with that of ethyl red (2.20 D). In addition, the density of the state and the partial density of state
(PDOS) of the two dyes adsorbed on TiO2 are presented in Figures S3 and S4 (see Supplementary
Materials Figures S3 and S4). As shown in Figures S3 and S4, carminic acid has a ∆ECB of 0.410 eV,
larger than that of ethyl red (0.337 eV). The above results indicate that carminic acid would have a
greater Voc due to the larger µnormal and ∆ECB, which is in agreement with the experimental results.

3.6. Excited State Lifetime (τ)

Excited state lifetime is one of the important parameters to study the efficiency of charge
transfer [77]. The longer the excited state lifetime is, the longer the time of dyes maintains in the
cationic form is, which is more conducive to the charge transfer [65,77]. The excited state lifetime of
the dye can be evaluated via the following equation: τ = 1.499/ f E2 , where E is the excitation energy
of the different electronic states (cm−1) and f is the oscillator strength corresponding to the electronic
state [65]. The calculated excited state lifetimes of the two dyes are listed in Table 3. As listed in
Table 3, the excited state lifetimes of ethyl red and carminic acid are 14.05 ns and 15.20 ns, respectively.
The results imply that carminic acid remains stable in the cationic state for a longer time, which
engenders a higher charge transfer efficiency and enhanced efficiency of the DSSC. This result is in
agreement with the experimental results.

3.7. Total Static First Hyperpolarizability

Due to the important application of hyperpolarizability in the research of molecular nonlinear
optical (NLO) properties, the first hyperpolarizabilities of the two dyes were investigated in vacuum
and solvent, and the results are listed in Table 4. It can be seen from Table 4 that the first
hyperpolarizabilities of the two dyes in vacuum and solvent are all in this order: ER > CA. It is
worth noticing that the components of the first hyperpolarizabilities of the two dyes are all mainly
along the x-axis, which is also the direction of the charge transfer. Although the first hyperpolarizability
of ethyl red is larger than that of carminic acid, the photoelectric conversion efficiency of DSSC based
on ethyl red presents a lower value due to the non-planar structure between the bridge and acceptor,
which restrained the electron transferring from donor to acceptor, thereby affecting the effective
electron injection from the dye molecule to the conduction band of the semiconductor.



Materials 2016, 9, 813 13 of 22

Table 4. Calculated the static first hyperpolarizability of the two dyes in vacuum and solvent.

Condition Dyes βxxx βxxy βxyy βyyy βxxz βxyz βyyz βxzz βyzz βzzz βtot

vacuum ER 4715.641 −146.531 −118.831 61.315 −28.349 −2.465 6.070 −102.532 −18.574 −20.764 4495.681
CA 2199.959 −367.325 304.207 120.870 116.514 −8.887 −43.438 7.2242 −33.653 13.928 2528.461

solvent
ER 23111.926 −374.194 −533.766 127.514 149.044 297.519 47.8815 −202.700 54.757 −11.201 22377.028
CA 2742.967 −1456.004 388.367 459.224 −303.563 −65.006 125.558 −90.987 −32.281 −99.709 3221.771
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3.8. Properties of Dye/TiO2 Complexes

In order to simulate the photoelectrical properties of DSSC more realistically, the electronic and
optical characteristics of the dyes adsorbed on TiO2 were investigated using the DFT and TDDFT
methods. The calculated frontier molecular orbital levels of the isolated dyes and the dye/TiO2

complexes in ethanol are presented in Figure 8, and the detailed data are listed in Table S3 (see
Supplementary Materials Table S3). As shown in Figure 8, the HOMO and LUMO energies of the
dye ethyl red adsorbed on TiO2 are lower than that of the isolated dye, and the energy gap increases
by 0.12 eV compared with that of the isolated dye. Meanwhile, the HOMO and LUMO energies of the
dye carminic acid adsorbed on TiO2 show almost no change compared with that of the isolated dye,
which is also the case for the energy gap.
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The transition properties of the dye/TiO2 complexes in ethanol were calculated at the
PBEPBE/6-311++G(d,p) and MPW1PW91/6-311++G(d,p) levels for ER/TiO2 and CA/TiO2 complexes,
respectively. The selected absorption peaks and corresponding oscillator strengths of the two dye/TiO2

complexes are listed in Table 5, and the complete data for the first 30 excited states are listed in
Tables S4 and S5 (see Supplementary Materials Tables S4 and S5). The simulated UV-Vis spectra
of the isolated dyes and dye/TiO2 complexes in ethanol are shown in Figure 9. Previous works
have shown that the photo-injection mechanism can be divided into two types depending on the
photo-injection mechanism from the dye to the semiconductor [78,79]: the first mechanism Type I
(indirect) contains the photo-excitation to a dye excited state, from which the electrons are transferred
to the semiconductor; the second mechanism Type II (direct) involves the electrons injecting from
the ground state of the dye to the conduction band of the semiconductor. According to previous
works [80,81], the photo-injection mechanism can be investigated via comparing the UV-Vis spectrum
of the isolated dye with that of the dye/semiconductor complex. Compared with the UV-Vis spectrum
of the isolated dye, the emergence of a new band in the spectrum of the dye/semiconductor complex
means that the complex undergoes a Type II (direct) mechanism. In addition, if the UV-Vis spectrum of
the dye/semiconductor complex has no new band compared with that of the isolated dye, the complex
exhibits a Type I (indirect) mechanism. As shown in Figure 9, the absorption spectrum of the ER/TiO2

complex has a new band compared with that of the isolated dye, implying that the ER/TiO2 complex
exhibits a Type II (direct) injection route. However, for the CA/TiO2 complex, the absorption spectrum
presents no new band compared with that of the isolated dye, indicating that the complex shows a
Type I (indirect) injection route.
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Table 5. Calculated transition properties of ethyl red (ER) and carminic acid (CA) adsorbed on TiO2

in ethanol.

Dyes State E (eV) λabs (nm) Contribution MO Strength f

ER
S1 2.1153 586.13 (0.67992)H→L 0.3376

S10 3.2715 378.98 (0.62913)H-2→L 0.2385
S15 3.5159 352.64 (0.66223)H-1→L+4 0.0528

CA
S1 2.5252 490.98 (0.70029)H→L 0.2347
S5 3.5909 345.28 (0.65835)H→L+1 0.2007

S12 4.1885 296.01 (0.46691)H→L+3 0.3310

Materials 2016, 9, 813  15 of 22 

 

Table 5. Calculated transition properties of ethyl red (ER) and carminic acid (CA) adsorbed on TiO2 
in ethanol. 

Dyes State E (eV) ૃܛ܊܉ (nm) Contribution MO Strength f 

ER 
S1 2.1153 586.13 (0.67992)H→L 0.3376 
S10 3.2715 378.98 (0.62913)H-2→L 0.2385 
S15 3.5159 352.64 (0.66223)H-1→L+4 0.0528 

CA 
S1 2.5252 490.98 (0.70029)H→L 0.2347 
S5 3.5909 345.28 (0.65835)H→L+1 0.2007 
S12 4.1885 296.01 (0.46691)H→L+3 0.3310 

 
Figure 9. Simulated UV-Vis spectra of (a) ER and ER/TiO2; and (b) CA and CA/TiO2 in ethanol. 

As listed in Table 5, for the complex ethyl red anchored on TiO2 cluster, the excited state S1 
corresponds to the strongest absorption (f = 0.3376), whose absorption peak is located on the point of 
586.13 nm. This excited state derives from the electrons transition from HOMO to LUMO. Figure 10 
presents the selected frontier molecular orbitals of the two dye/TiO2 complexes in ethanol. It can be 
found that, for the ER/TiO2 complex, the electron density of HOMO mainly distributes on the 
diethylamine and benzene ring units, and that of LUMO mainly distributes on the benzene ring, 
2-diazenylbenzoic acid, and the TiO2 units. That is to say, the electron transition corresponding to 
the excited state S1 is in the direction from the dye molecule to the TiO2. The excited state S10 
corresponds to the second stronger absorption state, which comes from the electron’s transition from 
HOMO-2 to LUMO with the oscillator strength f = 0.2385. Moreover, the electron transition 
corresponding to the excited state S10 is also in the direction from the dye molecule to the cluster 
(see Figure 10). The third stronger absorption state (S15) originates the electrons transition from 
HOMO-1 to LUMO+4, with the oscillator strength f = 0.0528. From Figure 10, the molecular orbital of 
LUMO+4 mainly distributes on the 2-diazenylbenzoic acid and TiO2 units. For those states, a change 
of electron density is propitious to the electron injection from the dye molecule to the semiconductor. 

Simultaneously, it can be found from Table 5 that, for the complex carminic acid anchored on 
TiO2, the excited state S12 corresponds to the strongest absorption (f = 0.3310), which originates from 
the electrons transition from HOMO to LUMO+3. The excited state S1 corresponds to the second 
stronger absorption state, with the oscillator strength f = 0.2347, which originates from the electrons 
transition from HOMO to LUMO. The absorption peak corresponding to the excited state S1 has a 
red shift of 5.20 nm compared with the maximum absorption peak of the isolated dye. The third 
stronger absorption state (S5) originates the electrons transition from HOMO to LUMO+1, with 
oscillator strength f = 0.2007. Figure 10 shows that the electrons’ transitions corresponding to these 
three excited states in the direction from the dye to the TiO2. 

Figure 9. Simulated UV-Vis spectra of (a) ER and ER/TiO2; and (b) CA and CA/TiO2 in ethanol.

As listed in Table 5, for the complex ethyl red anchored on TiO2 cluster, the excited state S1
corresponds to the strongest absorption (f = 0.3376), whose absorption peak is located on the point of
586.13 nm. This excited state derives from the electrons transition from HOMO to LUMO. Figure 10
presents the selected frontier molecular orbitals of the two dye/TiO2 complexes in ethanol. It can
be found that, for the ER/TiO2 complex, the electron density of HOMO mainly distributes on the
diethylamine and benzene ring units, and that of LUMO mainly distributes on the benzene ring,
2-diazenylbenzoic acid, and the TiO2 units. That is to say, the electron transition corresponding to the
excited state S1 is in the direction from the dye molecule to the TiO2. The excited state S10 corresponds
to the second stronger absorption state, which comes from the electron’s transition from HOMO-2 to
LUMO with the oscillator strength f = 0.2385. Moreover, the electron transition corresponding to the
excited state S10 is also in the direction from the dye molecule to the cluster (see Figure 10). The third
stronger absorption state (S15) originates the electrons transition from HOMO-1 to LUMO+4, with the
oscillator strength f = 0.0528. From Figure 10, the molecular orbital of LUMO+4 mainly distributes on
the 2-diazenylbenzoic acid and TiO2 units. For those states, a change of electron density is propitious
to the electron injection from the dye molecule to the semiconductor.

Simultaneously, it can be found from Table 5 that, for the complex carminic acid anchored on
TiO2, the excited state S12 corresponds to the strongest absorption (f = 0.3310), which originates from
the electrons transition from HOMO to LUMO+3. The excited state S1 corresponds to the second
stronger absorption state, with the oscillator strength f = 0.2347, which originates from the electrons
transition from HOMO to LUMO. The absorption peak corresponding to the excited state S1 has a red
shift of 5.20 nm compared with the maximum absorption peak of the isolated dye. The third stronger
absorption state (S5) originates the electrons transition from HOMO to LUMO+1, with oscillator
strength f = 0.2007. Figure 10 shows that the electrons’ transitions corresponding to these three excited
states in the direction from the dye to the TiO2.
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In order to understand the charge-transfer properties of the excited state complexes, the charge
difference density (CDD) of the two dyes adsorbed on the TiO2 complexes in ethanol are presented
in Figure 11. As shown in Figure 11, for the ER/TiO2 complex, the excited states S1 and S15 are all
total charge-transfer excited states, which implies the hole density and electron density are almost
completely separated. For the excited state S10, some of the hole density and electron density are
distributed on the dye molecule, and the rest of the electron density is distributed on the TiO2.
For the CA/TiO2 complex, the hole density and electron density corresponding to the excited state S1
are almost completely separated on the dye molecule. For the excited states S5 and S12, some of the
hole density and electron density are distributed on the dye molecule, and the rest of the electron
density is located on the TiO2. In summary, the electrons in the six excited states are all in the direction
from the dye to the TiO2.
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3.9. Chemical Reactivity Parameters

On the base of optimized neutral and ionic structures, the following chemical reactivity parameters
were calculated: electron affinity (A), ionization potential (I), chemical hardness (h), electrophilicity
index (ω), electron donating power (ω−), and electron accepting power (ω+). The obtained results
are listed in Table 6. Previous research has shown that the lower chemical hardness results in the
lower resistance to intramolecular charge transfer [82,83], and the lower chemical hardness and higher
electron accepting power lead to a better short-circuit current density, thereby generating excellent
photoelectric conversion efficiency [84]. It can be found from Table 6 that the dye carminic acid
possesses a lower chemical hardness (h = 1.21 eV) compared with that of ethyl red (h = 1.35 eV),
indicating that carminic acid presents a lower resistance to intramolecular charge transfer. Moreover,
carminic acid has a higher electron accepting power (ω+ = 6.50 eV) than does ethyl red (ω+ = 3.62 eV),
which implies that carminic acid would show a higher ability to attract electrons by means of
the acceptor moiety of the dye. Taking the above two parameters into account comprehensively,
carminic acid would have a higher short-circuit current density, which is in agreement with the
experimental results. By comparing the electrophilicity index of the two dyes, carminic acid has a
higher electrophilicity index (8.63 eV) than that of ethyl red (5.35 eV), which indicates that carminic
acid shows higher energetic stability by attracting the electrons from the environment [85]. On the part
of electron donating power, the lower electron donating power leads to a greater ability of donating
electrons [86]. Therefore, it can be seen from Table 6 that ethyl red exhibits lower electron donating
power, implying that this dye has a greater ability of donating electrons. However, synthetically
considering the chemical reactivity parameters of these two dyes, the photoelectrical properties of
carminic acid would excel that of ethyl red.

Table 6. Chemical reactivity of ethyl red (ER) and carminic acid (eV).

Dye A I h ω ω− ω+

ER 2.45 5.15 1.35 5.35 7.42 3.62
CA 3.36 5.78 1.21 8.63 11.07 6.50

4. Conclusions

The photoelectrical properties of the two dyes ethyl red and carminic acid as the sensitizers of
dye-sensitized solar cells (DSSCs) were investigated in the above experiments. The frontier molecular
orbital, the energy gaps, the absorption spectra, and the electronic properties of the two dyes before and
after absorption on TiO2 were calculated via DFT and TD-DFT methods. The key parameters that were
closely related to the short-circuit current density (Jsc) and open circuit voltage (Voc), including the light
harvesting efficiency (LHE), the excited state lifetime (τ), the driving force of electron injection (∆Ginject)
and dye regeneration (∆Gregen), the total dipole moment (µnormal), and the conduction band of the edge
of the semiconductor (∆ECB) were investigated to reveal the intrinsic reason for the difference in the
photoelectric conversion efficiency of the two dyes. The chemical reactivity parameters of the two dyes
including electron affinity (A), ionization potential (I), chemical hardness (h), electrophilicity index
(ω), electron donating power (ω−), and electron accepting power (ω+) were calculated. The following
conclusions can be drawn from the calculated results: (a) A larger amount of dye adsorbed on a TiO2

photoanode, for carminic acid, leads to a higher short-circuit current density, thereby improving the
photoelectric conversion efficiency of carminic acid; (b) It was found that the CA/TiO2 complexexhibits
an indirect injection route since no new absorption bands appear in the absorption spectra of the
complex; (c) Because of the larger ∆Gregen, excited state lifetime (τ), µnormal, and ∆ECB, carminic acid
has a larger Jsc and Voc; (d) The lower chemical hardness (h) and higher electron accepting power (ω+)
of carminic acid lead to a larger short-circuit current density, thereby generating excellent photoelectric
conversion efficiency. It is expected that the molecule with a structure similar to carminic acid can
possess photoelectric properties by molecular regulation.
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