Supplementary Materials: Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

Maike Martini, Patricia S. Hegger, Nicole Schädel, Burcu B. Minsky, Manuel Kirchhof, Sebastian Scholl, Alexander Southan, Günter E. M. Tovar, Heike Boehm and Sabine Laschat

1. Synthesis of Cross-Linkers (2) and $\mathrm{Me}-(2)^{+} \mathrm{I}^{-}$

1.1. Synthetic Strategies

Scheme S1. Additional synthesis route for C_{4} precursors.

1.2. General Methods

Melting points were measured with a Stuart SMP10 apparatus and are uncorrected. NMR spectra were recorded on a Bruker Avance 500 at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and on a Bruker Avance 300 at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and at $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ with tetramethylsilane as an internal standard. The signals were assigned by using additionally HSQC-, COSY-, and HMBC experiments. IR spectra were recorded using ATR technique on a Bruker FT-IR spectrometer Vektor 22 with MKII Golden Gate Single Reflection Diamant ATR system. Mass spectra and HR-MS spectra were recorded on a micro-TOF-Q (Bruker Daltonics), a Finnigan MAT 95, and a Varian MAT 711 spectrometer Varian MAT 711 spectrometer Varian MAT 711 spectrometer. Column chromatography was performed using silica gel 60 (Fluka, grain size $40-63 \mu \mathrm{~m}$). TLC was performed on Merck Kieselgel 60 F254 plates (0.25 mm thickness on aluminium), and visualized with anisaldehyde reagent $(2.00 \mathrm{~mL}$ anisaldehyde dissolved in 200 mL conc. HAc and 4.00 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) or permanganate reagent ($3.00 \mathrm{~g} \mathrm{KMnO}_{4}, 20.0 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, and 5.00 mL of a 5%-ic NaOH solution in $300 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$). All chemicals were used as purchased unless otherwise stated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NEt_{3} were dried over CaH_{2} by heating at reflux and subsequent distillation. DMF was stored over molecular sieves $4 \AA$. Hexanes (b.p. $30-75^{\circ} \mathrm{C}$), $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH used for chromatography were distilled prior to use. Moisture sensitive reactions were performed in oven-dried glassware under N_{2} atmosphere. For easier comparison of NMR spectra atom numbering deviates in some cases from the IUPAC nomenclature.

1.3. General Procedures

Synthesis of Bromoalcohols (4) (GP 1)

To a solution of the appropriate diol $3(1.00 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL}), \mathrm{HBr}\left(48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 1.20 \mathrm{mmol}\right)$ was added, and the reaction mixture was heated at reflux for 3 d or for 3 h using a Dean-Stark apparatus. Diethyl ether $(1 \mathrm{~mL})$ was added and the mixture was then successively washed with aqueous $\mathrm{NaOH}(6 \mathrm{M}, 1 \mathrm{~mL}), \mathrm{HCl}(3 \mathrm{M}, 1 \mathrm{~mL})$, and brine $(1 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Phthalimides (5) (GP 2a)
A solution of the appropriate bromoalcohol $4(1.00 \mathrm{mmol})$ and potassium phthalimide $(1.20 \mathrm{mmol})$ in DMF (1 mL) was heated at reflux for 16 h . The precipitate was filtered off and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 3 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Phthalimides (9) (GP 2b)
A stirred solution of potassium phthalimide $(1.00 \mathrm{mmol})$ and the appropriate α, ω-dibromoalkane $10(5.00 \mathrm{mmol})$ in abs. DMF $(1 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 16 h . The precipitate was filtered off, and the filtrate was concentrated. For $n=4,6$, the residue was distilled under vacuum ($p \approx 20$ mbar) to remove excess dibromoalkane prior to purification by column chromatography on SiO_{2}. For $n=8,10$ the crude product was purified by column chromatography on SiO_{2}.

Synthesis of Alkynes (8) (GP 3)
To a suspension of $\mathrm{NaH}(1.20 \mathrm{mmol})$ in abs. DMF $(2 \mathrm{~mL})$ in an oven-dried Schlenk flask at $0^{\circ} \mathrm{C}$, the appropriate alcohol $5(1.00 \mathrm{mmol})$ in abs. DMF (2 mL) was added, followed by the dropwise addition of a solution of propargyl bromide (80% in toluene, 1.20 mmol). Alternatively, propargyl alcohol (1.20 mmol) was added to a suspension of $\mathrm{NaH}(1.15 \mathrm{mmol})$ in abs. DMF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$; after 1 h , a solution of the appropriate bromide $9(1.00 \mathrm{mmol})$ in DMF $(2.5 \mathrm{~mL})$ was slowly added dropwise. The reaction mixture was stirred at room temperature for 16 h . Then, the solvent was removed under vacuum and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solid was filtered off and the filtrate concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Tosylates (6) (GP 4)
To a solution of the appropriate alcohol $5(1.00 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ in an oven-dried Schlenk flask at $0^{\circ} \mathrm{C}$, abs. $\mathrm{NEt}_{3}(2.20 \mathrm{mmol})$ and p-toluenesulfonyl chloride $(1.30 \mathrm{mmol})$ were added, and the reaction mixture was stirred at room temperature for 16 h . Then, the mixture was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 2.5 \mathrm{~mL})$, and brine $(2.5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Azides (7) (GP 5a)
A solution of the appropriate tosylate $6(1.00 \mathrm{mmol})$, TBAI $(0.10 \mathrm{mmol})$, and $\mathrm{NaN}_{3}(1.10 \mathrm{mmol})$ in abs. DMF (10 mL) was heated at $50^{\circ} \mathrm{C}$ for 16 h . After removal of the solvent under vacuum, the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, the solid filtered off, the filtrate concentrated and purified by column chromatography on SiO_{2}.

Synthesis of Azides (7) (GP 5b)

A solution of the appropriate bromide $9(1.00 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(1.50 \mathrm{mmol})$ in DMF $(5.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 16 h . For $\mathrm{n}=4$, the reaction mixture was poured onto ice water. The colorless precipitate was filtered off and dried under vacuum. For $n>4$, the solvent was evaporated, and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and filtered. The filtrate was concentrated and purified by column chromatography on SiO_{2}.

Synthesis of Triazoles (11) (GP 6)

To a solution of the appropriate azide $7(1.00 \mathrm{mmol})$ and alkyne $8(1.00 \mathrm{mmol})$ in a mixture of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,10 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{mmol})$ and sodium ascorbate $(0.10 \mathrm{mmol})$ were added, and the reaction mixture was stirred at room temperature for 4 d . After the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Diamines (12) (GP 7)
A solution of the appropriate diphthalimide $11(1.00 \mathrm{mmol})$ und hydrazine hydrate $(10.0 \mathrm{mmol})$ in EtOH (50 mL) was heated at reflux for 3 h . Precipitated 2,3-dihydrophthalazine-1,4-dione was filtered off and the filtrate concentrated. The residue was taken up in EtOH (as little as possible) and filtered. This procedure was repeated until a yellow oil remained after concentration.

Synthesis of Maleimides (2) (GP 8)
To a solution of the appropriate diamine $12(1.00 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$, NEt 3 and maleic anhydride (2.40 mmol each) were successively added, and the reaction mixture was heated at reflux for 6 h . The solvent was removed under vacuum, the residue taken up in $\mathrm{Ac}_{2} \mathrm{O}(100 \mathrm{mmol})$ and $\mathrm{NaOAc}(2.40 \mathrm{mmol})$ was added. The reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 16 h . After the addition of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL each), the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography on SiO_{2}.

Synthesis of Triazolium Salts (Me-(2)+ \mathbf{I}^{-}) (GP 9)

A solution of the appropriate triazole $2(1.00 \mathrm{mmol})$ und $\mathrm{MeI}(20.0 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was heated at $40^{\circ} \mathrm{C}$ for $8 \mathrm{~d}($ for $\mathrm{n}=4)$ and at reflux for $1-4 \mathrm{~d}$ (for $\mathrm{n}>4$). Solvent and excess MeI were distilled off, and the products $\mathbf{M e - (2) +} \mathbf{I}^{-}$were isolated in pure form without further purification.

Thio-Michael Reaction of Crosslinkers (2) or (Me-(2)+ \mathbf{I}^{-}) with a Thiol (GP 10)
To a solution of crosslinker C_{6}-triazole $\mathbf{2 b}$ or triazolium $\left.\mathbf{M e} \mathbf{- (2 b}\right)^{+} \mathbf{I}^{-}(55 \mu \mathrm{~mol})$ in degassed EtOH (1.5 mL) a degassed PBS solution ($\mathrm{pH} 3.0,1.5 \mathrm{~mL}$) was added. Then, methyl thioglycolate (0.14 mmol) was added dropwise, and the reaction mixture was stirred at room temperature for 24 h . The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure.

1.4. Synthesis of Triazole Precursors (7) and (8)

4-Bromobutan-1-ol (4a)

According to GP 1, from butane-1,4-diol (10.2 g, 0.11 mol), $\mathrm{HBr}\left(48 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 15.4 \mathrm{~mL}, 23.0 \mathrm{~g}$, 0.14 mol), toluene (100 mL), chromatography with hexanes/EtOAc ($5: 1$, then $3: 1$), yield: 4.77 g , $31.2 \mathrm{mmol}, 28 \%$, yellow oil; $\mathrm{R}_{\mathrm{f}}=0.32$ (hexanes/EtOAc 3:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.70-1.81$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.44(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.75(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.1,30.4(\mathrm{C}-2, \mathrm{C}-3), 33.5(\mathrm{C}-4), 62.4(\mathrm{C}-1) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [1].

6-Bromohexan-1-ol (4b)
According to GP 1, from hexane-1,6-diol ($5.08 \mathrm{~g}, 43.0 \mathrm{mmol}$), $\mathrm{HBr}\left(48 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 5.80 \mathrm{~mL}, 8.70 \mathrm{~g}$, 51.6 mmol), toluene (50 mL), chromatography with hexanes/EtOAc ($3: 1$, then $1: 1$), yield: 6.29 g , $34.7 \mathrm{mmol}, 81 \%$, colorless oil; $\mathrm{Rf}_{\mathrm{f}}=0.24$ (hexanes/EtOAc $3: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.32-1.50(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 1.52-1.63(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.81-1.92(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.40$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 3.63(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.1(\mathrm{C}-3)$, 28.1 (C-4), 32.6 (C-2), 32.8 (C-5), 34.0 (C-6), 62.9 (C-1) ppm. The spectroscopic data are in accordance with those in the literature $[2,3]$.

8-Bromooctan-1-ol (4c)
According to GP 1, from octane-1,8-diol ($10.0 \mathrm{~g}, 68.4 \mathrm{mmol}), \mathrm{HBr}\left(48 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 9.35 \mathrm{~mL}, 13.8 \mathrm{~g}$, $82.1 \mathrm{mmol})$, toluene (140 mL), yield: 14.2 g , $68.2 \mathrm{mmol}, 99 \%$, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.30-1.37\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.40-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57(\mathrm{tt}, J=7.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $2-\mathrm{H}), 1.86(\mathrm{tt}, J=7.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 3.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.628 .1,28.7,29.2\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{C}-2), 32.8(\mathrm{C}-7), 34.0(\mathrm{C}-8), 63.0(\mathrm{C}-1)$ ppm . The spectroscopic data are in accordance with those in the literature [3].

10-Bromodecan-1-ol (4d)

According to GP 1, from decane-1,10-diol ($10.0 \mathrm{~g}, 57.4 \mathrm{mmol}$), $\mathrm{HBr}\left(48 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 7.8 \mathrm{~mL}, 11.6 \mathrm{~g}$, $68.9 \mathrm{mmol})$, toluene (100 mL), chromatography with hexanes/EtOAc (4:1, then $2: 1$); yield: 9.12 g , $38.5 \mathrm{mmol}, 67 \%$, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26-1.38\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 1.39-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57(\mathrm{tt}, J=7.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 1.85(\mathrm{tt}, J=7.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 3.41$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.7,28.2$, 28.8, 29.3, 29.4, $29.5\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{C}-2), 32.8(\mathrm{C}-9), 34.0(\mathrm{C}-10), 63.1(\mathrm{C}-1) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature $[2,3]$.

2-(4-Bromobutoxy)tetrahydro-2H-pyran (14a)

To a solution of 4-bromobutan-1-ol $4 \mathbf{4 a}(5.96 \mathrm{~g}, 38.9 \mathrm{mmol})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, 3,4-$ dihydro-2H-pyran ($4.2 \mathrm{~mL}, 3.93 \mathrm{~g}, 46.7 \mathrm{mmol}$) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ were added, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After the addition of a satd. NaHCO_{3} solution $(5 \mathrm{~mL})$, the mixture was successively washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product purified by column chromatography on SiO_{2} with hexanes/EtOAc (50:1, then 20:1) to give 14a (7.92 g, $33.4 \mathrm{mmol}, 86 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.34$ (hexanes/EtOAc 20:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48-1.62(\mathrm{~m}, 4 \mathrm{H}$, $\left.3-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{Ha}, 5-\mathrm{H}\right), 1.67-1.77\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}, 2^{\prime}-\mathrm{H}\right), 1.78-1.85(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{Hb}), 1.93-2.01\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.42$ $\left(\mathrm{dt}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.45\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 3.47-3.53\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.76(\mathrm{dt}, J=9.7$, $\left.6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.81-3.88\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}\right), 4.57(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta=19.8(\mathrm{C}-4), 25.6(\mathrm{C}-5), 28.6\left(\mathrm{C}-2^{\prime}\right), 30.0\left(\mathrm{C}-3^{\prime}\right), 30.9(\mathrm{C}-3), 33.9\left(\mathrm{C}-4^{\prime}\right), 62.5(\mathrm{C}-6), 66.6\left(\mathrm{C}-1^{\prime}\right)$, $99.0(\mathrm{C}-2) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [1].

2-[4-(Tetrahydro-2H-pyran-2-yloxy)butyl]-1H-isoindole-1,3(2H)-dione (15a)

According to GP 2a, from $14 \mathrm{a}(2.58 \mathrm{~g}, 10.9 \mathrm{mmol})$, potassium phthalimide ($2.42 \mathrm{~g}, 13.1 \mathrm{mmol}$), DMF (20 mL), $120^{\circ} \mathrm{C}$ for 15 h . Generally, the product was used without purification, but it can be purified by chromatography with hexanes/EtOAc (5:1); yield: $2.27 \mathrm{~g}, 7.47 \mathrm{mmol}, 69 \%$, colorless oil. $\mathrm{R}_{\mathrm{f}}=0.57$ (hexanes/EtOAc 3:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44-1.60\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $1.60-1.72\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, 6^{\prime}-\mathrm{Hb}^{\prime}\right), 1.72-1.85\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.40\left(\mathrm{dt}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}\right)$, $3.43-3.52\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.68-3.78(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{Hb}), 3.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 3.78-3.88(\mathrm{~m}, 1 \mathrm{H}$,
$\left.3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.56\left(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 7.70\left(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Phth}^{\prime}\right), 7.83(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.6\left(\mathrm{C}-5^{\prime}\right), 25.6,25.7\left(\mathrm{C}-2, \mathrm{C}-4^{\prime}\right), 27.2(\mathrm{C}-3), 30.8\left(\mathrm{C}-6^{\prime}\right)$, 38.0 (C-1), 62.3 (C-3'), $67.0(\mathrm{C}-4), 98.9\left(\mathrm{C}-1^{\prime}\right), 123.3\left(2 \times\right.$ CHPhth $\left.^{\prime}\right), 132.3\left(2 \times\right.$ CPhth $\left.^{\prime}\right), 134.0(2 \times$ CHPhth), $168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\widetilde{v}=3469$ (w), $2940(\mathrm{w}), 2868$ (w), 1771 (w), 1704 (s), 1395 (m), 1360 (m), 1119 (m), 1032 (m), 868 (w), 717 (s), 529 (m) cm${ }^{-1}$. MS (ESI): $m / z=326.14$ [M + Na] ${ }^{+}$. HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 326.1363$, found 326.1388 [M + Na] ${ }^{+}$.

2-(4-Hydroxybutyl)-1H-isoindole-1,3(2H)-dione (5a)
(a) According to GP 2a, from $4 \mathrm{a}(4.50 \mathrm{~g}, 29.4 \mathrm{mmol})$, potassium phthalimide ($6.54 \mathrm{~g}, 35.3 \mathrm{mmol}$), DMF (40 mL), $110{ }^{\circ} \mathrm{C}$ for 17 h , chromatography with hexanes/EtOAc (2:1, then 1:1); yield: 3.16 g , 14.4 mmol, 49%, colorless oil, $>90 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.
(b) THP-protected bromoalcohol 14a ($4.53 \mathrm{~g}, 19.1 \mathrm{mmol}$) and potassium phthalimide (3.73 g , 20.1 mmol) were stirred at $120^{\circ} \mathrm{C}$ for 18 h . The precipitate was filtered off, and EtOAc (50 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added to the filtrate. The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was dissolved in $\mathrm{MeOH}(160 \mathrm{~mL})$, and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(145 \mathrm{mg}, 0.76 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 20 h . Additional $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($145 \mathrm{mg}, 0.76 \mathrm{mmol}$) was added, and the reaction mixture was stirred for another 3 d . The solvent was removed, and the residue was purified by column chromatography on SiO_{2} with hexanes/EtOAc ($2: 1$ to $1: 1$) to give $\mathbf{5 a}(3.54 \mathrm{~g}, 16.1 \mathrm{mmol}, 84 \%$ over 2 steps $)$ as a colorless solid. $\mathrm{R}_{\mathrm{f}}=0.19$ (hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.54-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69-1.81(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.67(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.68(\mathrm{dd}, J=5.4$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \mathrm{HPhth}^{2}$), 7.81 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.2$, 29.9 (C-2, C-3), 37.8 (C-1), 62.3 (C-4), $123.3(2 \times$ CHPhth , $132.2(2 \times$ CPhth $), 134.0(2 \times$ CHPhth $), 168.6$ $(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [4].

2-(6-Hydroxyhexyl)-1H-isoindole-1,3(2H)-dione (5b)

According to GP 2 a , from $\mathbf{4 b}(9.32 \mathrm{~g}, 51.5 \mathrm{mmol})$, potassium phthalimide ($11.4 \mathrm{~g}, 61.8 \mathrm{mmol}$), DMF (52 mL), chromatography with hexanes/EtOAc (1:1), yield: $10.9 \mathrm{~g}, 44.3 \mathrm{mmol}, 86 \%$, colorless solid; $\mathrm{R}_{\mathrm{f}}=0.34$ (hexanes/ EtOAc 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 1.54-1.61 (m, 2H, 5-H), 1.69 (tt, $J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 3.69$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}$), 7.71 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.84$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.2(\mathrm{C}-3), 26.5(\mathrm{C}-4), 28.6(\mathrm{C}-2), 32.6(\mathrm{C}-5), 37.9$ (C-1), 62.9 (C-6), $123.2\left(2 \times C_{\text {Phth }}\right), 132.2(2 \times$ Cphth $), 134.0(2 \times$ CHphth $), 168.6(2 \times \mathrm{C}=\mathrm{O})$ ppm. The spectroscopic data are in accordance with those in the literature [5].

2-(8-Hydroxyoctyl)-1H-isoindole-1,3(2H)-dione (5c)

According to GP 2a, from $4 \mathrm{c}(14.2 \mathrm{~g}, 67.9 \mathrm{mmol})$, potassium phthalimide ($15.1 \mathrm{~g}, 81.6 \mathrm{mmol}$), DMF (68 mL), chromatography with hexanes/EtOAc (1:1), yield: $16.9 \mathrm{~g}, 61.2 \mathrm{mmol}, 90 \%$, colorless solid; $\mathrm{Rf}_{\mathrm{f}}=0.48$ (hexanes/EtOAc 1:1). M.p. $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.38(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.55(\mathrm{tt}, J=6.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 1.67(\mathrm{tt}, J=7.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.63$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.68(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.71(\mathrm{dd}, J=5.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.84(\mathrm{dd}, J=5.5$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.6,26.7,28.5,29.1\left(\mathrm{CH}_{2}\right), 29.2(\mathrm{C}-2), 32.7$ (C-7), 38.0 (C-1), 63.0 (C-8), $123.2(2 \times$ CHPhth $), 132.2(2 \times$ Cphth), $133.9(2 \times$ CHPhth $), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=3461$ (w), 2929 (m), 2856 (m), 1772 (w), 1705 (s), 1614 (w), 1467 (w), 1437 (w), 1396 (m), 1368 (m), 1187 (w), 1063 (m), 946 (w), 888 (w), 795 (w), 720 (m), 623 (w), 530 (w) cm¹.1. MS (ESI) $m / z=298\left[\mathrm{M}+\mathrm{Na}^{+}, 276[\mathrm{M}+\mathrm{H}]^{+}, 258,160\right.$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 298.1414$, found: $298.1418\left[\mathrm{M}+\mathrm{Na}^{+}\right.$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is in accordance with that in the literature [6].

2-(10-Hydroxydecyl)-1H-isoindole-1,3(2H)-dione (5d)
According to GP 2 a , from $4 \mathrm{~d}(9.12 \mathrm{~g}, 38.5 \mathrm{mmol})$, potassium phthalimide ($8.56 \mathrm{~g}, 45.2 \mathrm{mmol}$), DMF (40 mL), chromatography with hexanes/EtOAc (2:1), yield: $9.23 \mathrm{~g}, 30.4 \mathrm{mmol}, 79 \%$, colorless solid, $\mathrm{Rf}_{\mathrm{f}}=0.63$ (hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18-1.42\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56$ $(\mathrm{tt}, J=7.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.67(\mathrm{tt}, J=7.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.63(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H})$, 3.67 (t, J=7.2 Hz, 2H, 1-H), 7.71 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth), 7.84 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}$ Phth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.7,26.8\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{C}-2), 29.1,29.4,29.5\left(\mathrm{CH}_{2}\right), 32.8(\mathrm{C}-9), 38.1$ (C-1), $63.0(\mathrm{C}-10), 123.2(2 \times$ CHPhth $), 132.2\left(2 \times\right.$ Cphth $\left.^{2}\right), 133.9(2 \times$ CHPhth $), 168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [7].

2-(4-Bromobutyl)-1H-isoindole-1,3(2H)-dione (9a)
According to GP 2b, from 1,4-dibromobutane ($24.1 \mathrm{~g}, 13.3 \mathrm{~mL}, 111 \mathrm{mmol}$), potassium phthalimide ($4.13 \mathrm{~g}, 22.3 \mathrm{mmol}$), DMF (25 mL), chromatography with hexanes/EtOAc (10:1 to 5:1), yield: $4.37 \mathrm{~g}, 15.5 \mathrm{mmol}, 70 \%$, colorless solid; $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes/EtOAc $5: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.77-1.96(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 3.43(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.71(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.70$ (dd, $J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {Phth }}$), $7.83\left(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=27.3,29.9(\mathrm{C}-2, \mathrm{C}-3), 32.9(\mathrm{C}-4), 37.0(\mathrm{C}-1), 123.4(2 \times$ CHphth $), 132.1(2 \times$ CPhth $), 134.1(2 \times$ CHPhth $)$, $168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [8].

2-(6-Bromohexyl)-1H-isoindole-1,3(2H)-dione (9b)
According to GP 2b, from 1,6-dibromohexane ($12.7 \mathrm{~g}, 8.00 \mathrm{~mL}, 52.0 \mathrm{mmol}$), potassium phthalimide ($1.93 \mathrm{~g}, 10.4 \mathrm{mmol}$), DMF (10 mL), chromatography with hexanes/EtOAc ($40: 1$ to $3: 1$), yield: 2.61 g , $8.41 \mathrm{mmol}, 81 \%$, colorless solid; $\mathrm{R}_{\mathrm{f}}=0.46$ (hexanes/EtOAc $5: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.32-1.53(\mathrm{~m}, 4 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 1.62-1.78(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 1.84-1.90(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 3.38(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}, 6-\mathrm{H}), 3.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.83$ (dd, $J=5.4,3.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1,27.8,28.5,32.7(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5), 33.8(\mathrm{C}-6)$, $38.0(\mathrm{C}-1), 123.3(2 \times$ CHPhth $), 132.2(2 \times$ CPhth $), 134.0(2 \times$ CHPhth $), 168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature $[8,9]$.

2-(8-Bromooctyl)-1H-isoindole-1,3(2H)-dione (9c)
According to GP 2b, from 1,8-dibromooctane ($21.1 \mathrm{~g}, 14.3 \mathrm{~mL}, 77.6 \mathrm{mmol}$), potassium phthalimide ($4.77 \mathrm{~g}, 25.8 \mathrm{mmol}$), DMF (120 mL), recrystallization from pentane, chromatography with hexanes/EtOAc (5:1 to 3:1), yield: 2.77 g , $8.19 \mathrm{mmol}, 32 \%$, colorless solid; $\mathrm{R}_{\mathrm{f}}=0.67$ (hexanes/ EtOAc 3:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23-1.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.73(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 1.77-1.89$ $(\mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}), 3.38(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}_{\text {Phth }}$), 7.84 (dd, $\left.J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.9,28.2,28.66$,
 $168.6(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [9].

2-(10-Bromodecyl)-1H-isoindole-1,3(2H)-dione (9d)
According to GP 2b, from 1,10-dibromo-decane ($50.7 \mathrm{~g}, 169.0 \mathrm{mmol}$), potassium phthalimide $(5.72 \mathrm{~g}, 30.9 \mathrm{mmol})$, DMF (360 mL), chromatography with hexanes/EtOAc (6:1), yield: $8.68 \mathrm{~g}, 23.7 \mathrm{mmol}$, 77%, colorless solid ($>90 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$); Rf $=0.68$ (hexanes/EtOAc $6: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.18-1.47\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.73(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 1.77-1.92(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $10-\mathrm{H}), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.70$ (dd, $J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{P}_{\mathrm{ph} h}$), 7.84 (dd, $J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.0,28.3,28.7,28.8,29.2,29.45,29.47,33.0\left(\mathrm{CH}_{2}\right), 34.2$
 spectroscopic data are in accordance with those in the literature $[8,9]$.

4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)butyl 4-methylbenzenesulfonate (6a)

According to GP 4, from alcohol $5 \mathrm{a}(1.04 \mathrm{~g}, 4.73 \mathrm{mmol})$, NEt 3 ($1.44 \mathrm{~mL}, 1.05 \mathrm{~g}, 10.4 \mathrm{mmol}$), p - TsCl $(1.17 \mathrm{~g}, 6.15 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, chromatography with hexanes/EtOAc (5:1 to 3:1), yield: 1.11 g , $2.96 \mathrm{mmol}, 63 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.24$ (hexanes/EtOAc 3:1). M.p. $112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.65-1.74(\mathrm{~m}, 4 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.05(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 7.32\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\right.$ тs), $7.71\left(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}{ }_{\mathrm{Phth}}\right), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH} \mathrm{Ts}_{\mathrm{s}}\right), 7.82\left(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.7\left(\mathrm{CH}_{3}\right), 24.8$, 26.3 (C-2, C-3), $37.2(\mathrm{C}-1), 69.8(\mathrm{C}-4), 123.4\left(2 \times C H_{\text {Phth }}\right), 128.0\left(2 \times \mathrm{CH}_{\text {Ts }}\right), 130.0\left(2 \times \mathrm{CH}_{\text {Ts }}\right), 132.3$ $\left(2 \times C_{\text {Phth }}\right), 133.1\left(C_{T \mathrm{~s}}\right), 134.1(2 \times$ CHPhth $), 144.9\left(C_{T s}\right), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=3464(\mathrm{w})$, 2947 (w), 1771 (m), 1704 (vs), 1597 (w), 1437 (m), 1396 (s), 1355 (s), 1188 (m), 1173 (s), 1097 (m), 1046 (m), 1018 (m), 935 (m), 904 (m), 814 (m), 717 (vs), 661 (s), 576 (m), 553 (s), 529 (m) cm${ }^{-1}$. MS (ESI) $m / z=396[\mathrm{M}+\mathrm{Na}]^{+}, 374[\mathrm{M}+\mathrm{H}]^{+}, 202[\mathrm{M}-\mathrm{OTs}]^{+} . \mathrm{HRMS}$ (ESI): calcd. for [C19 $\left.\mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}\right]^{+}$396.0876, found: $396.0899[\mathrm{M}+\mathrm{Na}]^{+}$. Isotopic labeled 6a is described in [10] and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ can be found in [11].

6-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)hexyl 4-methylbenzenesulfonate (6b)
According to GP 4, from alcohol $5 \mathbf{b}(3.47 \mathrm{~g}, 10.0 \mathrm{mmol})$, NEt 3 ($3.00 \mathrm{~mL}, 2.23 \mathrm{~g}, 22.0 \mathrm{mmol}$), $p-\mathrm{TsCl}(2.48 \mathrm{~g}, 13.0 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, chromatography with hexanes/EtOAc (5:1), yield: 3.64 g , $9.06 \mathrm{mmol}, 91 \%$, orange oil; $\mathrm{R}_{\mathrm{f}}=0.28$ (hexanes/EtOAc $5: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21-1.40$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.01(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}, 6-\mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Ts $), 7.67-7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Ts $)$, 7.81-7.86 (m, 2H, CHphth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.7\left(\mathrm{CH}_{3}\right), 25.0,26.2,28.4,28.7$ $\left(\mathrm{CH}_{2}\right), 37.8(\mathrm{C}-1), 70.6(\mathrm{C}-6), 123.2(2 \times \mathrm{CHPhth}), 127.9\left(2 \times \mathrm{CH}_{\text {ts }}\right), 129.9\left(2 \times \mathrm{CH}_{\mathrm{ts}}\right), 132.1(2 \times \mathrm{CPhth})$, $133.2\left(C_{T s}\right), 134.0(2 \times$ CHphth $)$, $144.7\left(C_{\text {Ts }}\right), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=2939(\mathrm{w}), 2862(\mathrm{w})$, 1772 (w), 1710 (s), 1598 (w), 1467 (w), 1437 (w), 1397 (m), 1358 (m), 1188 (w), 1176 (w), 962 (w), 924 (w), 816 (w), 721 (m), $664(\mathrm{~m}), 576(\mathrm{w}), 555(\mathrm{~m}), 530(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}=424[\mathrm{M}+\mathrm{Na}]^{+}, 402[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd. for [$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{SNa}^{+} 424.1189$, found: 424.1172 [M +Na$]^{+}$. Product $\mathbf{6 b}$ was partly described in [12].

8-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)octyl 4-methylbenzenesulfonate (6c)

According to GP 4, from alcohol 5c ($3.08 \mathrm{~g}, 11.2 \mathrm{mmol}$), NEt ${ }_{3}(3.40 \mathrm{~mL}, 2.49 \mathrm{~g}, 24.6 \mathrm{mmol}$), $p-\mathrm{TsCl}(2.78 \mathrm{~g}, 14.6 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, chromatography with hexanes/EtOAc (8:1), yield: 4.25 g , $9.89 \mathrm{mmol}, 88 \%$, light yellow oil, $\mathrm{R}_{\mathrm{f}}=0.53$ (hexanes/EtOAc $8: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.16-1.37\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.01$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Ts $), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{\text {Ts }}\right), 7.81-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Phth}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6\left(\mathrm{CH}_{3}\right), 25.3,26.7,28.5$, 28.7, 28.8, $28.9\left(\mathrm{CH}_{2}\right), 38.0(\mathrm{C}-1), 70.6(\mathrm{C}-8), 123.2\left(2 \times \mathrm{CH}_{\text {Phth }}\right), 127.9\left(2 \times \mathrm{CH}_{\mathrm{s}}\right), 129.8\left(2 \times \mathrm{CH}_{\mathrm{s}}\right), 132.2$ $\left(2 \times C_{\text {Phth }}\right), 133.3\left(C_{T \mathrm{~s}}\right), 133.9\left(2 \times C_{\text {Phth }}\right), 144.7\left(C_{\mathrm{Ts}}\right), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=2930(\mathrm{w})$, 2857 (w), 1771 (w), 1706 (s), 1598 (w), 1467 (w), 1437 (w), 1395 (m), 1356 (m), 1307 (w), 1291 (w), 1188 (m), 1175 (s), 1097 (w), 1060 (w), 1020 (w), 942 (m), 816 (w), 792 (w), 719 (s), $690(\mathrm{w}), 664(\mathrm{~m}), 622(\mathrm{w})$, $576(\mathrm{~m}), 554(\mathrm{~m}), 530(\mathrm{w}) \mathrm{cm}^{-1}$. MS (ESI) $m / z=452[\mathrm{M}+\mathrm{Na}]^{+}, 430[\mathrm{M}+\mathrm{H}]^{+}, 362,226,209,158$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{SNa}\right]^{+}$452.1502, found: $452.1533[\mathrm{M}+\mathrm{Na}]^{+}$. Product 6 c was partly described in [13].

10-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)decyl 4-methylbenzenesulfonate (6d)

According to GP 4, from alcohol $5 \mathrm{~d}(1.82 \mathrm{~g}, 6.00 \mathrm{mmol})$, NEt ${ }_{3}(1.83 \mathrm{~mL}, 1.34 \mathrm{~g}, 13.2 \mathrm{mmol})$, $p-\mathrm{TsCl}(1.49 \mathrm{~g}, 7.80 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, chromatography with hexanes/EtOAc (8:1), yield: 2.45 g , $5.54 \mathrm{mmol}, 92 \%$, yellow oil; $\mathrm{R}_{\mathrm{f}}=0.23$ (hexanes/EtOAc $8: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15-1.35$ $(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH} 2), 1.56-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.01(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}, 10-\mathrm{H}), 7.34\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Ts}_{\mathrm{s}}\right), 7.68-7.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right), 7.79\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Ts}_{\mathrm{s}}\right)$, $7.82-7.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{P}_{\text {rth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.7\left(\mathrm{CH}_{3}\right), 25.3,26.8,28.6,28.8,28.9$, 29.1, 29.2, $29.3\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{C}-1), 70.8(\mathrm{C}-10), 123.2(2 \times \mathrm{CHPhth}), 127.9\left(2 \times \mathrm{CH}_{\text {тs }}\right), 129.8\left(2 \times \mathrm{CH}_{\text {ts }}\right), 132.2$
$\left(2 \times C_{\text {Phth }}\right), 133.3\left(C_{T \mathrm{~s}}\right), 133.8(2 \times$ CHphth $), 144.6\left(C_{T \mathrm{~s}}\right), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=2927(\mathrm{~m})$, 2855 (w), 1771 (w), 1710 (s), 1598 (w), 1495 (w), 1467 (w), 1437 (w), 1396 (m), 1359 (m), 1188 (m), 1176 (m), 1097 (w), 1046 (w), 1020 (w), 960 (m), 930 (m), 816 (w), 720 (w), $690(\mathrm{w}), 664(\mathrm{~m}), 622(\mathrm{w}), 576$ (w), $555(\mathrm{~m}), 530(\mathrm{w}) \mathrm{cm}^{-1}$. MS (ESI) $m / z=480[\mathrm{M}+\mathrm{Na}]^{+}, 458[\mathrm{M}+\mathrm{H}]^{+}, 286$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SNa}\right]^{+} 480.1815$, found: 480.1803 [M + Na] ${ }^{+}$. Product 6 d was partly described in [13].

2-(4-Azidobutyl)-1H-isoindole-1,3(2H)-dione (7a)
(a) According to GP 5a, from $6 \mathrm{a}(2.41 \mathrm{~g}, 6.46 \mathrm{mmol})$, TBAI ($0.24 \mathrm{~g}, 0.65 \mathrm{mmol}$), $\mathrm{NaN}_{3}(0.46 \mathrm{~g}$, 7.1 mmol), DMF (40 mL), chromatography with hexanes/EtOAc (5:1), yield: $1.56 \mathrm{~g}, 6.37 \mathrm{mmol}, 99 \%$, colorless oil; $\mathrm{R}_{\mathrm{f}}=0.30$ (hexanes/EtOAc 5:1).
(b) According to GP 5b, from 9a ($2.55 \mathrm{~g}, 9.05 \mathrm{mmol}$), $\mathrm{NaN}_{3}(0.88 \mathrm{~g}, 13.6 \mathrm{mmol})$, DMF (50 mL), precipitation in ice water, yield: $2.08 \mathrm{~g}, 8.51 \mathrm{mmol}, 94 \%$, colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.58-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.33(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.72(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$, $1-\mathrm{H}), 7.71$ (dd, $J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \mathrm{P}_{\text {phth }}$), 7.84 (dd, $J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0,26.4(\mathrm{C}-2, \mathrm{C}-3), 37.4(\mathrm{C}-1), 51.0(\mathrm{C}-4), 123.4(2 \times \mathrm{CHPhth}), 132.2$ ($2 \times \mathrm{C}_{\mathrm{Phth}}$), 134.2 $\left(2 \times C_{\text {Phth }}\right), 168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in [14].

2-(6-Azidohexyl)-1H-isoindole-1,3(2H)-dione (7b)
(a) According to GP 5a, from $6 \mathbf{b}(3.64 \mathrm{~g}, 9.06 \mathrm{mmol})$, TBAI $(0.33 \mathrm{~g}, 0.91 \mathrm{mmol}), \mathrm{NaN}_{3}(0.65 \mathrm{~g}$, $9.97 \mathrm{mmol})$, DMF (100 mL), chromatography with hexanes/EtOAc (5:1), yield: $2.12 \mathrm{~g}, 7.78 \mathrm{mmol}$, 86%, yellow oil; $\mathrm{R}_{\mathrm{f}}=0.81$ (hexanes/EtOAc 1:1).
(b) According to GP 5b, from 9b ($0.83 \mathrm{~g}, 2.68 \mathrm{mmol}$), NaN3 ($0.26 \mathrm{~g}, 4.01 \mathrm{mmol}$), DMF (15 mL), chromatography with hexanes/EtOAc (3:1), yield: $0.61 \mathrm{~g}, 2.23 \mathrm{mmol}, 83 \%$, colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.63(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 1.65-1.74(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 3.26(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 3.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.69-7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right), 7.82-7.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {Phth }}\right)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.3,26.4\left(\mathrm{CH}_{2}\right), 28.5(\mathrm{C}-2), 28.7(\mathrm{C}-5), 37.8(\mathrm{C}-1), 51.3(\mathrm{C}-6)$, $123.2\left(2 \times\right.$ CHphth), $132.2\left(2 \times C_{\text {Phth }}\right), 133.9(2 \times$ HPhth $), 168.7(2 \times \mathrm{C}=\mathrm{O})$ ppm. Product 10 b is described in [15].

2-(8-Azidooctyl)-1H-isoindole-1,3(2H)-dione (7c)
(a) According to GP 5a, from $6 \mathrm{c}(4.21 \mathrm{~g}, 9.80 \mathrm{mmol})$, TBAI ($0.36 \mathrm{~g}, 0.98 \mathrm{mmol}$), $\mathrm{NaN}_{3}(0.70 \mathrm{~g}$, $10.8 \mathrm{mmol})$, DMF (80 mL), chromatography with hexanes/EtOAc (2:1), yield: $2.68 \mathrm{~g}, 8.92 \mathrm{mmol}$, 91%, yellow oil; $\mathrm{R}_{\mathrm{f}}=0.66$ (hexanes/EtOAc 2:1).
(b) According to GP 5b, from $9 \mathrm{c}(1.25 \mathrm{~g}, 3.70 \mathrm{mmol}), \mathrm{NaN}_{3}(0.37 \mathrm{~g}, 5.69 \mathrm{mmol})$, DMF (25 mL), chromatography with hexanes/EtOAc (6:1), yield: $1.06 \mathrm{~g}, 3.53 \mathrm{mmol}, 95 \%$, colorless solid; M.p. $31^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58(\mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 1.67(\mathrm{tt}$, $J=7.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.68(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.68-7.73(\mathrm{~m}, 2 \mathrm{H}$, CHPhth), 7.82-7.86 (m, 2H, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.6,26.7\left(\mathrm{CH}_{2}\right), 28.5(\mathrm{C}-2)$,
 168.7 ($2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=2931$ (w), 2857 (w), 2093 (m), 1773 (w), 1709 (s), 1615 (w), 1437 (w), 1396 (m), 1368 (m), 1257 (w), 1188 (w), 1156 (w), 1063 (w), 933 (w), 878 (w), 794 (w), 719 (m), $622(w), 551(w), 530(w) \mathrm{cm}^{-1}$. MS (ESI) $m / z=323[\mathrm{M}+\mathrm{Na}]^{+}, 301[\mathrm{M}+\mathrm{H}]^{+}, 273,250,228 . \operatorname{HRMS}(\mathrm{ESI}):$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}\right]^{+} 323.1478$, found: $323.1486[\mathrm{M}+\mathrm{Na}]^{+}$. Product 7 c is partly described in literature [16].

2-(10-Azidodecyl)-1H-isoindole-1,3(2H)-dione (7d)

(a) According to GP 5a, from $6 \mathbf{d}(2.54 \mathrm{~g}, 5.54 \mathrm{mmol})$, TBAI ($0.20 \mathrm{~g}, 0.55 \mathrm{mmol}), \mathrm{NaN} 3(0.40 \mathrm{~g}$, $6.09 \mathrm{mmol})$, DMF (45 mL), chromatography with hexanes/EtOAc (1:1), yield: 1.38 g , 4.20 mmol , 76%, colorless oil; $\mathrm{R}_{\mathrm{f}}=0.83$ (hexanes/EtOAc 1:1).
(b) According to GP 5b, from $9 \mathrm{~d}(3.60 \mathrm{~g}, 9.82 \mathrm{mmol}), \mathrm{NaN}_{3}(0.98 \mathrm{~g}, 15.1 \mathrm{mmol})$, DMF (75 mL), chromatography with hexanes/EtOAc (6:1), yield: $2.87 \mathrm{~g}, 8.74 \mathrm{mmol}, 89 \%$, colorless solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24-1.34\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58(\mathrm{tt}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 1.67(\mathrm{tt}, J=7.2$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 3.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}, ~ \mathrm{CH}$ Phth $)$, 7.82-7.86 (m, 2H, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.7,26.8\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{C}-2), 28.8(\mathrm{C}-9)$, 29.08, 29.11, 29.33, $29.35\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{C}-1), 51.7(\mathrm{C}-10), 123.2(2 \times$ CHPhth $), 132.2(2 \times$ Cphth $), 133.8(2 \times$ CHPhth $)$, $168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. The spectroscopic data are in accordance with those in the literature [17].

2-[4-(Prop-2-ynyloxy)butyl]-1H-isoindole-1,3(2H)-dione (8a)
(a) According to GP 3, from alcohol $5 \mathrm{a}(3.00 \mathrm{~g}, 13.7 \mathrm{mmol}), \mathrm{NaH}(60 \%$ in mineral oil, 0.55 g , 13.7 mmol), propargyl bromide (80% in toluene, $2.2 \mathrm{~mL}, 3.06 \mathrm{~g}, 20.6 \mathrm{mmol}$), DMF (35 mL), chromatography with hexanes/EtOAc (8:1, then 3:1 to 1:2), yield: $8 \mathbf{a} 0.99 \mathrm{~g}, 3.83 \mathrm{mmol}, 28 \%$, orange solid, and $5 \mathbf{5 a} 1.55 \mathrm{~g}, 7.07 \mathrm{mmol}, 52 \%$.
(b) Alternatively, from NaH (60% in mineral oil, $0.37 \mathrm{~g}, 9.28 \mathrm{mmol}$), propargyl alcohol (0.54 mL , $0.52 \mathrm{~g}, 9.28 \mathrm{mmol})$, bromide $9 \mathrm{a}(2.38 \mathrm{~g}, 8.44 \mathrm{mmol})$, chromatography with hexanes/EtOAc (5:1), yield: $0.94 \mathrm{~g}, 3.65 \mathrm{mmol}, 43 \%$, colorless solid; $\mathrm{R}_{\mathrm{f}}=0.21$ (hexanes/EtOAc 5:1), M.p. $54-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.57-1.68(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 1.70-1.82(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.39(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH})$, $3.53(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 3.70(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{CCH}), 7.70(\mathrm{dd}$, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.82(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$ Phth $) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $25.5(\mathrm{C}-2), 27.0(\mathrm{C}-3), 37.8(\mathrm{C}-1), 58.2(\mathrm{OCH} 2 \mathrm{CCH}), 69.5(\mathrm{C}-4), 74.3(\mathrm{CCH}), 80.0(\mathrm{CCH}), 123.3(2 \times$ CHPhth $)$, $132.3(2 \times$ CPhth), $134.0(2 \times$ CHphth), $168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\widetilde{v}=3303$ (s), 2944 (s), 2866 (s), 2253 (s), 1771 (s), 1705 (s), 1396 (m), 1360 (m), 1092 (m), 1052 (m), 907 (m), 717 (s), 647 (m), $529(\mathrm{~m}) \mathrm{cm}^{-1}$. MS (ESI): $m / z=280[\mathrm{M}+\mathrm{Na}]^{+}, 202\left[\mathrm{M}-\mathrm{OCH}_{2} \mathrm{CCH}\right]^{+}, 160\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{2}\right]^{+}$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 280.0944$, found: $280.0966[\mathrm{M}+\mathrm{Na}]^{+}$. Product 8 a is mentioned in ref. [18].

2-[6-(Prop-2-ynyloxy)hexyl]-1H-isoindole-1,3(2H)-dione (8b)
(a) According to GP 3, from alcohol 5b ($5.00 \mathrm{~g}, 20.2 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ in mineral oil, 0.97 g , 24.2 mmol), propargyl bromide (80% in toluene, $2.70 \mathrm{~mL}, 3.60 \mathrm{~g}, 24.2 \mathrm{mmol}$), DMF (40 mL), chromatography with hexanes/EtOAc (8:1), yield: $1.23 \mathrm{~g}, 4.32 \mathrm{mmol}, 21 \%$, yellow oil. $\mathrm{R}_{\mathrm{f}}=0.28$ (hexanes/EtOAc 5:1).
(b) Alternatively, from $\mathrm{NaH}(0.52 \mathrm{~g}, 13.0 \mathrm{mmol}, 60 \%$ in mineral oil), propargyl alcohol (0.76 mL , $0.73 \mathrm{~g}, 13.0 \mathrm{mmol})$, bromide $9 \mathrm{~b}(3.52 \mathrm{~g}, 11.3 \mathrm{mmol})$, chromatography with hexanes/EtOAc (5:1), yield: $2.07 \mathrm{~g}, 7.25 \mathrm{mmol}, 64 \%$, colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32-1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.54-1.63(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 1.64-1.73(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.40(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}), 3.50(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, $6-\mathrm{H}), 3.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{CCH}), 7.69-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ Phth $), 7.82-7.86$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Phth}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right.$): $\delta=25.7(\mathrm{C}-3), 26.6(\mathrm{C}-4), 28.5(\mathrm{C}-2), 29.4(\mathrm{C}-5), 38.0$ $(\mathrm{C}-1), 58.0(\mathrm{OCH} 2 \mathrm{CCH}), 70.0(\mathrm{C}-6), 74.1(\mathrm{CCH}), 80.0(\mathrm{CCH}), 123.2(2 \times \mathrm{CHPhth}), 132.2\left(2 \times \mathrm{C}_{\text {Phth }}\right), 133.9$ $\left(2 \times C H_{\text {Phth }}\right), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=3273(\mathrm{w}), 2937(\mathrm{w}), 2860(\mathrm{w}), 1772(\mathrm{w}), 1709(\mathrm{~s})$, 1467 (w), 1438 (w), 1397 (m), 1369 (m), 1188 (w), 1099 (m), 1062 (m), 720 (m), 530 (w) cm${ }^{-1}$. MS (ESI) $m / z=308[\mathrm{M}+\mathrm{Na}]^{+}, 241$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 308.1257$, found: 308.1233 [M + Na] ${ }^{+}$.

2-[8-(Prop-2-ynyloxy)octyl]-1H-isoindole-1,3(2H)-dione (8c)
(a) According to GP 3, from alcohol 5c ($9.72 \mathrm{~g}, 35.3 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ in mineral oil, 1.69 g , 42.4 mmol), propargyl bromide (80% in toluene, $4.72 \mathrm{~mL}, 6.30 \mathrm{~g}, 42.4 \mathrm{mmol}$), DMF (115 mL), chromatography with hexanes/EtOAc (8:1), yield: $1.83 \mathrm{~g}, 5.84 \mathrm{mmol}, 17 \%$, yellow oil; $\mathrm{R}_{\mathrm{f}}=0.36$ (hexanes/EtOAc 8:1).
(b) Alternatively, from $\mathrm{NaH}(0.20 \mathrm{~g}, 5.09 \mathrm{mmol}, 60 \%$ in mineral oil), propargyl alcohol (0.29 mL , $0.29 \mathrm{~g}, 5.09 \mathrm{mmol})$, bromide $9 \mathrm{c}(1.50 \mathrm{~g}, 4.43 \mathrm{mmol})$, chromatography with hexanes/EtOAc ($10: 1$ to 7:1 to $5: 1$), yield: $0.88 \mathrm{~g}, 2.81 \mathrm{mmol}, 63 \%$, colorless solid. M.p. $30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.28-1.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.61(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}), 2.41(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CCH}), 3.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.12\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CCH}\right)$, 7.68-7.73 (m, 2H, CHPhth), $7.82-7.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0,26.8$ $\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{C}-2), 29.3(\mathrm{C}-7), 29.1,29.4\left(\mathrm{CH}_{2}\right), 38.0(\mathrm{C}-1), 58.0(\mathrm{OCH} 2 \mathrm{CCH}), 70.2(\mathrm{C}-8), 74.1(\mathrm{CCH})$,
$80.1(\mathrm{CCH}), 123.2\left(2 \times \mathrm{CH}_{\text {Phth }}\right), 132.2(2 \times$ Cphth $), 133.9(2 \times$ CHphth $), 168.5(2 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=3270$ (w), 2931 (w), 2856 (w), 1772 (w), 1710 (s), 1615 (w), 1467 (w), 1438 (w), 1396 (m), 1368 (m), 1188 (w), 1100 (m), 942 (w), 795 (w), 720 (m), 530 (w) cm$. ~ M S ~(E S I) ~ m / z ~=~ 336 ~[M ~+~ N a] ~+, ~ 314 ~[M ~+~$ $\mathrm{H}]^{+}, 258,160$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 336.1570$, found: $336.1546[\mathrm{M}+\mathrm{Na}]^{+}$.

2-[10-(Prop-2-ynyloxy)decyl]-1H-isoindole-1,3(2H)-dione (8d)
(a) According to GP 3, from alcohol $5 \mathrm{~d}(7.01 \mathrm{~g}, 23.1 \mathrm{mmol}), \mathrm{NaH}(60 \%$ in mineral oil, 1.11 g , 27.7 mmol), propargyl bromide (80% in toluene, $3.10 \mathrm{~mL}, 4.12 \mathrm{~g}, 24.7 \mathrm{mmol}$), DMF (60 mL), chromatography with hexanes/EtOAc (8:1), yield: $1.30 \mathrm{~g}, 3.81 \mathrm{mmol}, 16 \%$, orange oil; $\mathrm{R}_{\mathrm{f}}=0.50$ (hexanes/EtOAc 8:1).
(b) Alternatively, from $\mathrm{NaH}(0.68 \mathrm{~g}, 16.9 \mathrm{mmol}, 60 \%$ in mineral oil), propargyl alcohol (0.98 mL , $0.95 \mathrm{~g}, 16.9 \mathrm{mmol})$, bromide $9 \mathrm{~d}(5.40 \mathrm{~g}, 14.7 \mathrm{mmol})$, chromatography with hexanes/EtOAc (10:1 to 7:1), yield: 2.25 g , $6.58 \mathrm{mmol}, 45 \%$, colorless solid, M.p. $39^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22-1.38$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.65(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 1.67(\mathrm{tt}, J=7.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 2.41(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH})$, 3.49 (t, J = 6.6 Hz, 2H, 10-H), 3.67 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{H}), 4.12$ (d, $\left.J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CCH}\right)$, 7.68-7.73 (m, 2H, CHPhth), 7.82-7.86 (m, 2H, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1,26.9$ $\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{C}-2), 29.3(\mathrm{C}-9), 29.49,29.53,29.59,29.61\left(\mathrm{CH}_{2}\right), 38.1(\mathrm{C}-1), 58.0\left(\mathrm{OCH}_{2} \mathrm{CCH}\right), 70.3(\mathrm{C}-10)$, $74.0(\mathrm{CCH}), 80.1(\mathrm{CCH}), 123.2(2 \times$ CHphth $)$, $132.2(2 \times$ Cphth , $133.9(2 \times$ CHphth $), 168.5(2 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=3271$ (w), 2926 (m), 2854 (m), 1772 (w), 1709 (s), 1615 (w), 1467 (w), 1438 (w), 1396 (m), 1367 (m), 1188 (w), 1101 (m), 794 (w), 720 (m), $530(w) \mathrm{cm}^{-1}$. MS (ESI) m/z = 364 [M + Na] ${ }^{+}, 342$ $[\mathrm{M}+\mathrm{H}]^{+}, 301,286$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}\right]^{+} 364.1883$, found: $364.1864[\mathrm{M}+\mathrm{Na}]^{+}$.

1.5. Synthesis of Triazoles (11) and (12)

2-[4-(4-\{[4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)butoxy]methyl\}-1H-1,2,3-triazol-1-yl)butyl]-1H-isoindole-1,3(2H)-dione (11a)

According to GP 6, from azide $7 \mathrm{a}\left(1.15 \mathrm{~g}, 4.70 \mathrm{mmol}\right.$), alkyne $8 \mathrm{a}(1.21 \mathrm{~g}, 4.70 \mathrm{mmol})$, CuSO_{4}. $5 \mathrm{H}_{2} \mathrm{O}(12.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, sodium ascorbate ($93.0 \mathrm{mg}, 0.47 \mathrm{mmol}$), $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,30 \mathrm{~mL})$, chromato-graphy with hexanes/EtOAc (1:1 to 1:2), yield: $1.85 \mathrm{~g}, 3.72 \mathrm{mmol}, 79 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.19$ (hexanes/EtOAc 1:2). M.p. $115-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.58-1.64\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right)$, $1.66-1.76\left(\mathrm{~m}, 4 \mathrm{H}, 2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 1.90-1.97\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.51\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 3.65(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}, 1^{\prime}-\mathrm{H}$ or $\left.1^{\prime \prime}-\mathrm{H}\right), 3.70\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right.$ or $\left.1^{\prime}-\mathrm{H}\right), 4.39\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.57(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H})$, 7.58 (s, 1H, 5-H), 7.65-7.70 (m, 4H, $2 \times$ CHPhth), $7.76-7.80(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ CHphth $)$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta=25.4,25.6$ ($\left.\mathrm{C}-2^{\prime}, \mathrm{C}-2^{\prime \prime}\right), 26.9\left(\mathrm{C}-3^{\prime}\right), 27.6\left(\mathrm{C}-3^{\prime \prime}\right), 36.9,37.8$ ($\left.\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right), 49.6\left(\mathrm{C}-4^{\prime}\right), 64.5(\mathrm{C}-6)$, 69.9 (C-4"), 122.4 (C-5), 123.2, 123.3 (each $2 \times$ CHPhth $^{\prime}$), 132.0, 132.2 (each $2 \times$ Cphth), 134.0, 134.1 (each $2 \times$ CHphth), 145.5 (C-4), 168.37, 168.42 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\widetilde{v}=3464(\mathrm{w}), 2942(\mathrm{w})$, 2865 (w), 1770 (m), 1702 (vs), 1437 (m), 1395 (s), 1360 (m), 1089 (m), 1041 (m), 913 (m), 716 (s), 529 (m) cm^{-1}. MS (ESI): $m / z=502[\mathrm{M}+\mathrm{H}]^{+}, 524[\mathrm{M}+\mathrm{Na}]^{+}, 540[\mathrm{M}+\mathrm{K}]^{+}$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$524.1904, found: $524.1934[\mathrm{M}+\mathrm{Na}]^{+}$.

2-\{6-(4-(\{[6-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)hexyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl)-hexyl\}-

 $1 H$-isoindole-1,3(2H)-dione (11b)According to GP 6, from azide $7 \mathbf{b}(545 \mathrm{mg}, 2.00 \mathrm{mmol})$, alkyne $\mathbf{8 b}(571 \mathrm{mg}, 2.00 \mathrm{mmol})$, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{mg}, 0.02 \mathrm{mmol})$, sodium ascorbate ($40.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$, chromatography with hexanes/EtOAc (1:1), yield: $950 \mathrm{mg}, 1.70 \mathrm{mmol}, 85 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.14$ (hexanes/EtOAc 1:1). M.p. $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=1.32-1.44\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.63$ (m, 2H, CH2), 1.63-1.74 (m, 4H, CH2), 1.86-1.95 (m, 2H, CH2), 3.51 (t, J = 6.5 Hz, 2H, 6"-H), 3.67 $\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 4.34\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.61(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.68-7.73 (m, 4H, CHPhth), 7.80-7.86 (m, 4H, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.8,26.0$, 26.2, 26.7, 28.3, 28.6, 29.5, 30.2 (CH_{2}), 37.7, 38.0 ($\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}$), 50.3 (C-6'), 64.5 (C-6), 70.7 (C-6"), 122.3

(C-4), 168.46, 168.48 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=2937$ (w), 2860 (w), 1771 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1397 (m), 1370 (w), 1219 (w), 1188 (w), 1093 (w), 1057 (w), 891 (w), 796 (w), $720(\mathrm{~m}), 530(w) \mathrm{cm}^{-1} . \mathrm{MS}(E S I) m / z=580[\mathrm{M}+\mathrm{Na}]^{+}, 558[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd. for [C31 $\left.\mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$580.2530, found: 580.2511 [M + Na] ${ }^{+}$.

2-\{8-(4-(\{[8-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)octyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl)octyl\}1 H -isoindole-1,3(2H)-dione (11c)

According to GP 6, from azide $7 \mathrm{c}(2.34 \mathrm{~g}, 7.98 \mathrm{mmol})$, alkyne $8 \mathrm{c}(2.50 \mathrm{~g}, 7.98 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{mg}, 0.08 \mathrm{mmol})$, sodium-ascorbate $(0.16 \mathrm{~g}, 0.80 \mathrm{mmol}), \quad t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,80 \mathrm{~mL})$, chromatography with hexanes/ EtOAc (1:1), yield: $3.90 \mathrm{~g}, 6.35 \mathrm{mmol}, 80 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.23$ (hexanes/EtOAc 1:1). M.p. $92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23-1.37\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.61$ (m, 2H, CH2), 1.62-1.70 (m, 4H, CH2), 1.84-1.93 (m, 2H, CH2), 3.49 (t, J = 6.7 Hz, 2H, 8"-H), 3.67 ($\left.\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 4.32\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 4.61(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.68-7.73 (m, 4H, CHPhth), 7.80-7.86 (m, 4H, CHPhth) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0,26.4$, 26.7, 26.8, 28.5, 28.6, 28.8, 28.9, 29.1, 29.3, 29.6, $30.3\left(\mathrm{CH}_{2}\right), 37.9,38.0$ (C-1', C-1"), 50.3 (C-8'), 64.4 (C-6), 70.9 (C-8"), 122.1 (C-5), 123.2, 123.3 (each $2 \times$ CHphth $^{\prime}$), 132.1, 132.2 (each $2 \times$ Cphth 2), 133.9, 134.0 (each $2 \times$ CHPhth), $145.5(\mathrm{C}-4), 168.5(4 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=2931$ (w), 2856 (w), 1772 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1396 (m), 1368 (m), 1217 (w), 1188 (w), 1049 (w), 795 (w), 720 (m), 622 (w), $530(\mathrm{w}) \mathrm{cm}^{-1}$. MS (ESI) $m / z=636[\mathrm{M}+\mathrm{Na}]^{+}, 614[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$636.3156, found: $636.3131[\mathrm{M}+\mathrm{Na}]^{+}$.

2-\{10-(4-(\{[10-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)decyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl)-decyl\}-1H-isoindole-1,3(2H)-dione (11d)

According to GP 6, from azide $7 \mathrm{~d}(1.25 \mathrm{~g}, 3.80 \mathrm{mmol})$, alkyne $8 \mathrm{~d}(1.30 \mathrm{~g}, 3.80 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$), sodium ascorbate ($75 \mathrm{mg}, 0.38 \mathrm{mmol}$), $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,40 \mathrm{~mL})$, chromatography with hexanes/ EtOAc (2:1), yield: $2.13 \mathrm{~g}, 3.18 \mathrm{mmol}, 84 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.18$ (hexanes/EtOAc 2:1). M.p. $96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.20-1.37\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.62-1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 4.32\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 7.67-7.75(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}_{\text {Phth }}\right), 7.79-7.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} H_{\text {Phth }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1,26.5,26.7,26.8,28.5$, 28.6, 28.9, 29.1, 29.2, 29.25, 29.28, 29.4 (2C), 29.5, 29.7, $30.3\left(\mathrm{CH}_{2}\right), 38.0,38.1$ (C-1', C-1"), 50.4 (C-10'), 64.5 (C-6), 70.9 (C-10"), 122.1 (C-5), $123.2(4 \times$ CHphth), $132.2(4 \times$ CPhth), 133.83, 133.85 (each $2 \times$ CHPhth), 145.5 (C-4), 168.6 ($4 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=2927$ (m), 2854 (w), 1771 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1396 (m), 1368 (m), 1336 (w), 1218 (w), 1188 (w), 1089 (w), 1048 (w), 794 (w), 720 (m), $620(w), 530(w) \mathrm{cm}^{-1}$. MS (ESI) $m / z=692[\mathrm{M}+\mathrm{Na}]^{+}, 670[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd. for [C39 $\left.{ }_{39} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 692.3782$, found: $692.3789[\mathrm{M}+\mathrm{Na}]^{+}$.

4-\{4-[(4-Aminobutoxy)methyl]-1H-1,2,3-triazol-1-yl\}butan-1-amine (12a)
According to GP 7, from 11a ($1.64 \mathrm{~g}, 3.27 \mathrm{mmol})$, $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{~mL}, 2.10 \mathrm{~g}, 32.7 \mathrm{mmol})$, EtOH $(160 \mathrm{~mL})$, yield: $0.74 \mathrm{~g}, 3.04 \mathrm{mmol}, 93 \%$, yellow oil ($>90 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.33-1.42\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{NH}\right.$) , 1.42-1.51 (m, 4H, 2'-H, 2' $\left.{ }^{\prime \prime}-\mathrm{H}\right), 1.57-1.64\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 1.90-1.97$ $\left(\mathrm{m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.67\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right.$ or $\left.1^{\prime \prime}-\mathrm{H}\right), 2.71\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right.$ or $\left.1^{\prime}-\mathrm{H}\right), 3.51$ ($\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), $4.34\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.59(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.51$ (s, 1H, 5-H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.1$ (C-3')), 27.8 (C-3'), 30.5 (2C, C-2', C-2"), 41.5, 42.1 (C-1', C-1"), 50.3 (C-4'), 64.5 (C-6), 70.7 (C-4'), 122.2 (C-5), 145.6 (C-4) ppm.

6-(4-\{[(6-Aminohexyl)oxy]methyl\}-1H-1,2,3-triazol-1-yl)hexan-1-amine (12b)
According to GP 7, from $\mathbf{1 1 b}(1.24 \mathrm{~g}, 2.22 \mathrm{mmol}), \mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(1.08 \mathrm{~mL}, 1.11 \mathrm{~g}, 22.2 \mathrm{mmol})$, EtOH $(120 \mathrm{~mL})$, yield: $600 \mathrm{mg}, 2.02 \mathrm{mmol}, 91 \%$, yellow oil ($>90 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): $\delta=1.29-1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65(\mathrm{br} \mathrm{s}, 4 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 1.87-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.52\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 4.34$
$\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0$, 26.3, 26.4, 26.7, 29.6, 30.3, 33.3, $33.6\left(\mathrm{CH}_{2}\right), 41.9,42.1$ (C-1', C-1"), 50.3 (C-6'), 64.4 (C-6), 70.8 (C-6"), 122.1 (C-5), 145.5 (C-4) ppm.

8-(4-\{[(8-Aminooctyl)oxy]methyl\}-1H-1,2,3-triazol-1-yl)octan-1-amine (12c)
According to GP 7, from 11c ($2.00 \mathrm{~g}, 3.26 \mathrm{mmol}), \mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(1.58 \mathrm{~mL}, 1.63 \mathrm{~g}, 32.6 \mathrm{mmol})$, EtOH $(170 \mathrm{~mL})$, yield: $1.10 \mathrm{~g}, 3.11 \mathrm{mmol}, 95 \%$, yellow oil ($>85 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.22-1.35\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.33\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 2.70\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.51\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right), 4.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1,26.4,26.7$, 26.8, 29.0, 29.2, 29.4 (2C), 29.7, 30.3, 33.3, $33.4\left(\mathrm{CH}_{2}\right), 41.97,42.02$ ($\left.\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right), 50.4$ (C-8'), 64.4 (C-6), 70.9 (C-8"), 122.1 (C-5), 145.6 (C-4) ppm.

10-(4-\{[(10-Aminodecyl)oxy]methyl\}-1H-1,2,3-triazol-1-yl)decan-1-amine (12d)
According to GP 7, from 11d ($2.00 \mathrm{~g}, 2.98 \mathrm{mmol})$, $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(1.45 \mathrm{~mL}, 1.49 \mathrm{~g}, 29.8 \mathrm{mmol})$, EtOH $(150 \mathrm{~mL})$, yield: $1.16 \mathrm{~g}, 2.82 \mathrm{mmol}, 95 \%$, yellow oil ($>80 \%$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.22-1.35\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.73 (t, $\left.J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 2.81$ (br s, $\left.4 \mathrm{H}, \mathrm{NH} 2\right), 3.51\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 4.34(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 10^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.1,26.5$, 26.76, 26.78, 28.9, 29.0, 29.3, 29.37, 29.39, 29.5, 29.7, 30.3, 32.5, $33.4\left(\mathrm{CH}_{2}\right), 41.7$ (2C, C-1', C-1"), 50.3 (C-10'), 64.4 (C-6), 70.8 (C-10"), 122.1 (C-5), 145.5 (C-4) ppm.

1.6. Synthesis of Cross-Linkers (2) and $\mathbf{M e}-(2)^{+} \mathbf{I}^{-}$

1-[4-(4-\{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl\}-1H-1,2,3-triazol-1-yl)butyl]-1H-pyrrole-2,5-dione (2a)

According to GP 8, from 12a ($0.69 \mathrm{~g}, 2.87 \mathrm{mmol}$), NEt ${ }_{3}(0.96 \mathrm{~mL}, 0.70 \mathrm{~g}, 6.89 \mathrm{mmol}$), maleic anhydride ($0.68 \mathrm{~g}, 6.89 \mathrm{mmol}$), EtOH (120 mL), $\mathrm{Ac}_{2} \mathrm{O}(27 \mathrm{~mL}, 29.3 \mathrm{~g}, 0.29 \mathrm{~mol}), \mathrm{NaOAc}(0.94 \mathrm{~g}$, $6.89 \mathrm{mmol})$, chromatography with hexanes/EtOAc (1:1, 1:2, then pure EtOAc), yield: $0.21 \mathrm{~g}, 0.52 \mathrm{mmol}$, 18%, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.51$ (EtOAc). M.p. $61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.54-1.70(\mathrm{~m}, 6 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 1.86-1.93\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.50-3.54\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 1^{\prime}-\mathrm{H}\right.$ or $\left.1^{\prime \prime}-\mathrm{H}\right), 3.56(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}$ or $\left.1^{\prime}-\mathrm{H}\right), 4.38\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.60(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} H_{\text {maleimide }}\right), 6.70(\mathrm{~s}, 2 \mathrm{H}$, CHmaleimide), 7.57 (s, 1H, 5-H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.4,25.6,26.9$ (C-2', $\left.\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}\right)$, 27.5 (C-3'), 36.9, 37.7 ($\left.\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$, 49.6 (C-4'), 64.6 (C-6), 70.0 (C-4' $), 122.4$ (C-5), 134.2, 134.3 (each $2 \times \mathrm{CH}_{\text {maleimide }}$), 145.6 (C-4), 170.8, 170.9 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=3458(\mathrm{w}), 3096(\mathrm{w})$, 2943 (w), 2867 (w), 1700 (vs), 1443 (w), 1409 (m), 1370 (w), 1150 (w), 1100 (m), 1049 (w), 828 (m), 695 (m) cm^{-1}. MS (ESI): $m / z=424[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 424.1591$, found: $424.1582[\mathrm{M}+\mathrm{Na}]^{+}$.

1-\{6-[4-(\{[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]hexyl\}-1H-pyrrole-2,5-dione (2b)

According to GP 8, from 12b ($259 \mathrm{mg}, 870 \mu \mathrm{~mol}$), NEt $\mathrm{m}_{3}(1.34 \mathrm{~mL}, 1.01 \mathrm{~g}, 10 \mathrm{mmol})$, maleic anhydride ($680 \mathrm{mg}, 10 \mathrm{mmol}$), $\mathrm{EtOH}(15 \mathrm{~mL})$, $\mathrm{Ac}_{2} \mathrm{O}(15 \mathrm{~mL}), \mathrm{NaOAc}(0.82 \mathrm{~g}, 10 \mathrm{mmol})$, chromatography with hexanes/ EtOAc (1:1, 1:2 then pure EtOAc), yield: $100 \mathrm{mg}, 220 \mu \mathrm{~mol}, 25 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.06$ (hexanes/EtOAc 1:1). M.p. $67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=1.22-1.42$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}$), $1.50-1.60\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86-1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime} \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right)$, $4.33\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.61(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.68,6.69\left(2 \mathrm{~s}, 4 \mathrm{H}, \mathrm{C} H_{\text {maleimide }}\right), 7.54(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.7,26.0,26.1,26.6,28.3,28.5,29.5,30.1\left(\mathrm{CH}_{2}\right), 37.6,37.8\left(\mathrm{C}-1^{\prime}\right.$, C-1"), 50.2 (C-6'), 64.4 (C-6), 70.6 (C-6"), 122.1 (C-5), 134.0, 134.1 (each $2 \times \mathrm{CH}_{\text {maleimide }), ~} 145.5$ (C-4), 170.8, 170.9 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=3458$ (w), 3096 (w), 2936 (w), 2860 (w), 1768 (w), 1698 (s), 1441 (m), 1408 (m), 1370 (m), 1338 (w), 1221 (w), 1148 (w), 1103 (m), 1049 (w), 828 (m), 695 (w)
cm^{-1}. MS (ESI) $m / z=480[\mathrm{M}+\mathrm{Na}]^{+}, 458[\mathrm{M}+\mathrm{H}]^{+}, 403$. HRMS (ESI): calcd. for [C $\left.\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}\right]^{+}$ 480.2217, found: $480.2252[\mathrm{M}+\mathrm{Na}]^{+}$.

1-\{8-[4-(\{[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]octyl\}-1H-pyrrole-2,5-dione (2c)

According to GP 8, from 12c ($1.15 \mathrm{~g}, 3.26 \mathrm{mmol})$, NEt ${ }_{3}(4.52 \mathrm{~mL}, 3.30 \mathrm{~g}, 32.6 \mathrm{mmol})$, maleic anhydride ($680 \mathrm{mg}, 10 \mathrm{mmol}$), EtOH (130 mL), $\mathrm{Ac}_{2} \mathrm{O}(50 \mathrm{~mL})$, $\mathrm{NaOAc}(2.67 \mathrm{~g}, 32.6 \mathrm{mmol}$), chromatography with hexanes/ EtOAc (1:1), yield: $500 \mathrm{mg}, 970 \mu \mathrm{~mol}, 30 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.16$ (hexanes/EtOAc 1:1). M.p. $79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.20-1.36\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.62$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84-1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.48-3.53\left(\mathrm{~m}, 6 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right), 4.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.8^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.681,6.685\left(2 \mathrm{~s}, 4 \mathrm{H}, \mathrm{C} H_{\text {maleimide }}\right), 7.52(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=26.0,26.4,26.5,26.7,28.4,28.5,28.7,28.79,28.81,29.0,29.3,29.6,30.2\left(\mathrm{CH}_{2}\right), 37.8,37.9$ (C-1', C-1"), 50.3 (C-8'), 64.4 (C-6), 70.9 (C-8"), 122.1 (C-5), 134.04, 134.05 (each $2 \times \mathrm{CH}_{\text {maleimide }), ~} 145.6$ (C-4), 170.89, 170.90 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=3088$ (w), 2913 (m), 2852 (m), 1695 (s), 1467 (w), 1455 (w), 1417 (m), 1374 (w), 1336 (w), 1261 (w), 1214 (w), 1187 (w), 1146 (w), 1122 (w), 1097 (w), 1055 (w), 980 (w), 923 (w), 837 (m), 786 (w), 726 (w), 697 (m), $627(w) \mathrm{cm}^{-1}$. MS (ESI) $\mathrm{m} / \mathrm{z}=536[\mathrm{M}+$ $\mathrm{Na}]^{+}, 514[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 536.2843$, found: 536.2879 [M + Na] ${ }^{+}$.

1-\{10-[4-(\{[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]decyl\}-1H-pyrrole-2,5-dione (2d)

According to GP 8, from 12d (1.22 g, 2.98 mmol$)$, NEt 3 ($4.13 \mathrm{~mL}, 3.02 \mathrm{~g}, 29.8 \mathrm{mmol}$), maleic anhydride ($2.03 \mathrm{~g}, 29.8 \mathrm{mmol}$), EtOH (120 mL), $\mathrm{Ac}_{2} \mathrm{O}(50 \mathrm{~mL})$, $\mathrm{NaOAc}(2.44 \mathrm{~g}, 29.8 \mathrm{mmol})$, chromatography with hexanes/ EtOAc (2:1 to $1: 1$), yield: $376 \mathrm{mg}, 660 \mu \mathrm{~mol}, 22 \%$, colorless solid, $\mathrm{R}_{\mathrm{f}}=0.33$ (hexanes/EtOAc 1:1). M.p. $90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20-1.35\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.52-1.61\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.51(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 4.33\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime}-\mathrm{H}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.68\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C} H_{\text {maleimide }}\right), 7.51(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=26.1,26.5,26.6,26.7,28.4,28.5,28.9,29.0,29.1,29.2,29.3$, 29.4, 29.5, 29.7, $30.3\left(\mathrm{CH}_{2}\right), 37.88 .37 .93$ ($\left.\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right), 50.4\left(\mathrm{C}-10^{\prime}\right), 64.4(\mathrm{C}-6), 70.9\left(\mathrm{C}-10^{\prime \prime}\right), 122.1(\mathrm{C}-5)$, $134.0\left(4 \times H_{\text {maleimide }}\right)$, $145.5(\mathrm{C}-4), 170.9(4 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=3088(\mathrm{w}), 2915(\mathrm{~m}), 2848(\mathrm{~m})$, 1697 (s), 1467 (w), 1420 (w), 1374 (w), 1338 (w), 1216 (w), 1184 (w), 1122 (w), 1099 (w), 1054 (w), 837 (w), $786(\mathrm{w}), 723(\mathrm{w}), 698(\mathrm{~m}), 627(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}=592[\mathrm{M}+\mathrm{Na}]^{+}, 570[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}(\mathrm{ESI}):$ calcd. for [$\left.\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}\right]^{+} 592.3469$, found: 592.3487 [M + Na] ${ }^{+}$.

4-\{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl\}-1-[4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butyl]-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2a)+ I^{-})

According to GP 9, from 2 a ($43 \mathrm{mg}, 0.107 \mathrm{mmol}$), $\mathrm{MeI}(0.13 \mathrm{~mL}, 0.30 \mathrm{~g}, 2.14 \mathrm{mmol}), \mathrm{MeCN}(1.1 \mathrm{~mL})$, 8 d at $40^{\circ} \mathrm{C}$, yield: $54 \mathrm{mg}, 0.099 \mathrm{mmol}, 93 \%$, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.55-1.68$ $\left(\mathrm{m}, 4 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 1.69-1.76\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 2.02-2.10\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.50\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right)$, $3.57\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.64\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 4.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 4.92(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.69,6.71(2 \mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}$ maleimide $), 9.38(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=25.2,25.3\left(\mathrm{C}-2^{\prime}, \mathrm{C}-2^{\prime \prime}\right), 26.6,26.7\left(\mathrm{C}-3^{\prime}, \mathrm{C}-3^{\prime \prime}\right), 36.6\left(\mathrm{C}-1^{\prime}\right), 37.5\left(\mathrm{C}-1^{\prime \prime}\right), 39.5\left(\mathrm{CH}_{3}\right), 53.6$ (C-4'), 61.0 (C-6), 71.3 (C-4"), 130.9 (C-5), 134.3, 134.4 (each $2 \times$ CHmaleimide), $^{(C 140.8(C-4), 170.91,170.94}$ (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=3455$ (w), 3051 (w), 2944 (w), 2870 (w), 2187 (w), 1697 (vs), 1441 (m), 1407 (m), 1365 (m), 1261 (w), 1149 (w), 1103 (m), 915 (m), 825 (m), 724 (s), 693 (s), 641 (m) cm^{-1}. MS (ESI) $m / z=416[M]^{+}$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 416.1928$, found: $416.1925[\mathrm{M}]^{+}$.

1-[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]-4-(\{[6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-hexyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2b)+ \mathbf{I}^{-})

According to GP 9, from 2b ($72 \mathrm{mg}, 160 \mathrm{~mol}$), MeI ($0.20 \mathrm{~mL}, 0.45 \mathrm{~g}, 3.15 \mathrm{mmol}$), MeCN (1.5 mL), 18 h at $82{ }^{\circ} \mathrm{C}$, yield: $90 \mathrm{mg}, 0.15 \mathrm{mmol}, 94 \%$, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.26-$ 1.48
($\mathrm{m}, 8 \mathrm{H}, \mathrm{CH}_{2}$), 1.55-1.63 (m, 6H, CH2), 2.02-2.10 (m, 2H, CH2), $3.50\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.61$ ($\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}$), $4.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.73\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.90(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 6.70,6.71$ ($2 \mathrm{~s}, 4 \mathrm{H}, \mathrm{C} H_{\text {maleimide }}$), 9.45 ($\mathrm{s}, 1 \mathrm{H}, 5-\mathrm{H}$) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.4,25.5,25.8,26.3$, 28.0, 28.3, 29.2, $29.3\left(\mathrm{CH}_{2}\right), 37.3,37.6\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right), 39.2\left(\mathrm{CH}_{3}\right), 54.3\left(\mathrm{C}-6^{\prime}\right), 60.8(\mathrm{C}-6), 72.1\left(\mathrm{C}-6^{\prime \prime}\right), 130.8$ (C-5), 134.1 ($4 \times$ CHmaleimide), 140.6 (C-4), 170.88, 170.91 (each $2 \times \mathrm{C}=\mathrm{O}$) ppm. FT-IR (ATR): $\tilde{v}=3459(\mathrm{w})$, 3051 (w), 2933 (w), 2859 (w), 1700 (s), 1441 (w), 1408 (m), 1370 (m), 1231 (w), 1149 (w), 1110 (w), 829 (m), 729 (w), 695 (m), 639 (w) cm¹. MS (ESI) m/z = 472 [M] ${ }^{+}$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 472.2554$, found: 472.2572 [M] ${ }^{+}$.

1-[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]-4-(\{[8-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)oc-tyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2c)+ \mathbf{I}^{-})

According to GP 9, from 2c ($200 \mathrm{mg}, 390 \mu \mathrm{~mol}$), MeI ($0.49 \mathrm{~mL}, 1.11 \mathrm{~g}, 7.80 \mathrm{mmol}$), $\mathrm{MeCN}(3 \mathrm{~mL})$, 4 d at $82^{\circ} \mathrm{C}$, yield: $255 \mathrm{mg}, 390 \mu \mathrm{~mol}$, quant., yellow solid. M.p. $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $=1.23-1.43\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right), 3.61\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime \prime}-\mathrm{H}\right), 4.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.70\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 4.90(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H})$, 6.70 (s, $4 \mathrm{H}, \mathrm{CH}_{\text {maleimide }}$), $9.42(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.8,25.9,26.4$, 26.5, 28.3, 28.4, 28.5, 28.9, 29.1, $29.3\left(\mathrm{CH}_{2}\right), 37.7,37.8$ (C-1', C-1"), $39.1\left(\mathrm{CH}_{3}\right), 54.4\left(\mathrm{C}-8^{\prime}\right), 60.8(\mathrm{C}-6)$, 72.3 (C-8"), 130.8 (C-5), 134.1 ($4 \times$ CHaleimide), 140.6 (C-4), $170.9(4 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=3453$ (w), 2931 (w), 2857 (w), 1703 (s), 1442 (w), 1408 (m), 1369 (w), 1112 (w), 831 (m), 695 (w) cm^{-1}. MS (ESI) $m / z=528[M]^{+}$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 528.3180$, found: $528.3200[\mathrm{M}]^{+}$.

1-[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]-4-(\{[10-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2d)+ $\mathbf{I}^{\mathbf{-}}$)

According to GP 9, from 2d ($150 \mathrm{mg}, 260 \mu \mathrm{~mol})$, MeI ($0.33 \mathrm{~mL}, 0.75 \mathrm{~g}, 5.26 \mathrm{mmol}), \mathrm{MeCN}(2 \mathrm{~mL})$, 4 d at $82^{\circ} \mathrm{C}$, yield: $185 \mathrm{mg}, 260 \mu \mathrm{~mol}$, quant., yellow solid. M.p. $78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.21-1.43\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.61\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime \prime}-\mathrm{H}\right), 4.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 4.45\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 10^{\prime}-\mathrm{H}\right), 4.90$ ($\mathrm{s}, 2 \mathrm{H}, 6-\mathrm{H}$), 6.69 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}$ maleimide), $9.39(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0$, 26.1, 26.6, 26.7, 28.4, 28.5, 28.7, 28.9, 29.0, 29.1, 29.27, 29.31, 29.35, 29.43, $29.44\left(\mathrm{CH}_{2}\right), 37.85,37.89$ (C-1', C-1"), $39.2\left(\mathrm{CH}_{3}\right), 54.5$ (C-10'), $60.8(\mathrm{C}-6), 72.4\left(\mathrm{C}-10^{\prime \prime}\right), 130.7(\mathrm{C}-5), 134.1\left(4 \times \mathrm{CH}_{\text {maleimide }}\right), 140.6$ (C-4), $170.9(4 \times \mathrm{C}=\mathrm{O})$ ppm. FT-IR (ATR): $\tilde{v}=3456$ (w), 2927 (m), 2855 (w), 1702 (s), 1442 (w), 1408 (m), 1369 (w), 1113 (w), 830 (m), 695 (m) cm${ }^{-1}$. MS (ESI) $m / z=616,584\left[M^{+}\right.$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{5}\right]^{+} 584.3806$, found: $584.3851[\mathrm{M}]^{+}$.

1.6. Thio-Michael Addition Products (13)

Methyl (\{1-[6-(4-\{[(6-\{3-[(2-methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl\}hexyl)oxy]methyl\}-1H-1,2,3-triazol-1-yl)hexyl]-2,5-dioxopyrrolidin-3-yl\}thio)acetate (13a)

According to GP 10, from $\mathbf{2 b}(36 \mathrm{mg}, 79 \mu \mathrm{~mol})$, methyl thioglycolate ($18 \mu \mathrm{~L}, 21 \mathrm{mg}, 0.20 \mathrm{mmol}$), EtOH (3.0 mL), PBS ($\mathrm{pH}=3,3.0 \mathrm{~mL}$), conversion: 100%, isolated yield: $47 \mathrm{mg}, 70 \mu \mathrm{~mol}, 88 \%$, colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.23-1.36\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.57\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.82-1.89(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.45, $2.46\left(2 \mathrm{dd}, J=18.8,3.7 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 8^{\prime}-\mathrm{H}_{\mathrm{a}}, 8^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.095,3.103(2 \mathrm{dd}, J=18.8,9.0 \mathrm{~Hz}, 2 \times 1 \mathrm{H}$, $\left.8^{\prime}-\mathrm{H}_{\mathrm{b}}, 8^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.34,3.35\left(2 \mathrm{~d}, J=15.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 9^{\prime}-\mathrm{H}_{\mathrm{a}}, 9^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.42-3.48\left(\mathrm{~m}, 6 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right.$, $\left.6^{\prime \prime}-\mathrm{H}\right), 3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.855,3.861\left(2 \mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 9^{\prime}-\mathrm{H}_{\mathrm{b}}, 9^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.973,3.977$ (2 dd, $\left.J=9.0,3.7 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 7^{\prime}-\mathrm{H}, 7^{\prime \prime}-\mathrm{H}\right), 4.29\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.56(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.7,26.0,26.1,26.5,27.2,27.4,29.4,30.0\left(8 \times \mathrm{CH}_{2}\right), 32.89,32.91$ (C-9', C-9''), 35.35, 35.36 (C-8', C-8''), 38.3 (2 C, C-7', C-7''), 38.8, 39.0 (C-1', C-1"), 50.1 (C-6'), 52.7 $\left(2 \times \mathrm{OCH}_{3}\right), 64.3(\mathrm{C}-6), 70.6\left(\mathrm{C}-6^{\prime \prime}\right), 122.2(\mathrm{C}-5), 145.4(\mathrm{C}-4), 170.06,170.08\left(2 \times \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 174.4,176.4$ $(4 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=2937$ (w), $2860(\mathrm{w}), 1775$ (w), 1734 (m), 1695 (s), 1436 (m), 1399 (m), 1370 (w), 1282 (w), 1160 (m), 1131 (m), 1050 (w), 1006 (w), 730 (w), $692(w) \mathrm{cm}^{-1}$. MS (ESI) $\mathrm{m} / \mathrm{z}=692$ [M + Na] ${ }^{+}$. HRMS (ESI): calcd. for [C29 $\left.{ }_{4} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}\right]^{+} 692.2394$, found: $692.2400[\mathrm{M}+\mathrm{Na}]^{+}$.

1-(6-\{3-[(2-Methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl\}hexyl)-4-\{[(6-\{3-[(2-methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl\}hexyl)oxy]methyl\}-3-methyl-1H-1,2,3-triazol-3-ium iodide (13b)

According to GP 10, from $\mathbf{M e - (2 b) +} \mathbf{I}^{-}(33 \mathrm{mg}, 55 \mu \mathrm{~mol})$, methyl thioglycolate ($12 \mu \mathrm{~L}, 15 \mathrm{mg}$, $0.14 \mathrm{mmol})$, EtOH (1.5 mL), PBS ($\mathrm{pH}=3,1.5 \mathrm{~mL}$), conversion: 100%, isolated yield: $38 \mathrm{mg}, 47 \mu \mathrm{~mol}$, 85%, yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23-1.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.49-1.59\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.98-2.05\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 2.44,2.45\left(2 \mathrm{dd}, J=18.8,3.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 8^{\prime}-\mathrm{H}_{\mathrm{a}}, 8^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $3.14,3.19\left(2 \mathrm{dd}, J=18.8,9.0 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 8^{\prime}-\mathrm{Hb}^{\prime}, 8^{\prime \prime}-\mathrm{Hb}\right), 3.36,3.37\left(2 \mathrm{~d}, J=15.7 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 9^{\prime}-\mathrm{H}_{\mathrm{a}}, 9^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $3.41-3.46\left(\mathrm{~m}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right), 3.56\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 3.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.81,3.83(2 \mathrm{~d}$, $\left.J=15.7 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 9^{\prime}-\mathrm{H}_{\mathrm{b}}, 9^{\prime \prime}-\mathrm{Hb}\right), 4.02,4.06\left(2 \mathrm{dd}, J=9.0,3.7 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, 7^{\prime}-\mathrm{H}, 7^{\prime \prime}-\mathrm{H}\right), 4.34(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.69\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 4.87(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=25.4,25.5,25.7,26.3,27.0,27.3,29.16,29.17,\left(8 \times \mathrm{CH}_{2}\right), 32.96,33.00\left(\mathrm{C}-9^{\prime}, \mathrm{C}-9^{\prime \prime}\right), 35.5,35.6$ (C-8', C-8"), 38.6, 38.7, 38.9 (4 C, C-1', C-1", C-7', C-7''), $39.4\left(\mathrm{CH}_{3}\right), 52.75,52.76\left(2 \times \mathrm{OCH}_{3}\right), 54.2$ (C-6'), 60.8 (C-6), 71.9 (C-6"), 130.7 (C-5), 140.6 (C-4), 170.1 ($2 \times \mathrm{CO}_{2} \mathrm{CH}_{3}$), 174.5, 174.6, 176.37, 176.44 $(4 \times \mathrm{C}=\mathrm{O}) \mathrm{ppm}$. FT-IR (ATR): $\tilde{v}=2937$ (w), 2859 (w), 1773 (w), 1732 (m), 1693 (s), 1436 (w), 1398 (m), 1347 (w), 1280 (w), 1160 (w), 1126 (w), 1005 (w), 918 (w), 728 (m), $690(w) \mathrm{cm}^{-1}$. MS (ESI) $\mathrm{m} / \mathrm{z}=684$ [M] ${ }^{+}$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}\right]^{+} 684.2731$, found: 684.2724 [M] ${ }^{+}$.

1.7. Reaction Kinetics of the Thio-Michael Addition

Reaction kinetics of the thio-Michael addition were studied by NMR experiments using crosslinkers $\mathbf{2 b}$ and $\mathbf{M e - (2 b) +} \mathbf{I}^{-}$and methyl thioglycolate (MTG) in deuterated PBS/ethanol-d ${ }_{6}$ (70\% in $\mathrm{D}_{2} \mathrm{O}$) with a maleimide/thiol ratio of (50:50). Due to solubility problems a solvent ratio of PBS in $\mathrm{D}_{2} \mathrm{O}(\mathrm{pH} 3) / 70 \%$ ethanol- d_{6} of (50:50) was used instead of (70:30) as for the hydrogel formation.

Experimental Procedure

The cross-linkers $\mathbf{2 b}(10.75 \mathrm{mg}, 23.5 \mu \mathrm{~mol})$ or $\mathbf{M e}-(2 b)^{+} \mathbf{I}^{-}(14.09 \mathrm{mg}, 23.5 \mu \mathrm{~mol})$, ethanol- $\mathrm{d}_{6}(70 \%$ in $\left.\mathrm{D}_{2} \mathrm{O}, 332 \mu \mathrm{~L}\right)$ and PBS in $\mathrm{D}_{2} \mathrm{O}(\mathrm{pH} 3,357 \mu \mathrm{~L})$ were mixed thoroughly in a standard NMR tube, and ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded. A stock solution of methyl thioglycolate $(42 \mu \mathrm{~L}$, $470 \mu \mathrm{~mol})$ in ethanol- $\mathrm{d}_{6}(70 \%, 250 \mu \mathrm{~L}, \mathrm{c}=199.5 \mathrm{mg} / \mathrm{mL}, 1.88 \mathrm{mmol} / \mathrm{mL})$ was prepared.

Then, $25 \mu \mathrm{~L}$ of the stock solution of methyl thioglycolate ($47.0 \mu \mathrm{~mol}$) were added to the NMR tubes, the reaction mixture was mixed carefully, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded immediately. The reactions were monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ until no further reaction progress could be detected. Afterwards, ${ }^{13} \mathrm{C}$-NMR spectra were measured overnight.

The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, the organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the products in CDCl_{3} were recorded.

Reaction Kinetics

(a) Reaction of Triazole Cross-Linker (2b) and Methyl Thioglycolate (MTG) in a Ratio of (1:2)

The neutral cross-linker $\mathbf{2} \mathbf{b}$ did not completely dissolve in the $\mathrm{D}_{2} \mathrm{O} / \mathrm{EtOH}-\mathrm{d}_{6}$ mixture. After the addition of methyl thioglycolate, a cloudy suspension was formed. However, the reaction progress could still be monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and is shown in Figure S1.

Figure S1. NMR experiment of the thio-Michael addition of MTG to neutral cross-linker 2b.
The maleimide protons of the cross-linker at 6.80 ppm (Figure S1, blue spectrum, 2b) disappeared within 10 min after the addition of methyl thioglycolate, due to the thio-Michael addition with MTG to $\mathbf{1 3 a}$, as can be seen by the appearance of CH_{2} protons at 2.47 ppm and 4.05 ppm (red, green, and violet spectra). The reaction seemed to be finished after 3 min .
(b) Reaction of Triazolium Cross-Linker (Me-(2b) $\mathbf{I}^{\mathbf{+}}$) and Methyl Thioglycolate (MTG) in a Ratio of (1:2)

The solubility of $\mathbf{M e - (2 b)})^{+} \mathbf{I}^{-}$in the $\mathrm{D}_{2} \mathrm{O} / \mathrm{EtOH}-\mathrm{d}_{6}$ mixture was higher than that of $\mathbf{2 b}$. After the addition of MTG, a colorless suspension was formed. The reaction progress of the thio-Michael addition was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Figure S2).

Figure S2. NMR experiment of the thio-Michael addition of MTG to positively charged cross-linker $\mathbf{M e}-(\mathbf{2 b})^{+} \mathbf{I}^{-}$.

After the addition of methyl thioglycolate, the maleimide protons at 6.80 ppm (Figure S2, blue spectrum, $\mathbf{M e - (2 b})^{+} \mathbf{I}^{-}$) disappeared within 10 min due to the thio-Michael addition with MTG to 13b, as can be seen by the appearance of CH_{2} protons at 2.58 ppm and 4.05 ppm (red, green, and
violet spectra). The reaction was finished after 10 min reaction time. After work-up, no starting material $\mathbf{M e - (2 b) +} \mathbf{I}^{-}$was detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, only the desired thio-Michael adduct $\mathbf{1 3 b}$.

2. Formation of Hydrogels

2.1. Stability of $H A_{125}$ and $H A_{125-S H_{40}}$ in PBS at $p H=3.0$

As hydrogels were prepared in PBS at a final pH of 3.0 with a gelation time of 24 h , stability of HA_{125} and $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ under these conditions was tested. Therefore HA_{125} and $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ were dissolved in PBS at a final $\mathrm{pH}=3.0$ and incubated for 24 h at room temperature. Subsequently, these HA solutions were loaded on a 1.4% agarose gel, together with fresh solutions of HA_{125} and $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ to determine possible degradation. Agarose gel electrophoresis was done in accordance with ref. [19].

Both HA_{125} and $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ have a broad size distribution but are not significantly degraded after incubation in PBS at $\mathrm{pH}=3.0$ for 24 h (Figure S3).

Figure S3. Agarose-gel of HA_{125} and $\mathrm{HA}_{125-} \mathrm{SH}_{40}$ in PBS at a final $\mathrm{pH}=3.0$. 1a is loaded with LoLadder (Hyalose) ranging from 500 kDa to 25 kDa and $\mathbf{1 b}$ is loaded with HighLadder (Hyalose) ranging from 1500 kDa to 500 kDa . $\mathbf{2 a}$ and $\mathbf{2 b}$ represent HA H_{125} freshly prepared and after incubation at $\mathrm{pH}=3.0$ for 24 h respectively. $\mathbf{3 a}$ and $\mathbf{3 b}$ show $\mathrm{HA}_{125-} \mathrm{SH}_{40}$ freshly prepared and after $\mathrm{pH}=3.0$ incubation.

2.2. Determination of Reacted Thiols

An adapted Ellman's Assay (see Materials and Methods 3.2) was used to determine the amount of reacted thiols in hydrogels with all cross-linkers (Results shown in Table 1). In short, formed gels with a volume of $40 \mu \mathrm{~L}$ were immersed in $784 \mu \mathrm{~L} 1 \mathrm{M}$ TRIS, $\mathrm{pH}=8.0$ and mechanically cut into small pieces. Subsequently $784 \mu \mathrm{~L}$ DTNB-solution (50 mM NaOAc and 2 mM DTNB in $\mathrm{ddH}_{2} \mathrm{O}$) were added, and the reaction mixture was incubated for 20 min at room temperature and 350 rpm . The amount of reacted thiols was calculated in reference to a $40 \mu \mathrm{~L}$ gelation solution without cross-linker, containing 100% free thiols.

2.3. Determination of Electrostatic Interactions within Hydrogels

Rheological measurements during gelation of $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ with $\mathbf{1 3 a}$ and $\mathbf{1 3 b}$, containing protected maleimides, were performed with a rotational rheometer (Kinexus Pro, Malvern) at a constant shear rate of 1 Hz in a humidity chamber. Storage and loss modulus were monitored over a period of 24 h to determine possible gelation (Figure S4).

The uncharged protected linker 13a showed no crossover of the two moduli, thus indicating no gel formation due to missing covalent linkages. However, with $\mathbf{1 3 b}$ a crossover point is observed after roughly 19 h , indicating that there is a very weak gel formed ($\mathrm{G}^{\prime} \approx 15 \mathrm{~Pa}$ after 24 h). The electrostatic interactions between the positive charge on the linker and the negative charge on the HA backbone are thus stabilizing the gel network even without covalent links.

Figure S4. Rheological measurements of $\mathrm{HA}_{125}-\mathrm{SH}_{40}$ with $\mathbf{1 3 a}$ (a) and 13b (b) during gelation. Storage (green) and loss modulus (orange) were monitored over a time frame of 24 h to determine gelation. No crossover between storage and loss modulus can be obtained with 13a, confirming that only covalent crosslinks are forming the hydrogels with uncharged linkers. However, with the charged crosslinker 13b a gelation point can be observed after 19 h indicating electrostatic interactions.

3. References

1. Falck, J.R.; Wallukat, G.; Puli, N.; Goli, M.; Arnold, C.; Konkel, A.; Rothe, M.; Fischer, R.; Müller, D.N.; Schunck, W.-H. 17(R),18(S)-Epoxyeicosatetraenoic Acid, a Potent Eicosapentaenoic Acid (EPA) Derived Regulator of Cardiomyocyte Contraction: Structure-Activity Relationships and Stable Analogues. J. Med. Chem. 2011, 54, 4109-4118.
2. Kress, K.C.; Kaller, M.; Axenov, K.V.; Tussetschläger, S.; Laschat, S. Synthesis and mesomorphic properties of calamitic malonates and cyanoacetates tethered to 4 -cyanobiphenyls. Beilstein J. Org. Chem. 2012, 8, 371-378.
3. Baldwin, J.E.; Adlington, R.M.; Ramcharitar, S.H. Free Radical Macrocyclisation via Propiolate Esters. Tetrahedron 1992, 48, 3413-3428.
4. Eriks, J.C.; van der Goot, H.; Sterk, G.J.; Timmerman, H. Histamine H2-Receptor Agonists. Synthesis, in Vitro Pharmacology, and Qualitative Structure-Activity Relationships of Substituted 4- and 5-(2Aminoethyl)thiazoles. J. Med. Chem. 1992, 35, 3239-3246.
5. Hirschhäuser, C.; Velcicky, J.; Schlawe, D.; Hessler, E.; Majdalani, A.; Neudörfl, J.-M.; Prokop, A.; Wieder, T.; Schmalz, H.-G. Nucleoside Analogues with a 1,3-Diene-Fe(CO)3 Substructure: Stereoselective Synthesis, Configurational Assignment, and Apoptosis-Inducing Activity. Chem. Eur. J. 2013, 19, 13017-13029.
6. Sugawara, T.; Susaki, H.; Nogusa, H.; Gonsho, A.; Iwasawa, H.; Irie, K.; Ito, Y.; Shibukawa, M. Synthesis of 8 -aminooctyl glycopyranosides and of their conjugates with poly(L-glutamic acid) having a 2-(4-hydroxyphenyl)ethylamino group for radiolabeling. Carbohyd. Res. 1993, 238, 163-184.
7. Pascale, R.; Carocci, A.; Catalano, A.; Lentini, G.; Spagnoletta, A.; Cavalluzzi, M.M.; De Santis, F.; De Palma, A.; Scalera, V.; Franchini, C. New N-(phenoxydecyl)phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. Bioorg. Med. Chem. 2010, 18, 5903-5914.
8. Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge, A.N. A Mesogenic Triphenylene-Perylene-Triphenylene Triad. Org. Lett. 2011, 13, 764-767.
9. Pfammatter, M.J.; Siljegovic, V.; Darbre, T.; Keese, R. Synthesis of ω-Substituted Alkanethiols and (Bromomethyl)methylthiomalonates. Helv. Chim. Acta 2001, 84, 678-689.
10. Thiruvengadam, T.K.; Gould, S.J.; Aberhart, D.J.; Lin, H.-J. Biosynthesis of Streptothricin F. 5. Formation of β-Lysine by Streptomyces L-1689-23. J. Am. Chem. Soc. 1983, 105, 5470-5476.
11. Nagata, T.; Tanaka, K. Pentadentate Terpyridine-Catechol Linked Ligands and Their Cobalt(III) Complexes. Inorg. Chem. 2000, 39, 3515-3521.
12. Harjani, J.R.; Liang, C.; Jessop, P.G. A Synthesis of Acetamidines. J. Org. Chem. 2011, 76, 1683-1691.
13. Bartholomä, M.D.; Vortherms, A.R.; Hillier, S.; Ploier, B.; Joyal, J.; Babich, J.; Doyle, R.P.; Zubieta, J. Synthesis, Cytotoxicity, and Insight into the Mode of Action of $\operatorname{Re}(C O)_{3}$ Thymidine Complexes. ChemMedChem 2010, 5, 1513-1529.
14. Lakanen, J.R.; Coward, J.K.; Pegg, A.E. α-Methyl Polyamines: Metabolically Stable Spermidine and Spermine Mimics Capable of Supporting Growth in Cells Depleted of Polyamines. J. Med. Chem. 1992, 35, 724-734.
15. Loska, R.; Janiga, A.; Gryko, D. Design and synthesis of protoporphyrin IX/vitamin B12 molecular hybrids via CuAAC reaction. J. Porphyr. Phthalocya. 2013, 17, 104-117.
16. Bandyopadhyay, S.; Mukherjee, S.; Dey, A. Modular synthesis, spectroscopic characterization and in situ functionalization using "click" chemistry of azide terminated amide containing self-assembled monolayers. RSC Adv. 2013, 3, 17174-17187.
17. Fer, M.J.; Bouhss, A.; Patrão, M.; Le Corre, L.; Pietrancosta, N.; Amoroso, A.; Joris, B.; Mengin-Lecreulx, D.; Calvet-Vitale, S.; Gravier-Pelletier, C. 5'-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: Synthesis, biological evaluation and molecular modeling. Org. Biomol. Chem. 2015, 13, 7193-7222.
18. Talybov, G.M.; Guseinov, M.M.; Guseinov, S.O.; Karaev, S.F. Propargyl ether of 4 -chlorobutanol and its derivatives. Doklady Akademiya Nauk Azerbaidzhanskoi SSR 1989, 45, 26-29.
19. Bhilocha, S.; Amin, R.; Pandya, M.; Yuan, H.; Tank, M.; LoBello, J.; Shytuhina, A.; Wang, W.; Wisniewski, H.-G.; de la Motte, C.; et al. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal. Biochem. 2011, 417, 41-49.

4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of All New Compounds

1-[4-(4-\{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl\}-1H-1,2,3-triazol-1-yl)butyl]-1H-pyrrole-2,5-dione (2a)

2 Schaedel NIS-084

$\begin{array}{lllllllllllllllllllllll}1.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & 10\end{array}$

2 Schaedel NIS-084

1-\{6-[4-(\{[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]hexyl\}-1H-pyrrole-2,5-dione (2b)

2 Martini MAR-367-1

2 Martini MAR-367-1

1-\{8-[4-(\{[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]octyl\}-1H-pyrrole-2,5-dione (2c)

2 Martini MAR-390-c4

1-\{10-[4-(\{[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy\}methyl)-1H-1,2,3-triazol-1-yl]de-cyl\}-1H-pyrrole-2,5-dione (2d)

2 Martini MAR-392-c2

2 Martini MAR-392-c2

4-\{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl\}-1-[4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butyll-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2a)+ \mathbf{I}^{-})
2 Schaedel NISO91

2 Schaedel NIS091

1-[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]-4-(\{[6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-hexylloxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2b)+ I^{-})

2 Martini MAR-380

2 Martini MAR-380

1-[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]-4-(\{[8-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)oc-tylloxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2c)+ \mathbf{I}^{-})

2 Martini MAR-395-1

2 Martini MAR-395-1

1-[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]-4-(\{[10-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)decylloxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2d)+ I^{-})

2 Martini MAR-396-1

