
Supplementary Materials: Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

Maike Martini, Patricia S. Hegger, Nicole Schädel, Burcu B. Minsky, Manuel Kirchhof, Sebastian Scholl, Alexander Southan, Günter E. M. Tovar, Heike Boehm and Sabine Laschat

1. Synthesis of Cross-Linkers (2) and Me-(2)+ I-

1.1. Synthetic Strategies

Scheme S1. Additional synthesis route for C4 precursors.

1.2. General Methods

Melting points were measured with a Stuart SMP10 apparatus and are uncorrected. NMR spectra were recorded on a Bruker Avance 500 at 500 MHz (1H) and at 125 MHz (13C) and on a Bruker Avance 300 at 300 MHz (1H) and at 75 MHz (13C) with tetramethylsilane as an internal standard. The signals were assigned by using additionally HSQC-, COSY-, and HMBC experiments. IR spectra were recorded using ATR technique on a Bruker FT-IR spectrometer Vektor 22 with MKII Golden Gate Single Reflection Diamant ATR system. Mass spectra and HR-MS spectra were recorded on a micro-TOF-Q (Bruker Daltonics), a Finnigan MAT 95, and a Varian MAT 711 spectrometer Varian MAT 711 spectrometer Varian MAT 711 spectrometer. Column chromatography was performed using silica gel 60 (Fluka, grain size 40-63 µm). TLC was performed on Merck Kieselgel 60 F254 plates (0.25 mm thickness on aluminium), and visualized with anisaldehyde reagent (2.00 mL anisaldehyde dissolved in 200 mL conc. HAc and 4.00 mL conc. H₂SO₄) or permanganate reagent (3.00 g KMnO₄, 20.0 g K₂CO₃, and 5.00 mL of a 5%-ic NaOH solution in 300 mL H₂O). All chemicals were used as purchased unless otherwise stated. CH₂Cl₂ and NEt3 were dried over CaH2 by heating at reflux and subsequent distillation. DMF was stored over molecular sieves 4 Å. Hexanes (b.p. 30–75 °C), EtOAc, CH₂Cl₂ and MeOH used for chromatography were distilled prior to use. Moisture sensitive reactions were performed in oven-dried glassware under N₂ atmosphere. For easier comparison of NMR spectra atom numbering deviates in some cases from the IUPAC nomenclature.

1.3. General Procedures

Synthesis of Bromoalcohols (4) (GP 1)

To a solution of the appropriate diol **3** (1.00 mmol) in toluene (2 mL), HBr (48% in H₂O, 1.20 mmol) was added, and the reaction mixture was heated at reflux for 3 d or for 3 h using a Dean-Stark apparatus. Diethyl ether (1 mL) was added and the mixture was then successively washed with aqueous NaOH (6 M, 1 mL), HCl (3 M, 1 mL), and brine (1 mL). The organic layer was dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Phthalimides (5) (GP 2a)

A solution of the appropriate bromoalcohol **4** (1.00 mmol) and potassium phthalimide (1.20 mmol) in DMF (1 mL) was heated at reflux for 16 h. The precipitate was filtered off and CH₂Cl₂ (3 mL) and H₂O (3 mL) were added. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 3 mL) and EtOAc (2 × 3 mL). The combined organic layers were washed with H₂O (5 mL), dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Phthalimides (9) (GP 2b)

A stirred solution of potassium phthalimide (1.00 mmol) and the appropriate α,ω -dibromoalkane **10** (5.00 mmol) in abs. DMF (1 mL) was heated at 100 °C for 16 h. The precipitate was filtered off, and the filtrate was concentrated. For n = 4, 6, the residue was distilled under vacuum (p ≈ 20 mbar) to remove excess dibromoalkane prior to purification by column chromatography on SiO₂. For n = 8, 10 the crude product was purified by column chromatography on SiO₂.

Synthesis of Alkynes (8) (GP 3)

To a suspension of NaH (1.20 mmol) in abs. DMF (2 mL) in an oven-dried Schlenk flask at 0 °C, the appropriate alcohol **5** (1.00 mmol) in abs. DMF (2 mL) was added, followed by the dropwise addition of a solution of propargyl bromide (80% in toluene, 1.20 mmol). Alternatively, propargyl alcohol (1.20 mmol) was added to a suspension of NaH (1.15 mmol) in abs. DMF (1 mL) at 0 °C; after 1 h, a solution of the appropriate bromide **9** (1.00 mmol) in DMF (2.5 mL) was slowly added dropwise. The reaction mixture was stirred at room temperature for 16 h. Then, the solvent was removed under vacuum and the residue taken up in CH₂Cl₂ (5 mL). The solid was filtered off and the filtrate concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Tosylates (6) (GP 4)

To a solution of the appropriate alcohol **5** (1.00 mmol) in abs. CH₂Cl₂ (2.5 mL) in an oven-dried Schlenk flask at 0 °C, abs. NEt₃ (2.20 mmol) and *p*-toluenesulfonyl chloride (1.30 mmol) were added, and the reaction mixture was stirred at room temperature for 16 h. Then, the mixture was washed with aqueous HCl (1 M, 2.5 mL), and brine (2.5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL), and the combined organic layers were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Azides (7) (GP 5a)

A solution of the appropriate tosylate **6** (1.00 mmol), TBAI (0.10 mmol), and NaN₃ (1.10 mmol) in abs. DMF (10 mL) was heated at 50 °C for 16 h. After removal of the solvent under vacuum, the residue was taken up in Et₂O (10 mL), the solid filtered off, the filtrate concentrated and purified by column chromatography on SiO₂.

Synthesis of Azides (7) (GP 5b)

A solution of the appropriate bromide **9** (1.00 mmol) and NaN₃ (1.50 mmol) in DMF (5.5 mL) was stirred at 100 °C for 16 h. For n = 4, the reaction mixture was poured onto ice water. The colorless precipitate was filtered off and dried under vacuum. For n > 4, the solvent was evaporated, and the residue was taken up in Et₂O (30 mL) and filtered. The filtrate was concentrated and purified by column chromatography on SiO₂.

Synthesis of Triazoles (11) (GP 6)

To a solution of the appropriate azide 7 (1.00 mmol) and alkyne 8 (1.00 mmol) in a mixture of *t*-BuOH/H₂O (1:1, 10 mL), CuSO₄·5 H₂O (0.01 mmol) and sodium ascorbate (0.10 mmol) were added, and the reaction mixture was stirred at room temperature for 4 d. After the addition of CH₂Cl₂ (7 mL), the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined extracts were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Diamines (12) (GP 7)

A solution of the appropriate diphthalimide **11** (1.00 mmol) und hydrazine hydrate (10.0 mmol) in EtOH (50 mL) was heated at reflux for 3 h. Precipitated 2,3-dihydrophthalazine-1,4-dione was filtered off and the filtrate concentrated. The residue was taken up in EtOH (as little as possible) and filtered. This procedure was repeated until a yellow oil remained after concentration.

Synthesis of Maleimides (2) (GP 8)

To a solution of the appropriate diamine **12** (1.00 mmol) in EtOH (40 mL), NEt₃ and maleic anhydride (2.40 mmol each) were successively added, and the reaction mixture was heated at reflux for 6 h. The solvent was removed under vacuum, the residue taken up in Ac₂O (100 mmol) and NaOAc (2.40 mmol) was added. The reaction mixture was heated at 70 °C for 16 h. After the addition of H₂O and CH₂Cl₂ (15 mL each), the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on SiO₂.

Synthesis of Triazolium Salts (Me-(2)+ I-) (GP 9)

A solution of the appropriate triazole **2** (1.00 mmol) und MeI (20.0 mmol) in MeCN (10 mL) was heated at 40 °C for 8 d (for n = 4) and at reflux for 1–4 d (for n > 4). Solvent and excess MeI were distilled off, and the products **Me-(2)**⁺ **I**⁻ were isolated in pure form without further purification.

Thio-Michael Reaction of Crosslinkers (2) or (Me-(2)+ I⁻) with a Thiol (GP 10)

To a solution of crosslinker C₆-triazole **2b** or triazolium **Me-(2b)**⁺ **I**⁻ (55 μ mol) in degassed EtOH (1.5 mL) a degassed PBS solution (pH 3.0, 1.5 mL) was added. Then, methyl thioglycolate (0.14 mmol) was added dropwise, and the reaction mixture was stirred at room temperature for 24 h. The mixture was then extracted with CH₂Cl₂ (3 × 5 mL), the organic layer dried (MgSO₄) and the solvent removed under reduced pressure.

1.4. Synthesis of Triazole Precursors (7) and (8)

4-Bromobutan-1-ol (4a)

According to GP 1, from butane-1,4-diol (10.2 g, 0.11 mol), HBr (48% in H₂O, 15.4 mL, 23.0 g, 0.14 mol), toluene (100 mL), chromatography with hexanes/EtOAc (5:1, then 3:1), yield: 4.77 g, 31.2 mmol, 28%, yellow oil; $R_f = 0.32$ (hexanes/EtOAc 3:1). ¹H-NMR (300 MHz, CDCl₃): $\delta = 1.70-1.81$ (m, 2H, CH₂), 1.89–2.01 (m, 2H, CH₂), 3.44 (t, *J* = 6.5 Hz, 2H, 4-H), 3.75 (t, *J* = 6.4 Hz, 2H, 1-H) ppm.

¹³C-NMR (75 MHz, CDCl₃): δ = 29.1, 30.4 (C-2, C-3), 33.5 (C-4), 62.4 (C-1) ppm. The spectroscopic data are in accordance with those in the literature [1].

6-Bromohexan-1-ol (4b)

According to GP 1, from hexane-1,6-diol (5.08 g, 43.0 mmol), HBr (48% in H₂O, 5.80 mL, 8.70 g, 51.6 mmol), toluene (50 mL), chromatography with hexanes/EtOAc (3:1, then 1:1), yield: 6.29 g, 34.7 mmol, 81%, colorless oil; R_f = 0.24 (hexanes/EtOAc 3:1). ¹H-NMR (300 MHz, CDCl₃): δ = 1.32–1.50 (m, 4H, 3-H, 4-H), 1.52–1.63 (m, 2H, 2-H), 1.69 (s, 1H, OH), 1.81–1.92 (m, 2H, 5-H), 3.40 (t, *J* = 6.7 Hz, 2H, 6-H), 3.63 (t, *J* = 6.7 Hz, 2H, 1-H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 25.1 (C-3), 28.1 (C-4), 32.6 (C-2), 32.8 (C-5), 34.0 (C-6), 62.9 (C-1) ppm. The spectroscopic data are in accordance with those in the literature [2,3].

8-Bromooctan-1-ol (4c)

According to GP 1, from octane-1,8-diol (10.0 g, 68.4 mmol), HBr (48% in H₂O, 9.35 mL, 13.8 g, 82.1 mmol), toluene (140 mL), yield: 14.2 g, 68.2 mmol, 99%, yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.30–1.37 (m, 6H, CH₂), 1.38 (br s, 1H, OH), 1.40–1.47 (m, 2H, CH₂), 1.57 (tt, *J* = 7.0, 6.8 Hz, 2H, 2-H), 1.86 (tt, *J* = 7.1, 7.0 Hz, 2H, 7-H), 3.41 (t, *J* = 7.0 Hz, 2H, 8-H), 3.64 (t, *J* = 6.8 Hz, 2H, 1-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.6 28.1, 28.7, 29.2 (CH₂), 32.7 (C-2), 32.8 (C-7), 34.0 (C-8), 63.0 (C-1) ppm. The spectroscopic data are in accordance with those in the literature [3].

10-Bromodecan-1-ol (4d)

According to GP 1, from decane-1,10-diol (10.0 g, 57.4 mmol), HBr (48% in H₂O, 7.8 mL, 11.6 g, 68.9 mmol), toluene (100 mL), chromatography with hexanes/EtOAc (4:1, then 2:1); yield: 9.12 g, 38.5 mmol, 67%, yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.26–1.38 (m, 10H, CH₂), 1.34 (s, 1H, OH), 1.39–1.45 (m, 2H, CH₂), 1.57 (tt, *J* = 7.0, 6.8 Hz, 2H, 2-H), 1.85 (tt, *J* = 7.3, 7.0 Hz, 2H, 9-H), 3.41 (t, *J* = 7.0 Hz, 2H, 10-H), 3.64 (t, *J* = 6.8 Hz, 2H, 1-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.7, 28.2, 28.8, 29.3, 29.4, 29.5 (CH₂), 32.7 (C-2), 32.8 (C-9), 34.0 (C-10), 63.1 (C-1) ppm. The spectroscopic data are in accordance with those in the literature [2,3].

2-(4-Bromobutoxy)tetrahydro-2H-pyran (14a)

To a solution of 4-bromobutan-1-ol **4a** (5.96 g, 38.9 mmol) in abs. CH₂Cl₂ (60 mL) at 0 °C, 3,4dihydro-2*H*-pyran (4.2 mL, 3.93 g, 46.7 mmol) and *p*-TsOH·H₂O (20.0 mg, 0.11 mmol) were added, and the reaction mixture was stirred at 0 °C for 2 h. After the addition of a satd. NaHCO₃ solution (5 mL), the mixture was successively washed with H₂O (50 mL) and brine (50 mL). The aqueous layers were extracted with CH₂Cl₂ (100 mL) and the combined organic extracts dried (MgSO₄). The solvent was removed under reduced pressure and the crude product purified by column chromatography on SiO₂ with hexanes/EtOAc (50:1, then 20:1) to give **14a** (7.92 g, 33.4 mmol, 86%) as a colorless oil. R_f = 0.34 (hexanes/EtOAc 20:1). ¹H-NMR (500 MHz, CDCl₃): δ = 1.48–1.62 (m, 4H, 3-H_a, 4-H_a, 5-H), 1.67–1.77 (m, 3H, 3-H_b, 2'-H), 1.78–1.85 (m, 1H, 4-H_b), 1.93–2.01 (m, 2H, 3'-H), 3.42 (dt, *J* = 9.7, 6.2 Hz, 1H, 1'-H_a), 3.45 (t, *J* = 6.7 Hz, 2H, 4'-H), 3.47–3.53 (m, 1H, 6-H_a), 3.76 (dt, *J* = 9.7, 6.4 Hz, 1H, 1'-H_b), 3.81 - 3.88 (m, 1H, 6-H_b), 4.57 (t, *J* = 3.4 Hz, 1H, 2-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 19.8 (C-4), 25.6 (C-5), 28.6 (C-2'), 30.0 (C-3'), 30.9 (C-3), 33.9 (C-4'), 62.5 (C-6), 66.6 (C-1'), 99.0 (C-2) ppm. The spectroscopic data are in accordance with those in the literature [1].

2-[4-(Tetrahydro-2H-pyran-2-yloxy)butyl]-1H-isoindole-1,3(2H)-dione (15a)

According to GP 2a, from **14a** (2.58 g, 10.9 mmol), potassium phthalimide (2.42 g, 13.1 mmol), DMF (20 mL), 120 °C for 15 h. Generally, the product was used without purification, but it can be purified by chromatography with hexanes/EtOAc (5:1); yield: 2.27 g, 7.47 mmol, 69%, colorless oil. $R_f = 0.57$ (hexanes/EtOAc 3:1); ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.44-1.60$ (m, 4H, 4'-H, 5'-H_a, 6'-H_a), 1.60–1.72 (m, 3H, 3-H, 6'-H_b), 1.72–1.85 (m, 3H, 2-H, 5'-H_b), 3.40 (dt, J = 9.7, 6.3 Hz, 1H, 4-H_a), 3.43–3.52 (m, 1H, 3'-H_a), 3.68–3.78 (m, 1H, 4-H_b), 3.72 (t, J = 7.2 Hz, 2H, 1-H), 3.78–3.88 (m, 1H,

3'-H_b), 4.56 (t, *J* = 3.4 Hz, 1H, 1'-H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 19.6 (C-5'), 25.6, 25.7 (C-2, C-4'), 27.2 (C-3), 30.8 (C-6'), 38.0 (C-1), 62.3 (C-3'), 67.0 (C-4), 98.9 (C-1'), 123.3 (2 × CH_{Phth}), 132.3 (2 × C_{Phth}), 134.0 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3469 (w), 2940 (w), 2868 (w), 1771 (w), 1704 (s), 1395 (m), 1360 (m), 1119 (m), 1032 (m), 868 (w), 717 (s), 529 (m) cm⁻¹. MS (ESI): *m*/*z* = 326.14 [M + Na]⁺. HRMS (ESI): calcd. for C₁₇H₂₁NO₄Na 326.1363, found 326.1388 [M + Na]⁺.

2-(4-Hydroxybutyl)-1H-isoindole-1,3(2H)-dione (5a)

(a) According to GP 2a, from 4a (4.50 g, 29.4 mmol), potassium phthalimide (6.54 g, 35.3 mmol), DMF (40 mL), 110 °C for 17 h, chromatography with hexanes/EtOAc (2:1, then 1:1); yield: 3.16 g, 14.4 mmol, 49%, colorless oil, >90% by 1 H-NMR.

(b) THP-protected bromoalcohol **14a** (4.53 g, 19.1 mmol) and potassium phthalimide (3.73 g, 20.1 mmol) were stirred at 120 °C for 18 h. The precipitate was filtered off, and EtOAc (50 mL) and H₂O (100 mL) were added to the filtrate. The aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with H₂O (3 × 100 mL), dried (MgSO₄), and concentrated. The crude product was dissolved in MeOH (160 mL), and *p*-TsOH·H₂O (145 mg, 0.76 mmol) was added. The reaction mixture was stirred at room temperature for 20 h. Additional *p*-TsOH·H₂O (145 mg, 0.76 mmol) was added, and the reaction mixture was stirred for another 3 d. The solvent was removed, and the residue was purified by column chromatography on SiO₂ with hexanes/EtOAc (2:1 to 1:1) to give **5a** (3.54 g, 16.1 mmol, 84% over 2 steps) as a colorless solid. R_f = 0.19 (hexanes/EtOAc 2:1). ¹H-NMR (300 MHz, CDCl₃): δ = 1.54–1.65 (m, 2H, CH₂), 1.69–1.81 (m, 2H, CH₂), 1.95 (s, 1H, OH), 3.67 (t, *J* = 6.1 Hz, 2H, 4-H), 3.71 (t, *J* = 6.8 Hz, 2H, 1-H), 7.68 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 7.81 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 132.2 (2 × C_{Phth}), 134.0 (2 × CH_{Phth}), 168.6 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [4].

2-(6-Hydroxyhexyl)-1H-isoindole-1,3(2H)-dione (5b)

According to GP 2a, from 4b (9.32 g, 51.5 mmol), potassium phthalimide (11.4 g, 61.8 mmol), DMF (52 mL), chromatography with hexanes/EtOAc (1:1), yield: 10.9 g, 44.3 mmol, 86%, colorless solid; $R_f = 0.34$ (hexanes/ EtOAc 1:1). ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.33$ –1.46 (m, 4H, CH₂), 1.53 (s, 1H, OH), 1.54–1.61 (m, 2H, 5-H), 1.69 (tt, *J* = 7.3, 7.3 Hz, 2H, 2-H), 3.64 (t, *J* = 6.5 Hz, 2H, 6-H), 3.69 (t, *J* = 7.3 Hz, 2H, 1-H), 7.71 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 25.2$ (C-3), 26.5 (C-4), 28.6 (C-2), 32.6 (C-5), 37.9 (C-1), 62.9 (C-6), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 134.0 (2 × CH_{Phth}), 168.6 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [5].

2-(8-Hydroxyoctyl)-1H-isoindole-1,3(2H)-dione (5c)

According to GP 2a, from 4c (14.2 g, 67.9 mmol), potassium phthalimide (15.1 g, 81.6 mmol), DMF (68 mL), chromatography with hexanes/EtOAc (1:1), yield: 16.9 g, 61.2 mmol, 90%, colorless solid; R_f = 0.48 (hexanes/EtOAc 1:1). M.p. 65 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.28–1.38 (m, 8H, CH₂), 1.43 (s, 1H, OH), 1.55 (tt, *J* = 6.8, 6.7 Hz, 2H, 7-H), 1.67 (tt, *J* = 7.1, 7.0 Hz, 2H, 2-H), 3.63 (t, *J* = 6.7 Hz, 2H, 8-H), 3.68 (t, *J* = 7.1 Hz, 2H, 1-H), 7.71 (dd, *J* = 5.3, 3.0 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.5, 3.0 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.6, 26.7, 28.5, 29.1 (CH₂), 29.2 (C-2), 32.7 (C-7), 38.0 (C-1), 63.0 (C-8), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.9 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3461 (w), 2929 (m), 2856 (m), 1772 (w), 1705 (s), 1614 (w), 1467 (w), 1437 (w), 1396 (m), 1368 (m), 1187 (w), 1063 (m), 946 (w), 888 (w), 795 (w), 720 (m), 623 (w), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 298 [M + Na]⁺, 276 [M + H]⁺, 258, 160. HRMS (ESI): calcd. for [C1₆H₂₁NO₃Na]⁺ 298.1414, found: 298.1418 [M + Na]⁺. The ¹H-NMR spectrum is in accordance with that in the literature [6].

2-(10-Hydroxydecyl)-1H-isoindole-1,3(2H)-dione (5d)

According to GP 2a, from **4d** (9.12 g, 38.5 mmol), potassium phthalimide (8.56 g, 45.2 mmol), DMF (40 mL), chromatography with hexanes/EtOAc (2:1), yield: 9.23 g, 30.4 mmol, 79%, colorless solid, R_f = 0.63 (hexanes/EtOAc 2:1). ¹H-NMR (500 MHz, CDCl₃): δ = 1.18–1.42 (m, 12H, CH₂), 1.56 (tt, *J* = 7.0, 6.7 Hz, 2H, 9-H), 1.62 (s, 1H, OH), 1.67 (tt, *J* = 7.2, 7.0 Hz, 2H, 2-H), 3.63 (t, *J* = 6.7 Hz, 2H, 10-H), 3.67 (t, *J* = 7.2 Hz, 2H, 1-H), 7.71 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.7, 26.8 (CH₂), 28.6 (C-2), 29.1, 29.4, 29.5 (CH₂), 32.8 (C-9), 38.1 (C-1), 63.0 (C-10), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.9 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [7].

2-(4-Bromobutyl)-1H-isoindole-1,3(2H)-dione (9a)

According to GP 2b, from 1,4-dibromobutane (24.1 g, 13.3 mL, 111 mmol), potassium phthalimide (4.13 g, 22.3 mmol), DMF (25 mL), chromatography with hexanes/EtOAc (10:1 to 5:1), yield: 4.37 g, 15.5 mmol, 70%, colorless solid; R_f = 0.39 (hexanes/EtOAc 5:1). ¹H-NMR (300 MHz, CDCl₃): δ = 1.77–1.96 (m, 4H, 2-H, 3-H), 3.43 (t, *J* = 6.4 Hz, 2H, 4-H), 3.71 (t, *J* = 6.6 Hz, 2H, 1-H), 7.70 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.83 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 27.3, 29.9 (C-2, C-3), 32.9 (C-4), 37.0 (C-1), 123.4 (2 × CH_{Phth}), 132.1 (2 × CP_{hth}), 134.1 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [8].

2-(6-Bromohexyl)-1H-isoindole-1,3(2H)-dione (9b)

According to GP 2b, from 1,6-dibromohexane (12.7 g, 8.00 mL, 52.0 mmol), potassium phthalimide (1.93 g, 10.4 mmol), DMF (10 mL), chromatography with hexanes/EtOAc (40:1 to 3:1), yield: 2.61 g, 8.41 mmol, 81%, colorless solid; R_f = 0.46 (hexanes/EtOAc 5:1). ¹H-NMR (300 MHz, CDCl₃): δ = 1.32–1.53 (m, 4H, 3-H, 4-H), 1.62–1.78 (m, 2H, 2-H), 1.84–1.90 (m, 2H, 5-H), 3.38 (t, *J* = 6.8 Hz, 2H, 6-H), 3.67 (t, *J* = 7.2 Hz, 2H, 1-H), 7.70 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.83 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 26.1, 27.8, 28.5, 32.7 (C-2, C-3, C-4, C-5), 33.8 (C-6), 38.0 (C-1), 123.3 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 134.0 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [8,9].

2-(8-Bromooctyl)-1H-isoindole-1,3(2H)-dione (9c)

According to GP 2b, from 1,8-dibromooctane (21.1 g, 14.3 mL, 77.6 mmol), potassium phthalimide (4.77 g, 25.8 mmol), DMF (120 mL), recrystallization from pentane, chromatography with hexanes/EtOAc (5:1 to 3:1), yield: 2.77 g, 8.19 mmol, 32%, colorless solid; R_i = 0.67 (hexanes/EtOAc 3:1). ¹H-NMR (500 MHz, CDCl₃): δ = 1.23–1.47 (m, 8H, CH₂), 1.60–1.73 (m, 2H, 2-H), 1.77–1.89 (m, 2H, 7-H), 3.38 (t, *J* = 6.9 Hz, 2H, 8-H), 3.67 (t, *J* = 7.3 Hz, 2H, 1-H), 7.70 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.9, 28.2, 28.66, 28.71, 29.1, 32.9 (CH₂), 34.1 (C-8), 38.1 (C-1), 123.3 (2 × CH_{Phth}), 132.3 (2 × C_{Phth}), 134.0 (2 × CH_{Phth}), 168.6 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [9].

2-(10-Bromodecyl)-1H-isoindole-1,3(2H)-dione (9d)

According to GP 2b, from 1,10-dibromo-decane (50.7 g, 169.0 mmol), potassium phthalimide (5.72 g, 30.9 mmol), DMF (360 mL), chromatography with hexanes/EtOAc (6:1), yield: 8.68 g, 23.7 mmol, 77%, colorless solid (>90% by ¹H-NMR); R_f = 0.68 (hexanes/EtOAc 6:1). ¹H-NMR (300 MHz, CDCl₃): δ = 1.18–1.47 (m, 12H, CH₂), 1.54–1.73 (m, 2H, 2-H), 1.77–1.92 (m, 2H, 9-H), 3.40 (t, *J* = 6.8 Hz, 2H, 10-H), 3.67 (t, *J* = 7.3 Hz, 2H, 1-H), 7.70 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 27.0, 28.3, 28.7, 28.8, 29.2, 29.45, 29.47, 33.0 (CH₂), 34.2 (C-10), 38.2 (C-1), 123.3 (2 × CH_{Phth}), 132.3 (2 × C_{Phth}), 134.0 (2 × C_{Phth}), 168.6 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [8,9].

4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)butyl 4-methylbenzenesulfonate (6a)

According to GP 4, from alcohol **5a** (1.04 g, 4.73 mmol), NEts (1.44 mL, 1.05 g, 10.4 mmol), *p*-TsCl (1.17 g, 6.15 mmol), CH₂Cl₂ (10 mL), chromatography with hexanes/EtOAc (5:1 to 3:1), yield: 1.11 g, 2.96 mmol, 63%, colorless solid, R_f = 0.24 (hexanes/EtOAc 3:1). M.p. 112 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.65–1.74 (m, 4H, 2-H, 3-H), 2.42 (s, 3H, CH₃), 3.64 (t, *J* = 6.3 Hz, 2H, 1-H), 4.05 (t, *J* = 5.7 Hz, 2H, 4-H), 7.32 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.71 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.77 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.82 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 21.7 (CH₃), 24.8, 26.3 (C-2, C-3), 37.2 (C-1), 69.8 (C-4), 123.4 (2 × CH_{Phth}), 128.0 (2 × CH_{Ts}), 130.0 (2 × CH_{Ts}), 132.3 (2 × CP_{hth}), 133.1 (C_{Ts}), 134.1 (2 × CH_{Phth}), 144.9 (C_{Ts}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3464 (w), 2947 (w), 1771 (m), 1704 (vs), 1597 (w), 1437 (m), 1396 (s), 1355 (s), 1188 (m), 1173 (s), 1097 (m), 1046 (m), 1018 (m), 935 (m), 904 (m), 814 (m), 717 (vs), 661 (s), 576 (m), 553 (s), 529 (m) cm⁻¹. MS (ESI) *m*/*z* = 396 [M + Na]⁺, 374 [M + H]⁺, 202 [M–OTs]⁺. HRMS (ESI): calcd. for [C₁₉H₁₉NO₅SNa]⁺ 396.0876, found: 396.0899 [M + Na]⁺. Isotopic labeled **6a** is described in [10] and ¹H-NMR can be found in [11].

6-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)hexyl 4-methylbenzenesulfonate (6b)

According to GP 4, from alcohol **5b** (3.47 g, 10.0 mmol), NEt₃ (3.00 mL, 2.23 g, 22.0 mmol), *p*-TsCl (2.48 g, 13.0 mmol), CH₂Cl₂ (35 mL), chromatography with hexanes/EtOAc (5:1), yield: 3.64 g, 9.06 mmol, 91%, orange oil; $R_f = 0.28$ (hexanes/EtOAc 5:1). ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.21-1.40$ (m, 4H, CH₂), 1.57–1.69 (m, 4H, CH₂), 2.45 (s, 3H, CH₃), 3.64 (t, *J* = 7.2 Hz, 2H, 1-H), 4.01 (t, *J* = 6.4 Hz, 2H, 6-H), 7.34 (d, *J* = 8.0 Hz, 2H, CH_{Ts}), 7.67–7.74 (m, 2H, CH_{Phth}), 7.78 (d, *J* = 8.0 Hz, 2H, CH_{Ts}), 7.81–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 21.7$ (CH₃), 25.0, 26.2, 28.4, 28.7 (CH₂), 37.8 (C-1), 70.6 (C-6), 123.2 (2 × CH_{Phth}), 127.9 (2 × CH_{Ts}), 129.9 (2 × CH_{Ts}), 132.1 (2 × C_{Phth}), 133.2 (C_{Ts}), 134.0 (2 × CH_{Phth}), 144.7 (C_{Ts}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 2939$ (w), 2862 (w), 1772 (w), 1710 (s), 1598 (w), 1467 (w), 1437 (w), 1397 (m), 1358 (m), 1188 (w), 1176 (w), 962 (w), 924 (w), 816 (w), 721 (m), 664 (m), 576 (w), 555 (m), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 424 [M + Na]⁺, 402 [M + H]⁺. HRMS (ESI): calcd. for [C₂₁H₂₃NO₅SNa]⁺ 424.1189, found: 424.1172 [M + Na]⁺. Product **6b** was partly described in [12].

8-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)octyl 4-methylbenzenesulfonate (6c)

According to GP 4, from alcohol **5c** (3.08 g, 11.2 mmol), NEt₃ (3.40 mL, 2.49 g, 24.6 mmol), *p*-TsCl (2.78 g, 14.6 mmol), CH₂Cl₂ (40 mL), chromatography with hexanes/EtOAc (8:1), yield: 4.25 g, 9.89 mmol, 88%, light yellow oil, R_f = 0.53 (hexanes/EtOAc 8:1). ¹H-NMR (500 MHz, CDCl₃): δ = 1.16–1.37 (m, 8H, CH₂), 1.58–1.69 (m, 4H, CH₂), 2.45 (s, 3H, CH₃), 3.65 (t, *J* = 7.3 Hz, 2H, 1-H), 4.01 (t, *J* = 6.5 Hz, 2H, 8-H), 7.34 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.69–7.73 (m, 2H, CH_{Phth}), 7.79 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.81–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 21.6 (CH₃), 25.3, 26.7, 28.5, 28.7, 28.8, 28.9 (CH₂), 38.0 (C-1), 70.6 (C-8), 123.2 (2 × CH_{Phth}), 127.9 (2 × CH_{Ts}), 129.8 (2 × CH_{Ts}), 132.2 (2 × C_{Phth}), 133.3 (C_{Ts}), 133.9 (2 × CH_{Phth}), 144.7 (C_{Ts}), 168.5 (2 × C=O) ppm. FT-IR (ATR): \tilde{v} = 2930 (w), 2857 (w), 1771 (w), 1706 (s), 1598 (w), 1467 (w), 1437 (w), 1395 (m), 1356 (m), 1307 (w), 1291 (w), 1188 (m), 1175 (s), 1097 (w), 1060 (w), 1020 (w), 942 (m), 816 (w), 792 (w), 719 (s), 690 (w), 664 (m), 622 (w), 576 (m), 554 (m), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 452 [M + Na]⁺, 430 [M + H]⁺, 362, 226, 209, 158. HRMS (ESI): calcd. for [C₂₃H₂₇NO₅SNa]⁺ 452.1502, found: 452.1533 [M + Na]⁺. Product **6c** was partly described in [13].

10-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)decyl 4-methylbenzenesulfonate (6d)

According to GP 4, from alcohol **5d** (1.82 g, 6.00 mmol), NEt₃ (1.83 mL, 1.34 g, 13.2 mmol), *p*-TsCl (1.49 g, 7.80 mmol), CH₂Cl₂ (20 mL), chromatography with hexanes/EtOAc (8:1), yield: 2.45 g, 5.54 mmol, 92%, yellow oil; $R_f = 0.23$ (hexanes/EtOAc 8:1). ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.15-1.35$ (m, 12H, CH₂), 1.56–1.70 (m, 4H, CH₂), 2.45 (s, 3H, CH₃), 3.67 (t, *J* = 7.3 Hz, 2H, 1-H), 4.01 (t, *J* = 6.5 Hz, 2H, 10-H), 7.34 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.68–7.73 (m, 2H, CH_{Phth}), 7.79 (d, *J* = 8.1 Hz, 2H, CH_{Ts}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 21.7$ (CH₃), 25.3, 26.8, 28.6, 28.8, 28.9, 29.1, 29.2, 29.3 (CH₂), 38.2 (C-1), 70.8 (C-10), 123.2 (2 × CH_{Phth}), 127.9 (2 × CH_{Ts}), 129.8 (2 × CH_{Ts}), 132.2

 $(2 \times C_{Phth})$, 133.3 (C_{Ts}), 133.8 (2 × CH_{Phth}), 144.6 (C_{Ts}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 2927 (m), 2855 (w), 1771 (w), 1710 (s), 1598 (w), 1495 (w), 1467 (w), 1437 (w), 1396 (m), 1359 (m), 1188 (m), 1176 (m), 1097 (w), 1046 (w), 1020 (w), 960 (m), 930 (m), 816 (w), 720 (w), 690 (w), 664 (m), 622 (w), 576 (w), 555 (m), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 480 [M + Na]⁺, 458 [M + H]⁺, 286. HRMS (ESI): calcd. for [C₂₅H₃₁NO₅SNa]⁺ 480.1815, found: 480.1803 [M + Na]⁺. Product **6d** was partly described in [13].

2-(4-Azidobutyl)-1H-isoindole-1,3(2H)-dione (7a)

(a) According to GP 5a, from **6a** (2.41 g, 6.46 mmol), TBAI (0.24 g, 0.65 mmol), NaN₃ (0.46 g, 7.1 mmol), DMF (40 mL), chromatography with hexanes/EtOAc (5:1), yield: 1.56 g, 6.37 mmol, 99%, colorless oil; $R_f = 0.30$ (hexanes/EtOAc 5:1).

(b) According to GP 5b, from **9a** (2.55 g, 9.05 mmol), NaN₃ (0.88 g, 13.6 mmol), DMF (50 mL), precipitation in ice water, yield: 2.08 g, 8.51 mmol, 94%, colorless solid. ¹H-NMR (300 MHz, CDCl₃): δ = 1.58–1.70 (m, 2H, CH₂), 1.71–1.84 (m, 2H, CH₂), 3.33 (t, *J* = 6.7 Hz, 2H, 4-H), 3.72 (t, *J* = 6.7 Hz, 2H, 1-H), 7.71 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}), 7.84 (dd, *J* = 5.4, 3.2 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 26.0, 26.4 (C-2, C-3), 37.4 (C-1), 51.0 (C-4), 123.4 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 134.2 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. The spectroscopic data are in accordance with those in [14].

2-(6-Azidohexyl)-1H-isoindole-1,3(2H)-dione (7b)

(a) According to GP 5a, from **6b** (3.64 g, 9.06 mmol), TBAI (0.33 g, 0.91 mmol), NaN₃ (0.65 g, 9.97 mmol), DMF (100 mL), chromatography with hexanes/EtOAc (5:1), yield: 2.12 g, 7.78 mmol, 86%, yellow oil; $R_f = 0.81$ (hexanes/EtOAc 1:1).

(b) According to GP 5b, from **9b** (0.83 g, 2.68 mmol), NaN₃ (0.26 g, 4.01 mmol), DMF (15 mL), chromatography with hexanes/EtOAc (3:1), yield: 0.61 g, 2.23 mmol, 83%, colorless oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.33–1.46 (m, 4H, CH₂), 1.54–1.63 (m, 2H, 5-H), 1.65–1.74 (m, 2H, 2-H), 3.26 (t, *J* = 6.9 Hz, 2H, 6-H), 3.69 (t, *J* = 7.2 Hz, 2H, 1-H), 7.69–7.74 (m, 2H, CH_{Phth}), 7.82–7.87 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.3, 26.4 (CH₂), 28.5 (C-2), 28.7 (C-5), 37.8 (C-1), 51.3 (C-6), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.9 (2 × CH_{Phth}), 168.7 (2 × C=O) ppm. Product **10b** is described in [15].

2-(8-Azidooctyl)-1H-isoindole-1,3(2H)-dione (7c)

(a) According to GP 5a, from **6c** (4.21 g, 9.80 mmol), TBAI (0.36 g, 0.98 mmol), NaN₃ (0.70 g, 10.8 mmol), DMF (80 mL), chromatography with hexanes/EtOAc (2:1), yield: 2.68 g, 8.92 mmol, 91%, yellow oil; $R_f = 0.66$ (hexanes/EtOAc 2:1).

(b) According to GP 5b, from **9c** (1.25 g, 3.70 mmol), NaN₃ (0.37 g, 5.69 mmol), DMF (25 mL), chromatography with hexanes/EtOAc (6:1), yield: 1.06 g, 3.53 mmol, 95%, colorless solid; M.p. 31 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.28–1.39 (m, 8H, CH₂), 1.58 (tt, *J* = 7.0, 7.0 Hz, 2H, 7-H), 1.67 (tt, *J* = 7.1, 7.1 Hz, 2H, 2-H), 3.24 (t, *J* = 7.0 Hz, 2H, 8-H), 3.68 (t, *J* = 7.1 Hz, 2H, 1-H), 7.68–7.73 (m, 2H, CH_{Phth}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.6, 26.7 (CH₂), 28.5 (C-2), 28.8 (C-7), 28.97, 28.98 (CH₂), 38.2 (C-1), 51.7 (C-8), 123.3 (2 × CH_{Phth}), 132.5 (2 × C_{Phth}), 134.2 (2 × CH_{Phth}), 168.7 (2 × C=O) ppm. FT-IR (ATR): \tilde{v} = 2931 (w), 2857 (w), 2093 (m), 1773 (w), 1709 (s), 1615 (w), 1437 (w), 1396 (m), 1368 (m), 1257 (w), 1188 (w), 1156 (w), 1063 (w), 933 (w), 878 (w), 794 (w), 719 (m), 622 (w), 551 (w), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 323 [M + Na]⁺, 301 [M + H]⁺, 273, 250, 228. HRMS (ESI): calcd. for [C₁₆H₂₀N₄O₂Na]⁺ 323.1478, found: 323.1486 [M + Na]⁺. Product **7c** is partly described in literature [16].

2-(10-Azidodecyl)-1H-isoindole-1,3(2H)-dione (7d)

(a) According to GP 5a, from 6d (2.54 g, 5.54 mmol), TBAI (0.20 g, 0.55 mmol), NaN₃ (0.40 g, 6.09 mmol), DMF (45 mL), chromatography with hexanes/EtOAc (1:1), yield: 1.38 g, 4.20 mmol, 76%, colorless oil; $R_f = 0.83$ (hexanes/EtOAc 1:1).

(b) According to GP 5b, from 9d (3.60 g, 9.82 mmol), NaN₃ (0.98 g, 15.1 mmol), DMF (75 mL), chromatography with hexanes/EtOAc (6:1), yield: 2.87 g, 8.74 mmol, 89%, colorless solid. ¹H-NMR

(500 MHz, CDCl₃): δ = 1.24–1.34 (m, 12H, CH₂), 1.58 (tt, *J* = 7.0, 7.0 Hz, 2H, 9-H), 1.67 (tt, *J* = 7.2, 7.2 Hz, 2H, 2-H), 3.25 (t, *J* = 7.0 Hz, 2H, 10-H), 3.67 (t, *J* = 7.2 Hz, 2H, 1-H), 7.69–7.73 (m, 2H, CH_{Phth}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.7, 26.8 (CH₂), 28.6 (C-2), 28.8 (C-9), 29.08, 29.11, 29.33, 29.35 (CH₂), 38.2 (C-1), 51.7 (C-10), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.8 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. The spectroscopic data are in accordance with those in the literature [17].

2-[4-(Prop-2-ynyloxy)butyl]-1H-isoindole-1,3(2H)-dione (8a)

(a) According to GP 3, from alcohol **5a** (3.00 g, 13.7 mmol), NaH (60% in mineral oil, 0.55 g, 13.7 mmol), propargyl bromide (80% in toluene, 2.2 mL, 3.06 g, 20.6 mmol), DMF (35 mL), chromatography with hexanes/EtOAc (8:1, then 3:1 to 1:2), yield: **8a** 0.99 g, 3.83 mmol, 28%, orange solid, and **5a** 1.55 g, 7.07 mmol, 52%.

(b) Alternatively, from NaH (60% in mineral oil, 0.37 g, 9.28 mmol), propargyl alcohol (0.54 mL, 0.52 g, 9.28 mmol), bromide **9a** (2.38 g, 8.44 mmol), chromatography with hexanes/EtOAc (5:1), yield: 0.94 g, 3.65 mmol, 43%, colorless solid; R_f = 0.21 (hexanes/EtOAc 5:1), M.p. 54–56 °C. ¹H-NMR (300 MHz, CDCl₃): δ = 1.57–1.68 (m, 2H, 3-H), 1.70–1.82 (m, 2H, 2-H), 2.39 (t, *J* = 2.3 Hz, 1H, CC*H*), 3.53 (t, *J* = 6.2 Hz, 2H, 4-H), 3.70 (t, *J* = 6.9 Hz, 2H, 1-H), 4.10 (d, *J* = 2.3 Hz, 2H, OCH₂CCH), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}), 7.82 (dd, *J* = 5.4, 3.1 Hz, 2H, CH_{Phth}) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 25.5 (C-2), 27.0 (C-3), 37.8 (C-1), 58.2 (OCH₂CCH), 69.5 (C-4), 74.3 (CCH), 80.0 (CCH), 123.3 (2 × CH_{Phth}), 132.3 (2 × CP_{hth}), 134.0 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3303 (s), 2944 (s), 2866 (s), 2253 (s), 1771 (s), 1705 (s), 1396 (m), 1360 (m), 1092 (m), 1052 (m), 907 (m), 717 (s), 647 (m), 529 (m) cm⁻¹. MS (ESI): *m*/*z* = 280 [M + Na]⁺, 202 [M-OCH₂CCH]⁺, 160 [C₉H₆NO₂]⁺. HRMS (ESI): calcd. for [C₁₅H₁₅NO₃Na]⁺ 280.0944, found: 280.0966 [M + Na]⁺. Product **8a** is mentioned in ref. [18].

2-[6-(Prop-2-ynyloxy)hexyl]-1H-isoindole-1,3(2H)-dione (8b)

(a) According to GP 3, from alcohol **5b** (5.00 g, 20.2 mmol), NaH (60% in mineral oil, 0.97 g, 24.2 mmol), propargyl bromide (80% in toluene, 2.70 mL, 3.60 g, 24.2 mmol), DMF (40 mL), chromatography with hexanes/EtOAc (8:1), yield: 1.23 g, 4.32 mmol, 21%, yellow oil. $R_f = 0.28$ (hexanes/EtOAc 5:1).

(b) Alternatively, from NaH (0.52 g, 13.0 mmol, 60% in mineral oil), propargyl alcohol (0.76 mL, 0.73 g, 13.0 mmol), bromide **9b** (3.52 g, 11.3 mmol), chromatography with hexanes/EtOAc (5:1), yield: 2.07 g, 7.25 mmol, 64%, colorless oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.32–1.46 (m, 4H, CH₂), 1.54–1.63 (m, 2H, 5-H), 1.64–1.73 (m, 2H, 2-H), 2.40 (t, *J* = 2.1 Hz, 1H, CCH), 3.50 (t, *J* = 6.3 Hz, 2H, 6-H), 3.68 (t, *J* = 7.3 Hz, 2H, 1-H), 4.11 (d, *J* = 2.1 Hz, 2H, OCH₂CCH), 7.69–7.73 (m, 2H, CH_{Phth}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.7 (C-3), 26.6 (C-4), 28.5 (C-2), 29.4 (C-5), 38.0 (C-1), 58.0 (OCH₂CCH), 70.0 (C-6), 74.1 (CCH), 80.0 (CCH), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.9 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3273 (w), 2937 (w), 2860 (w), 1772 (w), 1709 (s), 1467 (w), 1438 (w), 1397 (m), 1369 (m), 1188 (w), 1099 (m), 1062 (m), 720 (m), 530 (w) cm⁻¹. MS (ESI) *m/z* = 308 [M + Na]⁺, 241. HRMS (ESI): calcd. for [C₁₇H₁₉NO₃Na]⁺ 308.1257, found: 308.1233 [M + Na]⁺.

2-[8-(Prop-2-ynyloxy)octyl]-1H-isoindole-1,3(2H)-dione (8c)

(a) According to GP 3, from alcohol **5c** (9.72 g, 35.3 mmol), NaH (60% in mineral oil, 1.69 g, 42.4 mmol), propargyl bromide (80% in toluene, 4.72 mL, 6.30 g, 42.4 mmol), DMF (115 mL), chromatography with hexanes/EtOAc (8:1), yield: 1.83 g, 5.84 mmol, 17%, yellow oil; $R_f = 0.36$ (hexanes/EtOAc 8:1).

(b) Alternatively, from NaH (0.20 g, 5.09 mmol, 60% in mineral oil), propargyl alcohol (0.29 mL, 0.29 g, 5.09 mmol), bromide **9c** (1.50 g, 4.43 mmol), chromatography with hexanes/EtOAc (10:1 to 7:1 to 5:1), yield: 0.88 g, 2.81 mmol, 63%, colorless solid. M.p. 30 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.28–1.38 (m, 8H, CH₂), 1.53–1.61 (m, 2H, 7-H), 1.62–1.71 (m, 2H, 2-H), 2.41 (t, *J* = 2.4 Hz, 1H, CCH), 3.50 (t, *J* = 6.6 Hz, 2H, 8-H), 3.67 (t, *J* = 7.3 Hz, 2H, 1-H), 4.12 (d, *J* = 2.4 Hz, 2H, OCH₂CCH), 7.68–7.73 (m, 2H, CH_{Phth}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.0, 26.8 (CH₂), 28.6 (C-2), 29.3 (C-7), 29.1, 29.4 (CH₂), 38.0 (C-1), 58.0 (OCH₂CCH), 70.2 (C-8), 74.1 (CCH),

80.1 (CCH), 123.2 (2 × CHPhth), 132.2 (2 × CPhth), 133.9 (2 × CHPhth), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 3270$ (w), 2931 (w), 2856 (w), 1772 (w), 1710 (s), 1615 (w), 1467 (w), 1438 (w), 1396 (m), 1368 (m), 1188 (w), 1100 (m), 942 (w), 795 (w), 720 (m), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 336 [M + Na]⁺, 314 [M + H]⁺, 258, 160. HRMS (ESI): calcd. for [C₁₉H₂₃NO₃Na]⁺ 336.1570, found: 336.1546 [M + Na]⁺.

2-[10-(Prop-2-ynyloxy)decyl]-1H-isoindole-1,3(2H)-dione (8d)

(a) According to GP 3, from alcohol **5d** (7.01 g, 23.1 mmol), NaH (60% in mineral oil, 1.11 g, 27.7 mmol), propargyl bromide (80% in toluene, 3.10 mL, 4.12 g, 24.7 mmol), DMF (60 mL), chromatography with hexanes/EtOAc (8:1), yield: 1.30 g, 3.81 mmol, 16%, orange oil; $R_f = 0.50$ (hexanes/EtOAc 8:1).

(b) Alternatively, from NaH (0.68 g, 16.9 mmol, 60% in mineral oil), propargyl alcohol (0.98 mL, 0.95 g, 16.9 mmol), bromide **9d** (5.40 g, 14.7 mmol), chromatography with hexanes/EtOAc (10:1 to 7:1), yield: 2.25 g, 6.58 mmol, 45%, colorless solid, M.p. 39 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.22–1.38 (m, 12H, CH₂), 1.54–1.65 (m, 2H, 9-H), 1.67 (tt, *J* = 7.3, 7.1 Hz, 2H, 2-H), 2.41 (t, *J* = 2.3 Hz, 1H, CCH), 3.49 (t, *J* = 6.6 Hz, 2H, 10-H), 3.67 (t, *J* = 7.3 Hz, 2H, 1-H), 4.12 (d, *J* = 2.3 Hz, 2H, OCH₂CCH), 7.68–7.73 (m, 2H, CH_{Phth}), 7.82–7.86 (m, 2H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.1, 26.9 (CH₂), 28.6 (C-2), 29.3 (C-9), 29.49, 29.53, 29.59, 29.61 (CH₂), 38.1 (C-1), 58.0 (OCH₂CCH), 70.3 (C-10), 74.0 (CCH), 80.1 (CCH), 123.2 (2 × CH_{Phth}), 132.2 (2 × C_{Phth}), 133.9 (2 × CH_{Phth}), 168.5 (2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3271 (w), 2926 (m), 2854 (m), 1772 (w), 1709 (s), 1615 (w), 1467 (w), 1438 (w), 1396 (m), 1367 (m), 1188 (w), 1101 (m), 794 (w), 720 (m), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 364 [M + Na]⁺, 301, 286. HRMS (ESI): calcd. for [C₂₁H₂₇NO₃Na]⁺ 364.1883, found: 364.1864 [M + Na]⁺.

1.5. Synthesis of Triazoles (11) and (12)

 $2-[4-(4-{[4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl}butoxy]methyl}-1H-1,2,3-triazol-1-yl}butyl]-1H-isoindole-1,3(2H)-dione (11a)$

According to GP 6, from azide **7a** (1.15 g, 4.70 mmol), alkyne **8a** (1.21 g, 4.70 mmol), CuSO₄ 5 H₂O (12.0 mg, 0.05 mmol), sodium ascorbate (93.0 mg, 0.47 mmol), *t*-BuOH/H₂O (1:1, 30 mL), chromato-graphy with hexanes/EtOAc (1:1 to 1:2), yield: 1.85 g, 3.72 mmol, 79%, colorless solid, R_f = 0.19 (hexanes/EtOAc 1:2). M.p. 115–116 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.58–1.64 (m, 2H, 3"-H), 1.66–1.76 (m, 4H, 2'-H, 2"-H), 1.90–1.97 (m, 2H, 3'-H), 3.51 (t, *J* = 6.4 Hz, 2H, 4"-H), 3.65 (t, *J* = 7.2 Hz, 2H, 1'-H or 1"-H), 3.70 (t, *J* = 6.9 Hz, 2H, 1"-H or 1'-H), 4.39 (t, *J* = 7.2 Hz, 2H, 4'-H), 4.57 (s, 2H, 6-H), 7.58 (s, 1H, 5-H), 7.65–7.70 (m, 4H, 2 × CH_{Phth}), 7.76 - 7.80 (m, 4H, 2 × CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.4, 25.6 (C-2', C-2''), 26.9 (C-3'), 27.6 (C-3''), 36.9, 37.8 (C-1', C-1''), 49.6 (C-4'), 64.5 (C-6), 69.9 (C-4''), 122.4 (C-5), 123.2, 123.3 (each 2 × CH_{Phth}), 132.0, 132.2 (each 2 × CP_{hth}), 134.0, 134.1 (each 2 × CH_{Phth}), 145.5 (C-4), 168.37, 168.42 (each 2 × C=O) ppm. FT-IR (ATR): \tilde{V} = 3464 (w), 2942 (w), 2865 (w), 1770 (m), 1702 (vs), 1437 (m), 1395 (s), 1360 (m), 1089 (m), 1041 (m), 913 (m), 716 (s), 529 (m) cm⁻¹. MS (ESI): *m*/*z* = 502 [M + H]⁺, 524 [M + Na]⁺, 540 [M + K]⁺. HRMS (ESI): calcd. for [C₂₇H₂₇N₅O₅Na]⁺ 524.1904, found: 524.1934 [M + Na]⁺.

2-{6-(4-({[6-(1,3-Dioxo-1,3-dihydro-2*H*-isoindol-2-yl)hexyl]oxy}methyl)-1*H*-1,2,3-triazol-1-yl)-hexyl}-1*H*-isoindole-1,3(2*H*)-dione (11b)

According to GP 6, from azide **7b** (545 mg, 2.00 mmol), alkyne **8b** (571 mg, 2.00 mmol), CuSO₄·5 H₂O (5.0 mg, 0.02 mmol), sodium ascorbate (40.0 mg, 0.20 mmol), *t*-BuOH/H₂O (1:1, 20 mL), chromatography with hexanes/EtOAc (1:1), yield: 950 mg, 1.70 mmol, 85%, colorless solid, R_f = 0.14 (hexanes/EtOAc 1:1). M.p. 90 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.32–1.44 (m, 8H, CH₂), 1.55–1.63 (m, 2H, CH₂), 1.63–1.74 (m, 4H, CH₂), 1.86–1.95 (m, 2H, CH₂), 3.51 (t, *J* = 6.5 Hz, 2H, 6"-H), 3.67 (t, *J* = 7.6 Hz, 4H, 1'-H, 1"-H), 4.34 (t, *J* = 7.2 Hz, 2H, 6'-H), 4.61 (s, 2H, 6-H), 7.54 (s, 1H, 5-H), 7.68–7.73 (m, 4H, CH_{Phth}), 7.80–7.86 (m, 4H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.8, 26.0, 26.2, 26.7, 28.3, 28.6, 29.5, 30.2 (CH₂), 37.7, 38.0 (C-1', C-1"), 50.3 (C-6'), 64.5 (C-6), 70.7 (C-6"), 122.3 (C-5), 123.2, 123.3 (each 2 × CH_{Phth}), 132.1, 132.2 (each 2 × C_{Phth}), 133.9, 134.0 (each 2 × CH_{Phth}), 145.5

(C-4), 168.46, 168.48 (each 2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 2937$ (w), 2860 (w), 1771 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1397 (m), 1370 (w), 1219 (w), 1188 (w), 1093 (w), 1057 (w), 891 (w), 796 (w), 720 (m), 530 (w) cm⁻¹. MS (ESI) m/z = 580 [M + Na]⁺, 558 [M + H]⁺. HRMS (ESI): calcd. for [C₃₁H₃₅N₅O₅Na]⁺ 580.2530, found: 580.2511 [M + Na]⁺.

2-{8-(4-({[8-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)octyl]oxy}methyl)-1H-1,2,3-triazol-1-yl)octyl}-1H-isoindole-1,3(2H)-dione (11c)

According to GP 6, from azide 7c (2.34 g, 7.98 mmol), alkyne 8c (2.50 g, 7.98 mmol), CuSO4·5 H₂O (20 mg, 0.08 mmol), sodium-ascorbate (0.16 g, 0.80 mmol), *t*-BuOH/H₂O (1:1, 80 mL), chromatography with hexanes/ EtOAc (1:1), yield: 3.90 g, 6.35 mmol, 80%, colorless solid, $R_f = 0.23$ (hexanes/EtOAc 1:1). M.p. 92 °C. ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.23-1.37$ (m, 16H, CH₂), 1.54–1.61 (m, 2H, CH₂), 1.62–1.70 (m, 4H, CH₂), 1.84–1.93 (m, 2H, CH₂), 3.49 (t, *J* = 6.7 Hz, 2H, 8"-H), 3.67 (t, *J* = 7.3 Hz, 4H, 1'-H, 1"-H), 4.32 (t, *J* = 7.3 Hz, 2H, 8'-H), 4.61 (s, 2H, 6-H), 7.54 (s, 1H, 5-H), 7.68–7.73 (m, 4H, CH_{Phth}), 7.80–7.86 (m, 4H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 26.0, 26.4, 26.7, 26.8, 28.5, 28.6, 28.8, 28.9, 29.1, 29.3, 29.6, 30.3 (CH₂), 37.9, 38.0 (C-1', C-1"), 50.3 (C-8'), 64.4 (C-6), 70.9 (C-8"), 122.1 (C-5), 123.2, 123.3 (each 2 × CH_{Phth}), 132.1, 132.2 (each 2 × C_{Phth}), 133.9, 134.0 (each 2 × CH_{Phth}), 145.5 (C-4), 168.5 (4 × C=O) ppm. FT-IR (ATR): <math>\tilde{\nu} = 2931$ (w), 2856 (w), 1772 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1396 (m), 1368 (m), 1217 (w), 1188 (w), 1049 (w), 795 (w), 720 (m), 622 (w), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 636 [M + Na]⁺, 614 [M + H]⁺. HRMS (ESI): calcd. for [C₃₅H₄₃N₅O₅Na]⁺ 636.3156, found: 636.3131 [M + Na]⁺.

2-{10-(4-({[10-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)decyl]oxy}methyl)-1H-1,2,3-triazol-1-yl)-decyl}-1H-isoindole-1,3(2H)-dione (11d)

According to GP 6, from azide 7d (1.25 g, 3.80 mmol), alkyne 8d (1.30 g, 3.80 mmol), CuSO4·5 H2O (10 mg, 0.04 mmol), sodium ascorbate (75 mg, 0.38 mmol), *t*-BuOH/H2O (1:1, 40 mL), chromatography with hexanes/ EtOAc (2:1), yield: 2.13 g, 3.18 mmol, 84%, colorless solid, $R_f = 0.18$ (hexanes/EtOAc 2:1). M.p. 96 °C. ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.20$ –1.37 (m, 24H, CH₂), 1.53–1.61 (m, 2H, CH₂), 1.62–1.71 (m, 4H, CH₂), 1.84–1.93 (m, 2H, CH₂), 3.50 (t, *J* = 6.7 Hz, 2H, 10"-H), 3.67 (t, *J* = 7.3 Hz, 4H, 1'-H, 1"-H), 4.32 (t, *J* = 7.3 Hz, 2H, 10'-H), 4.62 (s, 2H, 6-H), 7.52 (s, 1H, 5-H), 7.67–7.75 (m, 4H, CH_{Phth}), 7.79–7.88 (m, 4H, CH_{Phth}) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 26.1$, 26.5, 26.7, 26.8, 28.5, 28.6, 28.9, 29.1, 29.2, 29.25, 29.28, 29.4 (2C), 29.5, 29.7, 30.3 (CH₂), 38.0, 38.1 (C-1', C-1"), 50.4 (C-10'), 64.5 (C-6), 70.9 (C-10"), 122.1 (C-5), 123.2 (4 × CH_{Phth}), 132.2 (4 × C_{Phth}), 133.83, 133.85 (each 2 × CH_{Phth}), 145.5 (C-4), 168.6 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 2927$ (m), 2854 (w), 1771 (w), 1709 (s), 1614 (w), 1466 (w), 1437 (w), 1396 (m), 1368 (m), 1336 (w), 1218 (w), 1188 (w), 1089 (w), 1048 (w), 794 (w), 720 (m), 620 (w), 530 (w) cm⁻¹. MS (ESI) *m*/*z* = 692 [M + Na]⁺, 670 [M + H]⁺. HRMS (ESI): calcd. for [C₃₉H₅₁N₅O₅Na]⁺ 692.3782, found: 692.3789 [M + Na]⁺.

4-{4-[(4-Aminobutoxy)methyl]-1H-1,2,3-triazol-1-yl}butan-1-amine (12a)

According to GP 7, from **11a** (1.64 g, 3.27 mmol), N₂H₄·H₂O (2.00 mL, 2.10 g, 32.7 mmol), EtOH (160 mL), yield: 0.74 g, 3.04 mmol, 93%, yellow oil (>90% by ¹H-NMR). ¹H-NMR (500 MHz, CDCl₃): δ = 1.33–1.42 (br s, 4H, 2 × NH₂), 1.42–1.51 (m, 4H, 2'-H, 2''-H), 1.57–1.64 (m, 2H, 3''-H), 1.90–1.97 (m, 2H, 3'-H), 2.67 (t, *J* = 7.0 Hz, 2H, 1'-H or 1''-H), 2.71 (t, *J* = 7.0 Hz, 2H, 1''-H or 1'-H), 3.51 (t, *J* = 6.6 Hz, 2H, 4''-H), 4.34 (t, *J* = 7.2 Hz, 2H, 4'-H), 4.59 (s, 2H, 6-H), 7.51 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 27.1 (C-3''), 27.8 (C-3'), 30.5 (2C, C-2', C-2''), 41.5, 42.1 (C-1', C-1''), 50.3 (C-4'), 64.5 (C-6), 70.7 (C-4''), 122.2 (C-5), 145.6 (C-4) ppm.

6-(4-{[(6-Aminohexyl)oxy]methyl}-1H-1,2,3-triazol-1-yl)hexan-1-amine (12b)

According to GP 7, from **11b** (1.24 g, 2.22 mmol), N₂H₄·H₂O (1.08 mL, 1.11 g, 22.2 mmol), EtOH (120 mL), yield: 600 mg, 2.02 mmol, 91%, yellow oil (>90% by ¹H-NMR). ¹H-NMR (500 MHz, CDCl₃): δ = 1.29–1.40 (m, 8H, CH₂), 1.40–1.48 (m, 4H, CH₂), 1.56–1.65 (m, 2H, CH₂), 1.65 (br s, 4H, NH₂), 1.87–1.95 (m, 2H, CH₂), 2.68 (t, *J* = 7.0 Hz, 4H, 1'-H, 1"-H), 3.52 (t, *J* = 6.6 Hz, 2H, 6"-H), 4.34

(t, *J* = 6.9 Hz, 2H, 6'-H), 4.62 (s, 2H, 6-H), 7.51 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.0, 26.3, 26.4, 26.7, 29.6, 30.3, 33.3, 33.6 (CH₂), 41.9, 42.1 (C-1', C-1"), 50.3 (C-6'), 64.4 (C-6), 70.8 (C-6"), 122.1 (C-5), 145.5 (C-4) ppm.

8-(4-{[(8-Aminooctyl)oxy]methyl}-1H-1,2,3-triazol-1-yl)octan-1-amine (12c)

According to GP 7, from **11c** (2.00 g, 3.26 mmol), N₂H₄·H₂O (1.58 mL, 1.63 g, 32.6 mmol), EtOH (170 mL), yield: 1.10 g, 3.11 mmol, 95%, yellow oil (>85% by ¹H-NMR). ¹H-NMR (500 MHz, CDCl₃): δ = 1.22–1.35 (m, 16H, CH₂), 1.40–1.49 (m, 4H, CH₂), 1.53–1.62 (m, 2H, CH₂), 1.84–1.93 (m, 2H, CH₂), 2.33 (br s, 4H, NH₂), 2.70 (t, *J* = 7.0 Hz, 4H, 1'-H), 3.51 (t, *J* = 6.7 Hz, 2H, 8"-H), 4.32 (t, *J* = 7.3 Hz, 2H, 8'-H), 4.62 (s, 2H, 6-H), 7.51 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.1, 26.4, 26.7, 26.8, 29.0, 29.2, 29.4 (2C), 29.7, 30.3, 33.3, 33.4 (CH₂), 41.97, 42.02 (C-1', C-1''), 50.4 (C-8'), 64.4 (C-6), 70.9 (C-8''), 122.1 (C-5), 145.6 (C-4) ppm.

10-(4-{[(10-Aminodecyl)oxy]methyl}-1H-1,2,3-triazol-1-yl)decan-1-amine (12d)

According to GP 7, from **11d** (2.00 g, 2.98 mmol), N₂H₄·H₂O (1.45 mL, 1.49 g, 29.8 mmol), EtOH (150 mL), yield: 1.16 g, 2.82 mmol, 95%, yellow oil (>80% by ¹H-NMR). ¹H-NMR (500 MHz, CDCl₃): δ = 1.22–1.35 (m, 24H, CH₂), 1.43–1.52 (m, 4H, CH₂), 1.54–1.62 (m, 2H, CH₂), 1.85–1.92 (m, 2H, CH₂), 2.73 (t, *J* = 7.2 Hz, 4H, 1'-H), 2.81 (br s, 4H, NH₂), 3.51 (t, *J* = 7.3 Hz, 2H, 10"-H), 4.34 (t, *J* = 7.2 Hz, 2H, 10'-H), 4.62 (s, 2H, 6-H), 7.52 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.1, 26.5, 26.76, 26.78, 28.9, 29.0, 29.3, 29.37, 29.39, 29.5, 29.7, 30.3, 32.5, 33.4 (CH₂), 41.7 (2C, C-1', C-1''), 50.3 (C-10'), 64.4 (C-6), 70.8 (C-10''), 122.1 (C-5), 145.5 (C-4) ppm.

1.6. Synthesis of Cross-Linkers (2) and Me-(2)+ I-

1-[4-(4-{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl}-1H-1,2,3-triazol-1-yl)butyl]-1H-pyrrole-2,5-dione (2a)

According to GP 8, from **12a** (0.69 g, 2.87 mmol), NEt₃ (0.96 mL, 0.70 g, 6.89 mmol), maleic anhydride (0.68 g, 6.89 mmol), EtOH (120 mL), Ac₂O (27 mL, 29.3 g, 0.29 mol), NaOAc (0.94 g, 6.89 mmol), chromatography with hexanes/EtOAc (1:1, 1:2, then pure EtOAc), yield: 0.21 g, 0.52 mmol, 18%, colorless solid, R_f = 0.51 (EtOAc). M.p. 61 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.54–1.70 (m, 6H, 2'-H, 2''-H, 3''-H), 1.86–1.93 (m, 2H, 3'-H), 3.50–3.54 (m, 4H, 4''-H, 1'-H or 1''-H), 3.56 (t, *J* = 7.0 Hz, 2H, 1''-H or 1'-H), 4.38 (t, *J* = 7.1 Hz, 2H, 4'-H), 4.60 (s, 2H, 6-H), 6.67 (s, 2H, CH_{maleimide}), 6.70 (s, 2H, CH_{maleimide}), 7.57 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.4, 25.6, 26.9 (C-2', C-2'', C-3''), 27.5 (C-3'), 36.9, 37.7 (C-1', C-1''), 49.6 (C-4'), 64.6 (C-6), 70.0 (C-4''), 122.4 (C-5), 134.2, 134.3 (each 2 × CH_{maleimide}), 145.6 (C-4), 170.8, 170.9 (each 2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3458 (w), 3096 (w), 2943 (w), 2867 (w), 1700 (vs), 1443 (w), 1409 (m), 1370 (w), 1150 (w), 1100 (m), 1049 (w), 828 (m), 695 (m) cm⁻¹. MS (ESI): *m/z* = 424 [M + Na]⁺. HRMS (ESI): calcd. for [C₁₉H₂₃N₅O₅Na]⁺ 424.1591, found: 424.1582 [M + Na]⁺.

1-{6-[4-({[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]hexyl}-1H-pyrrole-2,5-dione (2b)

According to GP 8, from **12b** (259 mg, 870 µmol), NEt₃ (1.34 mL, 1.01 g, 10 mmol), maleic anhydride (680 mg, 10 mmol), EtOH (15 mL), Ac₂O (15 mL), NaOAc (0.82 g, 10 mmol), chromatography with hexanes/ EtOAc (1:1, 1:2 then pure EtOAc), yield: 100 mg, 220 µmol, 25%, colorless solid, R_f = 0.06 (hexanes/EtOAc 1:1). M.p. 67 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.22–1.42 (m, 8H, CH₂), 1.50–1.60 (m, 6H, CH₂), 1.86–1.94 (m, 2H, CH₂), 3.50 (t, *J* = 7.3 Hz, 6H, 1'-H, 1"H, 6"-H), 4.33 (t, *J* = 7.3 Hz, 2H, 6'-H), 4.61 (s, 2H, 6-H), 6.68, 6.69 (2 s, 4H, CH_{maleimide}), 7.54 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.7, 26.0, 26.1, 26.6, 28.3, 28.5, 29.5, 30.1 (CH₂), 37.6, 37.8 (C-1', C-1"), 50.2 (C-6'), 64.4 (C-6), 70.6 (C-6"), 122.1 (C-5), 134.0, 134.1 (each 2 × CH_{maleimide}), 145.5 (C-4), 170.8, 170.9 (each 2 × C=O) ppm. FT-IR (ATR): $\hat{\nu}$ = 3458 (w), 3096 (w), 2936 (w), 2860 (w), 1768 (w), 1698 (s), 1441 (m), 1408 (m), 1370 (m), 1338 (w), 1221 (w), 1148 (w), 1103 (m), 1049 (w), 828 (m), 695 (w)

cm⁻¹. MS (ESI) $m/z = 480 [M + Na]^+$, 458 [M + H]⁺, 403. HRMS (ESI): calcd. for [C₂₃H₃₁N₅O₅Na]⁺ 480.2217, found: 480.2252 [M + Na]⁺.

1-{8-[4-({[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]octyl}-1H-pyrrole-2,5-dione (2c)

According to GP 8, from **12c** (1.15 g, 3.26 mmol), NEt₃ (4.52 mL, 3.30 g, 32.6 mmol), maleic anhydride (680 mg, 10 mmol), EtOH (130 mL), Ac₂O (50 mL), NaOAc (2.67 g, 32.6 mmol), chromatography with hexanes/ EtOAc (1:1), yield: 500 mg, 970 µmol, 30%, colorless solid, R_f = 0.16 (hexanes/EtOAc 1:1). M.p. 79 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.20–1.36 (m, 16H, CH₂), 1.50–1.62 (m, 6H, CH₂), 1.84–1.94 (m, 2H, CH₂), 3.48–3.53 (m, 6H, 1'-H, 1"-H, 8"-H), 4.33 (t, *J* = 7.3 Hz, 2H, 8'-H), 4.62 (s, 2H, 6-H), 6.681, 6.685 (2 s, 4H, CH_{maleimide}), 7.52 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.0, 26.4, 26.5, 26.7, 28.4, 28.5, 28.7, 28.79, 28.81, 29.0, 29.3, 29.6, 30.2 (CH₂), 37.8, 37.9 (C-1', C-1''), 50.3 (C-8'), 64.4 (C-6), 70.9 (C-8''), 122.1 (C-5), 134.04, 134.05 (each 2 × CH_{maleimide}), 145.6 (C-4), 170.89, 170.90 (each 2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3088 (w), 2913 (m), 2852 (m), 1695 (s), 1467 (w), 1455 (w), 1417 (m), 1374 (w), 1336 (w), 1261 (w), 1214 (w), 1187 (w), 1146 (w), 1122 (w), 1097 (w), 1055 (w), 980 (w), 923 (w), 837 (m), 786 (w), 726 (w), 697 (m), 627 (w) cm⁻¹. MS (ESI) *m/z* = 536 [M + Na]⁺, 514 [M + H]⁺. HRMS (ESI): calcd. for [C₂₇H₃₉N₅O₅Na]⁺ 536.2843, found: 536.2879 [M + Na]⁺.

1-{10-[4-({[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]decyl}-1H-pyrrole-2,5-dione (2d)

According to GP 8, from **12d** (1.22 g, 2.98 mmol), NEt₃ (4.13 mL, 3.02 g, 29.8 mmol), maleic anhydride (2.03 g, 29.8 mmol), EtOH (120 mL), Ac₂O (50 mL), NaOAc (2.44 g, 29.8 mmol), chromatography with hexanes/ EtOAc (2:1 to 1:1), yield: 376 mg, 660 µmol, 22%, colorless solid, R_i = 0.33 (hexanes/EtOAc 1:1). M.p. 90 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.20–1.35 (m, 24H, CH₂), 1.52–1.61 (m, 6H, CH₂), 1.85–1.93 (m, 2H, CH₂), 3.50 (t, *J* = 7.3 Hz, 4H, 1'-H, 1"-H), 3.51 (t, *J* = 6.5 Hz, 2H, 10"-H), 4.33 (t, *J* = 7.6 Hz, 2H, 10'-H), 4.62 (s, 2H, 6-H), 6.68 (s, 4H, CH_{maleimide}), 7.51 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.1, 26.5, 26.6, 26.7, 28.4, 28.5, 28.9, 29.0, 29.1, 29.2, 29.3, 29.4, 29.5, 29.7, 30.3 (CH₂), 37.88. 37.93 (C-1', C-1"), 50.4 (C-10'), 64.4 (C-6), 70.9 (C-10"), 122.1 (C-5), 134.0 (4 × CH_{maleimide}), 145.5 (C-4), 170.9 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3088 (w), 2915 (m), 2848 (m), 1697 (s), 1467 (w), 1374 (w), 1338 (w), 1216 (w), 1184 (w), 1122 (w), 1099 (w), 1054 (w), 837 (w), 786 (w), 723 (w), 698 (m), 627 (w) cm⁻¹. MS (ESI) *m*/*z* = 592 [M + Na]⁺, 570 [M + H]⁺. HRMS (ESI): calcd. for [C₃₁H₄₇N₅O₅Na]⁺ 592.3469, found: 592.3487 [M + Na]⁺.

4-{[4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)butoxy]methyl}-1-[4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butyl]-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2a)* I⁻)

According to GP 9, from **2a** (43 mg, 0.107 mmol), MeI (0.13 mL, 0.30 g, 2.14 mmol), MeCN (1.1 mL), 8 d at 40 °C, yield: 54 mg, 0.099 mmol, 93%, yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.55–1.68 (m, 4H, 2"-H, 3"-H), 1.69–1.76 (m, 2H, 2'-H), 2.02–2.10 (m, 2H, 3'-H), 3.50 (t, *J* = 7.0 Hz, 2H, 1"-H), 3.57 (t, *J* = 6.8 Hz, 2H, 1'-H), 3.64 (t, *J* = 5.9 Hz, 2H, 4"-H), 4.36 (s, 3H, CH₃), 4.79 (t, *J* = 7.3 Hz, 2H, 4'-H), 4.92 (s, 2H, 6-H), 6.69, 6.71 (2 s, 4H, CH_{maleimide}), 9.38 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.2, 25.3 (C-2', C-2''), 26.6, 26.7 (C-3', C-3''), 36.6 (C-1'), 37.5 (C-1''), 39.5 (CH₃), 53.6 (C-4'), 61.0 (C-6), 71.3 (C-4''), 130.9 (C-5), 134.3, 134.4 (each 2 × CH_{maleimide}), 140.8 (C-4), 170.91, 170.94 (each 2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3455 (w), 3051 (w), 2944 (w), 2870 (w), 2187 (w), 1697 (vs), 1441 (m), 1407 (m), 1365 (m), 1261 (w), 1149 (w), 1103 (m), 915 (m), 825 (m), 724 (s), 693 (s), 641 (m) cm⁻¹. MS (ESI) *m/z* = 416 [M]⁺. HRMS (ESI): calcd. for [C₂₀H₂₆N₅O₅]⁺ 416.1928, found: 416.1925 [M]⁺.

 $\label{eq:2.5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl} hexyl]-4-(\{[6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-hexyl]oxy\} methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide ({\bf Me-(2b)}^+ I^-)$

According to GP 9, from **2b** (72 mg, 160 mol), MeI (0.20 mL, 0.45 g, 3.15 mmol), MeCN (1.5 mL), 18 h at 82 °C, yield: 90 mg, 0.15 mmol, 94%, yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.26–1.48

(m, 8H, CH₂), 1.55–1.63 (m, 6H, CH₂), 2.02–2.10 (m, 2H, CH₂), 3.50 (t, J = 7.1 Hz, 4H, 1'-H, 1"-H), 3.61 (t, J = 6.3 Hz, 2H, 6"-H), 4.37 (s, 3H, CH₃), 4.73 (t, J = 6.9 Hz, 2H, 6'-H), 4.90 (s, 2H, 6-H), 6.70, 6.71 (2 s, 4H, CH_{maleimide}), 9.45 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 25.4$, 25.5, 25.8, 26.3, 28.0, 28.3, 29.2, 29.3 (CH₂), 37.3, 37.6 (C-1', C-1"), 39.2 (CH₃), 54.3 (C-6'), 60.8 (C-6), 72.1 (C-6"), 130.8 (C-5), 134.1 (4 × CH_{maleimide}), 140.6 (C-4), 170.88, 170.91 (each 2 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 3459$ (w), 3051 (w), 2933 (w), 2859 (w), 1700 (s), 1441 (w), 1408 (m), 1370 (m), 1231 (w), 1149 (w), 1110 (w), 829 (m), 729 (w), 695 (m), 639 (w) cm⁻¹. MS (ESI) m/z = 472 [M]⁺. HRMS (ESI): calcd. for [C₂₄H₃₄N₅O₅]⁺ 472.2554, found: 472.2572 [M]⁺.

$\label{eq:2.5-Dioxo-2.5-dihydro-1H-pyrrol-1-yl)octyl]-4-(\{[8-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide ({\it Me-(2c)}+I^-)$

According to GP 9, from **2c** (200 mg, 390 µmol), MeI (0.49 mL, 1.11 g, 7.80 mmol), MeCN (3 mL), 4 d at 82 °C, yield: 255 mg, 390 µmol, quant., yellow solid. M.p. 65 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.23–1.43 (m, 16H, CH₂), 1.53–1.63 (m, 6H, CH₂), 2.02–2.09 (m, 2H, CH₂), 3.50 (t, *J* = 6.9 Hz, 4H, 1'-H, 1"-H), 3.61 (t, *J* = 6.5 Hz, 2H, 8"-H), 4.36 (s, 3H, CH₃), 4.70 (t, *J* = 7.5 Hz, 2H, 8'-H), 4.90 (s, 2H, 6-H), 6.70 (s, 4H, CH_{maleimide}), 9.42 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.8, 25.9, 26.4, 26.5, 28.3, 28.4, 28.5, 28.9, 29.1, 29.3 (CH₂), 37.7, 37.8 (C-1', C-1"), 39.1 (CH₃), 54.4 (C-8'), 60.8 (C-6), 72.3 (C-8"), 130.8 (C-5), 134.1 (4 × CH_{maleimide}), 140.6 (C-4), 170.9 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3453 (w), 2931 (w), 2857 (w), 1703 (s), 1442 (w), 1408 (m), 1369 (w), 1112 (w), 831 (m), 695 (w) cm⁻¹. MS (ESI) *m/z* = 528 [M]⁺. HRMS (ESI): calcd. for [C₂₈H₄₂N₅O₅]⁺ 528.3180, found: 528.3200 [M]⁺.

 $\label{eq:linear} 1-[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]-4-(\{[10-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide ({\bf Me-(2d)+I-}) ({$

According to GP 9, from **2d** (150 mg, 260 µmol), MeI (0.33 mL, 0.75 g, 5.26 mmol), MeCN (2 mL), 4 d at 82 °C, yield: 185 mg, 260 µmol, quant., yellow solid. M.p. 78 °C. ¹H-NMR (500 MHz, CDCl₃): δ = 1.21–1.43 (m, 24H, CH₂), 1.53–1.63 (m, 6H, CH₂), 2.02–2.09 (m, 2H, CH₂), 3.50 (t, *J* = 7.3 Hz, 4H, 1'-H, 1"-H), 3.61 (t, *J* = 6.5 Hz, 2H, 10"-H), 4.36 (s, 3H, CH₃), 4.45 (t, *J* = 7.5 Hz, 2H, 10'-H), 4.90 (s, 2H, 6-H), 6.69 (s, 4H, CH_{maleimide}), 9.39 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 26.0, 26.1, 26.6, 26.7, 28.4, 28.5, 28.7, 28.9, 29.0, 29.1, 29.27, 29.31, 29.35, 29.43, 29.44 (CH₂), 37.85, 37.89 (C-1', C-1"), 39.2 (CH₃), 54.5 (C-10'), 60.8 (C-6), 72.4 (C-10"), 130.7 (C-5), 134.1 (4 × CH_{maleimide}), 140.6 (C-4), 170.9 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 3456 (w), 2927 (m), 2855 (w), 1702 (s), 1442 (w), 1408 (m), 1369 (w), 1113 (w), 830 (m), 695 (m) cm⁻¹. MS (ESI) *m*/*z* = 616, 584 [M]⁺. HRMS (ESI): calcd. for [C₃₂H₅₀N₅O₅]⁺ 584.3806, found: 584.3851 [M]⁺.

1.6. Thio-Michael Addition Products (13)

Methyl ({1-[6-(4-{[(6-{3-[(2-methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl}hexyl)oxy]methyl}-1H-1,2,3-triazol-1-yl)hexyl]-2,5-dioxopyrrolidin-3-yl}thio)acetate (13a)

According to GP 10, from **2b** (36 mg, 79 µmol), methyl thioglycolate (18 µL, 21 mg, 0.20 mmol), EtOH (3.0 mL), PBS (pH = 3, 3.0 mL), conversion: 100%, isolated yield: 47 mg, 70 µmol, 88%, colorless oil. ¹H-NMR (500 MHz, CDCl₃): δ = 1.23–1.36 (m, 8H, CH₂), 1.49–1.57 (m, 6H, CH₂), 1.82–1.89 (m, 2H, CH₂), 2.45, 2.46 (2 dd, *J* = 18.8, 3.7 Hz, 2 × 1H, 8'-H_a, 8''-H_a), 3.095, 3.103 (2 dd, *J* = 18.8, 9.0 Hz, 2 × 1H, 8'-H_b, 8''-H_b), 3.34, 3.35 (2 d, *J* = 15.8 Hz, 2 × 1H, 9'-H_a, 9''-H_a), 3.42–3.48 (m, 6H, 1'-H, 1''-H, 6''-H), 3.71 (s, 6H, 2 × OCH₃), 3.855, 3.861 (2 d, *J* = 15.8 Hz, 2 × 1H, 9'-H_b, 9''-H_b), 3.973, 3.977 (2 dd, *J* = 9.0, 3.7 Hz, 2 × 1H, 7'-H, 7''-H), 4.29 (t, *J* = 7.2 Hz, 2H, 6'-H), 4.56 (s, 2H, 6-H), 7.50 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ = 25.7, 26.0, 26.1, 26.5, 27.2, 27.4, 29.4, 30.0 (8 × CH₂), 32.89, 32.91 (C-9', C-9''), 35.35, 35.36 (C-8', C-8''), 38.3 (2 C, C-7', C-7''), 38.8, 39.0 (C-1', C-1''), 50.1 (C-6'), 52.7 (2 × OCH₃), 64.3 (C-6), 70.6 (C-6''), 122.2 (C-5), 145.4 (C-4), 170.06, 170.08 (2 × CO₂CH₃), 174.4, 176.4 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu}$ = 2937 (w), 2860 (w), 1775 (w), 1734 (m), 1695 (s), 1436 (m), 1399 (m), 1370 (w), 1282 (w), 1160 (m), 1131 (m), 1050 (w), 1006 (w), 730 (w), 692 (w) cm⁻¹. MS (ESI) *m/z* = 692 [M + Na]⁺. HRMS (ESI): calcd. for [C₂₉H₄₃N₅O₉S₂Na]⁺ 692.2394, found: 692.2400 [M + Na]⁺.

1-(6-{3-[(2-Methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl}hexyl)-4-{[(6-{3-[(2-methoxy-2-oxoethyl)thio]-2,5-dioxopyrrolidin-1-yl}hexyl)oxy]methyl}-3-methyl-1H-1,2,3-triazol-3-ium iodide (13b)

According to GP 10, from **Me-(2b)**⁺ I⁻ (33 mg, 55 µmol), methyl thioglycolate (12 µL, 15 mg, 0.14 mmol), EtOH (1.5 mL), PBS (pH = 3, 1.5 mL), conversion: 100%, isolated yield: 38 mg, 47 µmol, 85%, yellow oil. ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.23-1.35$ (m, 6H, CH₂), 1.35–1.42 (m, 2H, CH₂), 1.49–1.59 (m, 6H, CH₂), 1.98–2.05 (m, 2H, 5'-H), 2.44, 2.45 (2 dd, *J* = 18.8, 3.8 Hz, 2 × 1H, 8'-H_a, 8"-H_a), 3.14, 3.19 (2 dd, *J* = 18.8, 9.0 Hz, 2 × 1H, 8'-H_b, 8"-H_b), 3.36, 3.37 (2 d, *J* = 15.7 Hz, 2 × 1H, 9'-H_a, 9"-H_a), 3.41–3.46 (m, 4H, 1'-H, 1"-H), 3.56 (t, *J* = 6.5 Hz, 2H, 6"-H), 3.71 (s, 6H, 2 × OCH₃), 3.81, 3.83 (2 d, *J* = 15.7 Hz, 2 × 1H, 9'-H_b, 9"-H_b), 4.02, 4.06 (2 dd, *J* = 9.0, 3.7 Hz, 2 × 1H, 7'-H, 7"-H), 4.34 (s, 3H, CH₃), 4.69 (t, *J* = 7.2 Hz, 2H, 6'-H), 4.87 (s, 2H, 6-H), 9.36 (s, 1H, 5-H) ppm. ¹³C-NMR (125 MHz, CDCl₃): $\delta = 25.4$, 25.5, 25.7, 26.3, 27.0, 27.3, 29.16, 29.17, (8 × CH₂), 32.96, 33.00 (C-9', C-9''), 35.5, 35.6 (C-8', C-8''), 38.6, 38.7, 38.9 (4 C, C-1', C-1'', C-7', C-7''), 39.4 (CH₃), 52.75, 52.76 (2 × OCH₃), 54.2 (C-6'), 60.8 (C-6), 71.9 (C-6''), 130.7 (C-5), 140.6 (C-4), 170.1 (2 × CO₂CH₃), 174.5, 174.6, 176.37, 176.44 (4 × C=O) ppm. FT-IR (ATR): $\tilde{\nu} = 2937$ (w), 2859 (w), 1773 (w), 1732 (m), 1693 (s), 1436 (w), 1398 (m), 1347 (w), 1280 (w), 1160 (w), 1126 (w), 1005 (w), 918 (w), 728 (m), 690 (w) cm⁻¹. MS (ESI) *m*/*z* = 684 [M]⁺. HRMS (ESI): calcd. for [C₃₀H₄₆N₅O₉S₂Na]⁺ 684.2731, found: 684.2724 [M]⁺.

1.7. Reaction Kinetics of the Thio-Michael Addition

Reaction kinetics of the thio-Michael addition were studied by NMR experiments using crosslinkers **2b** and **Me-(2b)*** **I**- and methyl thioglycolate (MTG) in deuterated PBS/ethanol-d₆ (70% in D₂O) with a maleimide/thiol ratio of (50:50). Due to solubility problems a solvent ratio of PBS in D₂O (pH 3)/70% ethanol-d₆ of (50:50) was used instead of (70:30) as for the hydrogel formation.

Experimental Procedure

The cross-linkers **2b** (10.75 mg, 23.5 μ mol) or **Me-(2b)**⁺ **I**⁻ (14.09 mg, 23.5 μ mol), ethanol-d₆ (70% in D₂O, 332 μ L) and PBS in D₂O (pH 3, 357 μ L) were mixed thoroughly in a standard NMR tube, and ¹H- and ¹³C-NMR spectra were recorded. A stock solution of methyl thioglycolate (42 μ L, 470 μ mol) in ethanol-d₆ (70%, 250 μ L, c = 199.5 mg/mL, 1.88 mmol/mL) was prepared.

Then, 25 μ L of the stock solution of methyl thioglycolate (47.0 μ mol) were added to the NMR tubes, the reaction mixture was mixed carefully, and ¹H-NMR spectra were recorded immediately. The reactions were monitored by ¹H-NMR until no further reaction progress could be detected. Afterwards, ¹³C-NMR spectra were measured overnight.

The reaction mixture was extracted with CH_2Cl_2 (2 × 5 mL), the organic layer was separated and dried over Na₂SO₄. After removal of the solvent, ¹H-NMR spectra of the products in CDCl₃ were recorded.

Reaction Kinetics

(a) Reaction of Triazole Cross-Linker (2b) and Methyl Thioglycolate (MTG) in a Ratio of (1:2)

The neutral cross-linker **2b** did not completely dissolve in the D₂O/EtOH-d₆ mixture. After the addition of methyl thioglycolate, a cloudy suspension was formed. However, the reaction progress could still be monitored by ¹H-NMR and is shown in Figure S1.

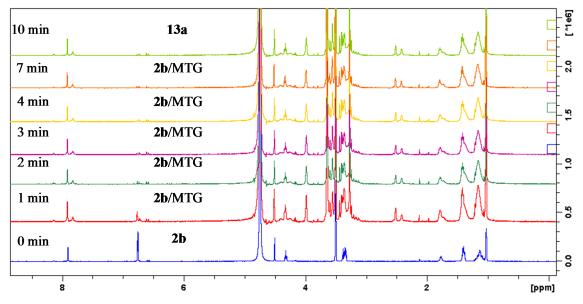


Figure S1. NMR experiment of the thio-Michael addition of MTG to neutral cross-linker 2b.

The maleimide protons of the cross-linker at 6.80 ppm (Figure S1, blue spectrum, **2b**) disappeared within 10 min after the addition of methyl thioglycolate, due to the thio-Michael addition with MTG to **13a**, as can be seen by the appearance of CH₂ protons at 2.47 ppm and 4.05 ppm (red, green, and violet spectra). The reaction seemed to be finished after 3 min.

(b) Reaction of Triazolium Cross-Linker (Me-(2b)+ I-) and Methyl Thioglycolate (MTG) in a Ratio of (1:2)

The solubility of **Me-(2b)**⁺ **I**⁻ in the D₂O/EtOH-d₆ mixture was higher than that of **2b**. After the addition of MTG, a colorless suspension was formed. The reaction progress of the thio-Michael addition was monitored by ¹H-NMR (Figure S2).

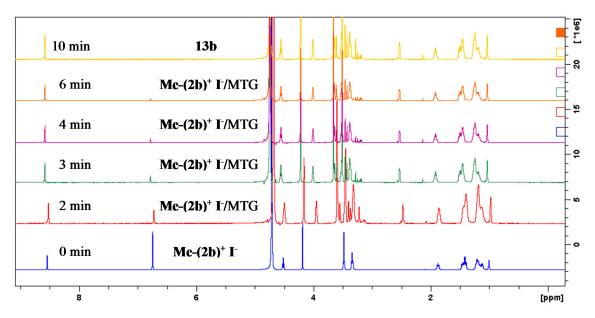
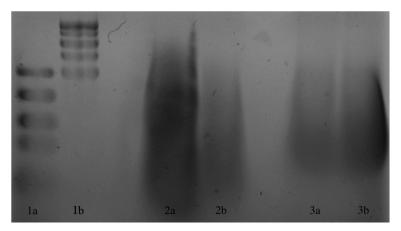


Figure S2. NMR experiment of the thio-Michael addition of MTG to positively charged cross-linker Me-(2b)* I⁻.

After the addition of methyl thioglycolate, the maleimide protons at 6.80 ppm (Figure S2, blue spectrum, **Me-(2b)**⁺ **I**⁻) disappeared within 10 min due to the thio-Michael addition with MTG to **13b**, as can be seen by the appearance of CH₂ protons at 2.58 ppm and 4.05 ppm (red, green, and


violet spectra). The reaction was finished after 10 min reaction time. After work-up, no starting material **Me-(2b)**⁺ **I**⁻ was detected by ¹H-NMR, only the desired thio-Michael adduct **13b**.

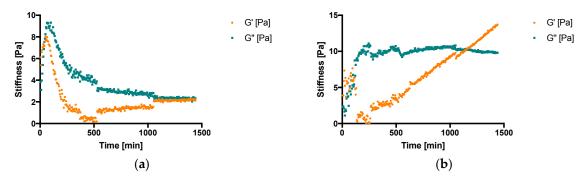
2. Formation of Hydrogels

2.1. Stability of HA₁₂₅ and HA₁₂₅-SH₄₀ in PBS at pH = 3.0

As hydrogels were prepared in PBS at a final pH of 3.0 with a gelation time of 24 h, stability of HA₁₂₅ and HA₁₂₅-SH₄₀ under these conditions was tested. Therefore HA₁₂₅ and HA₁₂₅-SH₄₀ were dissolved in PBS at a final pH = 3.0 and incubated for 24 h at room temperature. Subsequently, these HA solutions were loaded on a 1.4% agarose gel, together with fresh solutions of HA₁₂₅ and HA₁₂₅-SH₄₀ to determine possible degradation. Agarose gel electrophoresis was done in accordance with ref. [19].

Both HA₁₂₅ and HA₁₂₅-SH₄₀ have a broad size distribution but are not significantly degraded after incubation in PBS at pH = 3.0 for 24 h (Figure S3).

Figure S3. Agarose-gel of HA₁₂₅ and HA₁₂₅-SH₄₀ in PBS at a final pH = 3.0. **1a** is loaded with LoLadder (Hyalose) ranging from 500 kDa to 25 kDa and **1b** is loaded with HighLadder (Hyalose) ranging from 1500 kDa to 500 kDa. **2a** and **2b** represent HA₁₂₅ freshly prepared and after incubation at pH = 3.0 for 24 h respectively. **3a** and **3b** show HA₁₂₅-SH₄₀ freshly prepared and after pH = 3.0 incubation.


2.2. Determination of Reacted Thiols

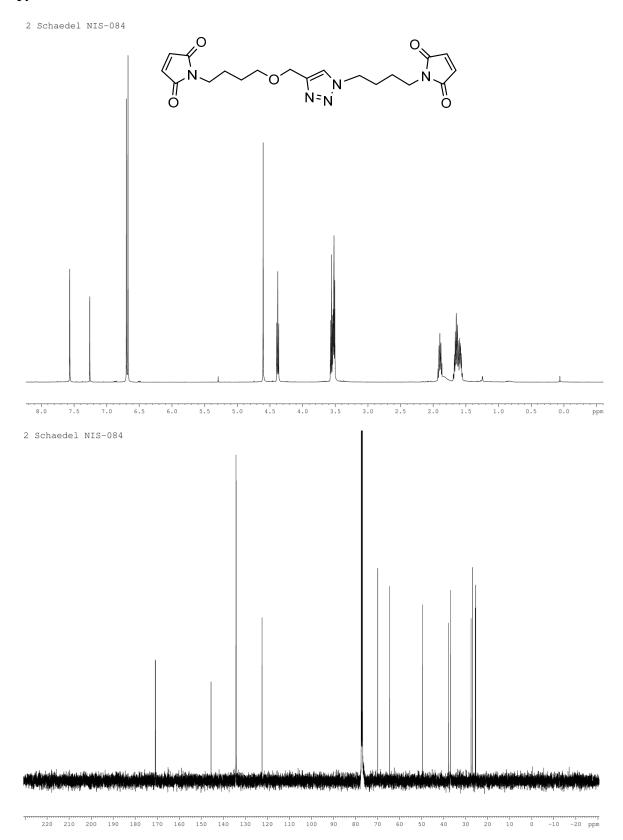
An adapted Ellman's Assay (see Materials and Methods 3.2) was used to determine the amount of reacted thiols in hydrogels with all cross-linkers (Results shown in Table 1). In short, formed gels with a volume of 40 μ L were immersed in 784 μ L 1 M TRIS, pH = 8.0 and mechanically cut into small pieces. Subsequently 784 μ L DTNB-solution (50 mM NaOAc and 2 mM DTNB in ddH₂O) were added, and the reaction mixture was incubated for 20 min at room temperature and 350 rpm. The amount of reacted thiols was calculated in reference to a 40 μ L gelation solution without cross-linker, containing 100% free thiols.

2.3. Determination of Electrostatic Interactions within Hydrogels

Rheological measurements during gelation of HA₁₂₅-SH₄₀ with **13a** and **13b**, containing protected maleimides, were performed with a rotational rheometer (Kinexus Pro, Malvern) at a constant shear rate of 1 Hz in a humidity chamber. Storage and loss modulus were monitored over a period of 24 h to determine possible gelation (Figure S4).

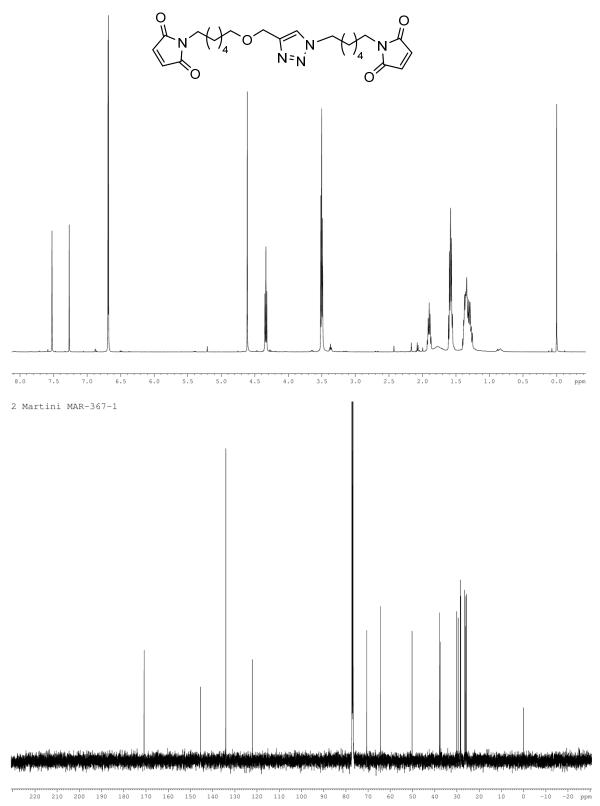
The uncharged protected linker **13a** showed no crossover of the two moduli, thus indicating no gel formation due to missing covalent linkages. However, with **13b** a crossover point is observed after roughly 19 h, indicating that there is a very weak gel formed ($G' \approx 15$ Pa after 24 h). The electrostatic interactions between the positive charge on the linker and the negative charge on the HA backbone are thus stabilizing the gel network even without covalent links.

Figure S4. Rheological measurements of HA₁₂₅-SH₄₀ with **13a** (**a**) and **13b** (**b**) during gelation. Storage (green) and loss modulus (orange) were monitored over a time frame of 24 h to determine gelation. No crossover between storage and loss modulus can be obtained with **13a**, confirming that only covalent crosslinks are forming the hydrogels with uncharged linkers. However, with the charged crosslinker **13b** a gelation point can be observed after 19 h indicating electrostatic interactions.

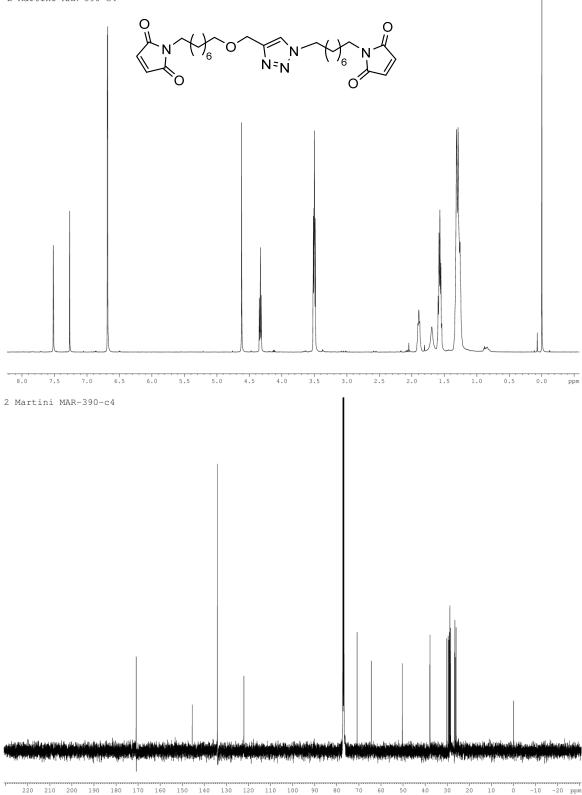

3. References

- Falck, J.R.; Wallukat, G.; Puli, N.; Goli, M.; Arnold, C.; Konkel, A.; Rothe, M.; Fischer, R.; Müller, D.N.; Schunck, W.-H. 17(R),18(S)-Epoxyeicosatetraenoic Acid, a Potent Eicosapentaenoic Acid (EPA) Derived Regulator of Cardiomyocyte Contraction: Structure–Activity Relationships and Stable Analogues. J. Med. Chem. 2011, 54, 4109–4118.
- Kress, K.C.; Kaller, M.; Axenov, K.V.; Tussetschläger, S.; Laschat, S. Synthesis and mesomorphic properties of calamitic malonates and cyanoacetates tethered to 4-cyanobiphenyls. *Beilstein J. Org. Chem.* 2012, *8*, 371–378.
- 3. Baldwin, J.E.; Adlington, R.M.; Ramcharitar, S.H. Free Radical Macrocyclisation *via* Propiolate Esters. *Tetrahedron* **1992**, *48*, 3413–3428.
- 4. Eriks, J.C.; van der Goot, H.; Sterk, G.J.; Timmerman, H. Histamine H2-Receptor Agonists. Synthesis, in Vitro Pharmacology, and Qualitative Structure-Activity Relationships of Substituted 4- and 5-(2-Aminoethyl)thiazoles. J. Med. Chem. 1992, 35, 3239–3246.
- Hirschhäuser, C.; Velcicky, J.; Schlawe, D.; Hessler, E.; Majdalani, A.; Neudörfl, J.-M.; Prokop, A.; Wieder, T.; Schmalz, H.-G. Nucleoside Analogues with a 1,3-Diene-Fe(CO)₃ Substructure: Stereoselective Synthesis, Configurational Assignment, and Apoptosis-Inducing Activity. *Chem. Eur. J.* 2013, *19*, 13017–13029.
- 6. Sugawara, T.; Susaki, H.; Nogusa, H.; Gonsho, A.; Iwasawa, H.; Irie, K.; Ito, Y.; Shibukawa, M. Synthesis of 8-aminooctyl glycopyranosides and of their conjugates with poly(L-glutamic acid) having a 2-(4-hydroxyphenyl)ethylamino group for radiolabeling. *Carbohyd. Res.* **1993**, *238*, 163–184.
- Pascale, R.; Carocci, A.; Catalano, A.; Lentini, G.; Spagnoletta, A.; Cavalluzzi, M.M.; De Santis, F.; De Palma, A.; Scalera, V.; Franchini, C. New *N*-(phenoxydecyl)phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. *Bioorg. Med. Chem.* 2010, *18*, 5903–5914.
- 8. Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge, A.N. A Mesogenic Triphenylene-Perylene-Triphenylene Triad. *Org. Lett.* **2011**, *13*, 764-767.
- 9. Pfammatter, M.J.; Siljegovic, V.; Darbre, T.; Keese, R. Synthesis of ω-Substituted Alkanethiols and (Bromomethyl)methylthiomalonates. *Helv. Chim. Acta* **2001**, *84*, 678–689.
- 10. Thiruvengadam, T.K.; Gould, S.J.; Aberhart, D.J.; Lin, H.-J. Biosynthesis of Streptothricin F. 5. Formation of β-Lysine by *Streptomyces* L-1689-23. *J. Am. Chem. Soc.* **1983**, *105*, 5470–5476.
- 11. Nagata, T.; Tanaka, K. Pentadentate Terpyridine–Catechol Linked Ligands and Their Cobalt(III) Complexes. *Inorg. Chem.* 2000, *39*, 3515–3521.
- 12. Harjani, J.R.; Liang, C.; Jessop, P.G. A Synthesis of Acetamidines. J. Org. Chem. 2011, 76, 1683–1691.
- 13. Bartholomä, M.D.; Vortherms, A.R.; Hillier, S.; Ploier, B.; Joyal, J.; Babich, J.; Doyle, R.P.; Zubieta, J. Synthesis, Cytotoxicity, and Insight into the Mode of Action of Re(CO)³ Thymidine Complexes. *ChemMedChem* **2010**, *5*, 1513–1529.
- Lakanen, J.R.; Coward, J.K.; Pegg, A.E. α-Methyl Polyamines: Metabolically Stable Spermidine and Spermine Mimics Capable of Supporting Growth in Cells Depleted of Polyamines. *J. Med. Chem.* 1992, 35, 724–734.

- 15. Loska, R.; Janiga, A.; Gryko, D. Design and synthesis of protoporphyrin IX/vitamin B₁₂ molecular hybrids *via* CuAAC reaction. *J. Porphyr. Phthalocya*. **2013**, *17*, 104–117.
- 16. Bandyopadhyay, S.; Mukherjee, S.; Dey, A. Modular synthesis, spectroscopic characterization and *in situ* functionalization using "click" chemistry of azide terminated amide containing self-assembled monolayers. *RSC Adv.* **2013**, *3*, 17174–17187.
- Fer, M.J.; Bouhss, A.; Patrão, M.; Le Corre, L.; Pietrancosta, N.; Amoroso, A.; Joris, B.; Mengin-Lecreulx, D.; Calvet-Vitale, S.; Gravier-Pelletier, C. 5'-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: Synthesis, biological evaluation and molecular modeling. *Org. Biomol. Chem.* 2015, *13*, 7193–7222.
- 18. Talybov, G.M.; Guseinov, M.M.; Guseinov, S.O.; Karaev, S.F. Propargyl ether of 4-chlorobutanol and its derivatives. *Doklady Akademiya Nauk Azerbaidzhanskoi SSR* **1989**, *45*, 26–29.
- 19. Bhilocha, S.; Amin, R.; Pandya, M.; Yuan, H.; Tank, M.; LoBello, J.; Shytuhina, A.; Wang, W.; Wisniewski, H.-G.; de la Motte, C.; et al. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. *Anal. Biochem.* **2011**, *417*, 41–49.

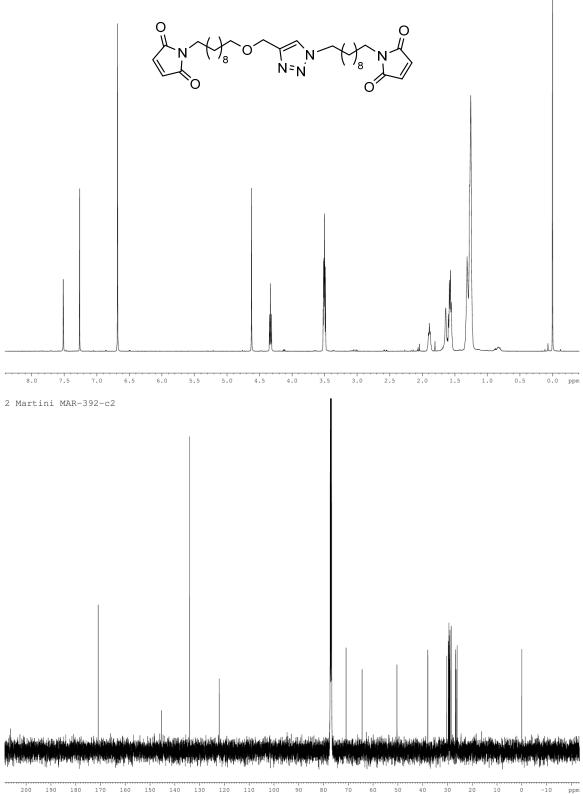

4. ¹H- and ¹³ C-NMR Spectra of All New Compounds

1-[4-(4-{[4-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)butoxy]methyl}-1*H*-1,2,3-triazol-1-yl)butyl]-1*H*-pyrrole-2,5-dione (2a)

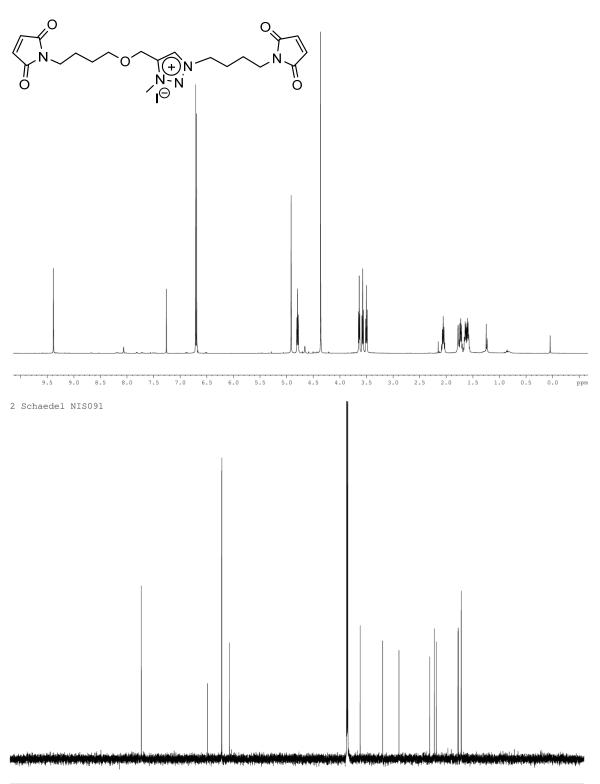


1-{6-[4-({[6-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]hexyl}-1H-pyrrole-2,5-dione (2b)

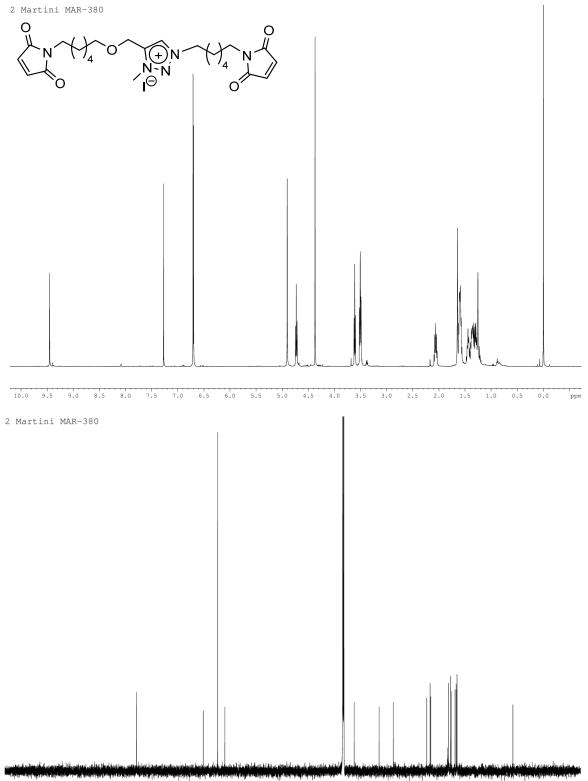
2 Martini MAR-367-1



1-{8-[4-({[8-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]octyl}-1H-pyrrole-2,5-dione (2c) 2 Martini MAR-390-c4

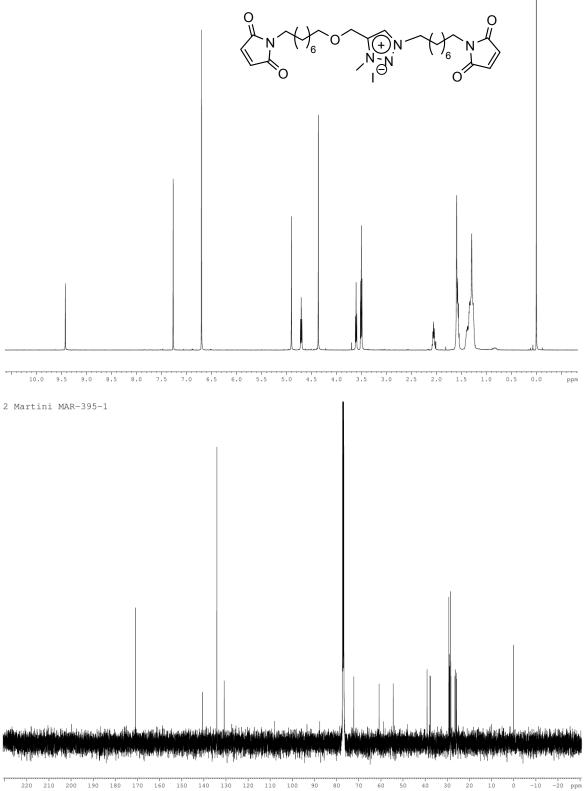

1-{10-[4-({[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy}methyl)-1H-1,2,3-triazol-1-yl]decyl}-1H-pyrrole-2,5-dione (2d)

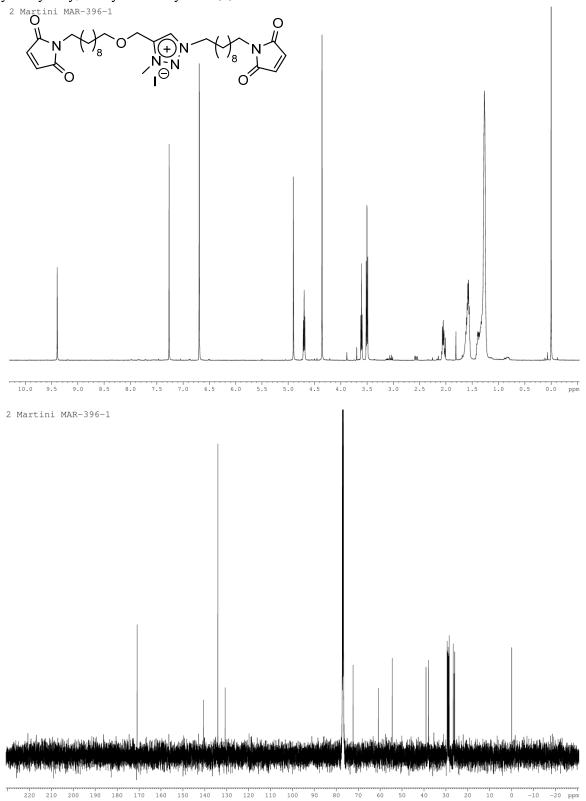
2 Martini MAR-392-c2


$\label{eq:2.5-Dioxo-2.5-dihydro-1H-pyrrol-1-yl} butoxy] methyl \end{tabular} 1-[4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) butyl]-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2a)+ I-)$

2 Schaedel NIS091

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm


$\label{eq:2.5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl]-4-(\{[6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-hexyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2b)^+ I^-)$


220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm

$\label{eq:2.5-Dioxo-2.5-dihydro-1H-pyrrol-1-yl)octyl]-4-(\{[8-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)octyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2c)+ I^-)$

2 Martini MAR-395-1

$\label{eq:linear} 1-[10-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]-4-(\{[10-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)decyl]oxy\}methyl)-3-methyl-1H-1,2,3-triazol-3-ium iodide (Me-(2d)^+ I^-)$

