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Abstract: The solid-state method was used to synthesize single phase potassium-sodium niobate
(KNN) co-doped with the La®*-Mn** and Eu®*-Fe3* ion pairs. Structural determination of all studied
solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic
resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers.
Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for
each solid solution. The present study reveals that doping KNN with La**-Mn*" and Eu®*-Fe3* at
concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric
behavior and induce the generation of optical properties in the material for potential applications.
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optical activity; dielectric permittivity; ferroelectricity; piezoelectricity

1. Introduction

Lead-based piezoelectric ceramics, such as the lead titanate-zirconate (PZT) family, have played
an important role for several decades because of their excellent piezoelectric and electromechanical
properties [1]. However, due to the use of PbO during processing and its toxicity, the development
of lead-free piezoceramics has become a worldwide research topic in materials [2—4]. Alkali niobate
ceramics based on Ky 5NagsNbO3; (KNN) have received more attention after Saito et al. [5] improved
the piezoelectric coefficient dsz to 416 pC/N by doping with Li, Ta and Sb, making the perovskite more
covalent and increasing the <001> orientation.

The (Na;_«K)NbO3 (KNN) is a solid solution formed between an antiferroelectric compound
NaNbOj3 and a ferroelectric compound KNbO3, whose phase diagram shows that, at room temperature,
the orthorhombic phase becomes stable in the range of 0.475 < x < 1, and the monoclinic phase becomes
stable in the range of 0.32 < x < 0.475 [6-8]. In the KNN processing the main disadvantage is the
volatility of sodium and potassium at temperatures above 850 °C used at synthesis and sintering
steps [9].
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It has been reported that addition of MnyO3 or MnO, could be used to reduce the leakage current
in KNN ceramics, because they diminish the amount of oxygen vacancies formed due the volatilization
of alkali ions by increasing the valence of Mn?* or decreasing the valence of Mn** [10-12]. Besides,
this selection of doping is promising as transparent glass ceramics showed optical properties ascribed
to Mn?* ions [13].

On the other hand, lead-free ((1 — x)/2) K¢ 5Nag 5Nbg 95Tag 0503« /2Fe;O3 piezoelectric ceramics
(x =0, to 3.0 mol %) have been prepared by conventional ceramic sintering process [14]. K* and Na*
vacancies, originating from the volatilization of alkali metal elements, and charge compensation by
the diffused Fe®* ions at low doping concentration (0.4 mol %) might be responsible for the higher
tetragonal distortion of the structure and for inducing domain wall motions, which improves the
electrical properties. Fe;O3 has been added also to enhance the piezoelectric properties in single
crystals of ferroelectric potassium tantalate niobate (KTaxNb;_,Os) [15].

Previous reports have shown that, additionally to the improvement of the piezoelectric properties,
luminescent response can be achieved by doping KN and KNN with rare-earths, such as Pr**, Er** and
Eu3* [16-19]. Rare-earth doped materials have been of great scientific interest in developing photonic
devices and for the next flat-panel display generation. Eu®*-doped materials have been extensively
studied because of their transitions from °Dy to 7F] (J=0,1,2,3, 4) levels. Mainly, the transition 5Dy
to ’F,, involved in wavelength peaks around 610-630 nm, shows bright red luminescence and laser
action in a variety of glasses and single crystals [16-18].

Being a ferroelectric with perovskite structure KNN ceramics have been widely studied as
the host material for photoluminescence application in nonlinear optics. The doping is of great
importance in modifying the crystallographic phase and tuning photoluminescence properties in
the invisible-near infrared range [16-18]. Although not yet studied, it is possible that co-doped KN
and KNN could exhibit simultaneously piezoelectric and luminescent properties. The works on
simultaneous characterization of the electrical (ferro- or piezo-electric) and optical properties in the
search for multifunctional materials are scarce to date but slowly increased in the last few years [20-22].
Besides, co-doping for this dual purpose has not yet been studied.

This work reports the synthesis of KNN and its solid solutions substituting Na* and K*
in the A site of perovskite structure with La®* and Eu®*, and Nb°" in the B site with Mn**
and Fe®*. The co-doped studied materials were prepared according with the formulations of
((Ko.sNag.5)1—4x/5))Lawx/5) (NP (4.5x/5)Mnsx/5)03 and ((KosNags)1-xEux)(Nby_xFex)Os, with
x =0.005 and x = 0.01. The purpose of using ions in those pairs was to maintain the charge balance and
to establish the co-dopant effect avoiding redox process induced by vacancies generation. Furthermore,
transition metals were added with the aim to enhance the ferroelectric, piezoelectric and dielectric
properties [12,14,23], meanwhile both Mn and rare earths cations are expected to arise optical activity
and La is expected to minimize the manganese reduction [10-12].

2. Results and Discussion

2.1. Structural Characterization

In order to facilitate data handling, the chemical formulas of the studied compounds are named
as follows:

(Ko5Nag 5)NbO3 (KNN)

(Ko.5Nag 5)0.995L.a0.004Nbg.995Mng 004503 (KNNLMO5)
(Ko.5Nag 5)0.992Lag.00sNbo.990Mng,000003 (KNNLM1)
(Ko.5Nag 5)0.995Eu0.005Nbo.995Fep.00s03 (KNNEF05)
(Ko.5Nag 5)0.990Eu0.010Nbg.990Feo 01003 (KNNEF1)

Figure 1 shows X-ray diffraction patterns and the calculated plots corresponding to the Rietveld
refinement of the studied compounds. All of them show single crystalline phase indicating the
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solubility of the dopants into the KNN crystal structure (JCPDS No 00-061-0315), with evolution from
the orthorhombic symmetry, described by Malic et al. [24], as the co-doping increase. The studied
compositions were selected after a separate study, not shown here, to ensure that they constitute solid
solutions. The solubility limit in KNNLM and KNNEF was determined to correspond to x = 0.054 for
KNNLM and x = 0.056 for KNNEF samples. The obtained data from Rietveld analysis are listed in
Table 1.
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Figure 1. Experimental XRD patterns and results of their Rietveld refinement. (a) (Ko 5Nag 5)0.990Eu0.010

Nby.990Fe0.01003; (b) (Ko.5Nag 5)0.992L.a0.008Nbo.990Mn.009003; (€) (Ko.5Nag 5)0.995Eu0,00sNbg.995F€0.00503;
(d) (K0,5Na0,5)0,995La0_004Nb0_995Mno,004503; (e) (Ko'5Na()_5)NbO3; (f) comparison of some relevant peaks.

Table 1. Crystallographic parameters obtained from Rietveld refinement analysis for all solid solutions.

Composition KNN KNNLMO05 KNNLM1 KNNEF05 KNNEF1
Rwp % 10.03 11.07 10.09 9.76 11.04
a(A) 4,005 2 3.101 (6) 3.964 (2) 3.261 (4) 3.976 (2)
b (A) 3.944 2 3.601 (2) 3.964 (3) 3.317 (4) 3.976 (2)
c(A) 4,002 2 4.005 (6) 3.989 (2) 4.005 (4) 3.981 (3)
Crystal system ortho ortho tetragonal ortho tetragonal
Space group Amm?2 Amm?2 P4mm Amm?2 P4mm
Volume (A3) 127 (2) 121 (1) 122 (1) 122 (1) 124 (1)
Average crystallite size (nm) 37 (3) 54 (4) 8(3) 39 (3) 30 (2)
Calculated density (g/ cmd) 4578 4.495 (6) 4.528 (3) 4543 (4) 4.568 (4)

2 Value taken from the reference [24].

Table 1 shows the percentage of weighted profile R-factor (Rywp), which is the figure of merit
commonly used in Rietveld refinement, the crystal cell parameters, average crystal size and density
of the samples. The comparison of the estimated crystal cell parameters and density for all samples
with the data available in the literature for pure KNN revealed that these parameters are in accordance
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with those ones previously reported [24]. It is worth noting the changes in crystal parameters, which
result in a change of crystal symmetry, from orthorhombic [25] to tetragonal (see the comparison
of some relevant peaks enlarged in Figure 1) and finally a mixture of symmetries as the amount of
co-doping increases.

SEM images of the higher density samples, sintered at different temperatures are shown in
Figure 2. The main feature observed is the change in crystal size, which can be ascribed to the dopant
i.e., its presence influences the inhibition of growth rates by changing the defect concentration and
therefore the mass diffusivity at the grain surface [26].

Figure 2. SEM images of sintered compounds (a) KNN T = 1105 °C; (b) KNNLMO05 T = 1155 °C;
(c) KNNLM1 T = 1155 °C; (d) KNNEF05 T = 1150 °C and (e) KNNEF1 T = 1135 °C.

Densification for sintered pellets is presented in Table 2, which were determined by comparing the
calculated values from Rietveld refinement given in Table 1 and the measured by Arquimedes method.

Table 2. Theoretical and experimental density and densification percentage for sintered compounds.

Compound Calculated Density (g/cm®) Experimental Density (g/cm?) Densification (%)
KNN 4.578 4.329 94.6
KNNLMO05 4.495 (6) 4.399 97.9
KNNLM1 4.528 (3) 4.266 94.2
KNNEF05 4.543 (4) 4.378 96.4

KNNEF1 4.568 (4) 4419 96.7




Materials 2016, 9, 805 5o0f 14

In Table 2 the lower densification value was obtained for KNNLM1 sample, most probably due
to structural defects associated with the difference in ionic size and oxidation state of the La®>" with
respect to K* and Na* and Mn?*/Mn** with respect to Nb>*. In order to get insight on the defect
structure and valence state of the dopants in the studied compounds both EPR and luminescence
studies were carried out.

2.2. EPR and Optical Analysis

EPR spectra are shown in Figure 3. The EPR technique is commonly used to determine the
oxidation level of paramagnetic centers present in the compounds. The spectra of KNNLMO05
(Figure 3a) and KNNLM1 (Figure 3b) exhibit classic Mn?* transitions around 330 mT, which correspond
to a ground state °S5/, with a spin value equal to S = 5/2. The difference between these two spectra is
detailed as follows [27]. In Figure 3a, the spectrum is split in six lines due to the hyperfine interaction
with the 5®Mn nucleus [27-32]. In Figure 3b the spectrum shows only one broad signal, this response
is related with the dipole—dipole interaction induced by the dopant concentration. This response is
consistent with the presence of Mn?2* ion, which, at lower symmetries, could present the fine structure
transition between the ligand field split in levels, corresponding to 5/2-3/2, 3/2-1/2,1/2--1/2,
—1/2-—3/2 and —3/2-—5/2 transitions [28]. Besides, at lower symmetries of Mn** the fine structure
is split in levels corresponding to 3/2-1/2,1/2-—1/2 and —1/2-—3/2. However, as a result of large
anisotropy only a central signal with its six hyperfine components due to Mn2* was observed and this
signal can be overlapped by the response of Mn**, being more sensitive for Mn?* [27-35].

Meanwhile, the spectrum for KNNEFO05, given in Figure 3c, exhibits two transitions. The first
one, with a small intensity at 154 mT might be assigned to Fe** by the 5/2-3/2 transition [36-38].
The second one at 330 mT, is more intense and corresponds to the Fe>* ground state S5, due to the
1/2-—1/2 transition. Finally, the KNNEF1 compound (Figure 3d) shows two transitions: the first one
at 330 mT and the second at 400 mT; these two signals could also be attributed to Fe3*. The particular
shape of the spectrum may be due to a significantly distortion of the crystal environment around Fe3*
induced by the higher concentration of the dopant for this sample.
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Figure 3. EPR spectra: (a) KNNLMO5; (b) KNNLM1; (c) KNNEF05 and (d) KNNEF1.
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Luminescence excitation spectra are shown in Figure 4. The spectra of the solid solution
co-doped with La-Mn (Figure 4a) exhibit a characteristic Mn** transition from *A,~*T, at 410 nm [39].
Whereas those of the compounds co-doped with Eu-Fe, (Figure 4b) exhibit several transitions:
characteristic of f—f transitions of Eu3*, such as “Fg—°Dy, "Fy—Gg, "Fg—"Lg, 'Fo—"D3, "Fg-°D5 and
7Fg-°D; [16,18] that are observed at 360 nm, 380 nm, 395 nm, 417 nm, 466 nm and 528 nm, respectively.
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Figure 4. Excitation spectra of the (a) La-Mn co-doped KNN compounds and (b) Eu-Fe

co-doped samples.

The emission spectra are presented in Figure 5. The spectra of the La-Mn co-doped compounds,
(Figure 5a), exhibit a wide band centered at 720 nm, which may be ascribed to the 2E-*A; transition of
Mn** [39]. The emission spectra of solid solutions with Eu-Fe, (Figure 5b), show several transitions

ascribed to Eu®* f—f transition °Dy—"Fy, °Dy—"Fy, Dy~ F,, " Dy—"F3 and °Dy—"F, [16,18].
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Figure 5. Emission spectra of (a) La-Mn co-doped KNN and (b) Eu-Fe solid solutions.

It should be noticed that Eu-Fe co-doped samples experiment a change in the
concentration-dependent relative intensity of the 5Dy—"F; and °Dy—’F, transitions. The relative
intensity 1("F,)/1(“F;) of samples co-doped at 0.5% and 1% change from 0.86 to 3.77. This result
is an evidence of a higher distortion in the crystal structure at the local level due to a higher dopant
content, which explains the improvement of dielectric, ferroelectric and piezoelectric properties of the
Eu-Fe co-doped compounds. Furthermore, this distortion correlates well with the Fe>* environment
showed from the EPR spectrum of sample KNNEF1.

The luminescent decay curves for the co-doped samples are depicted in Figure 6. They all have
features of a complex de-excitation dynamig, i.e., they show a non-exponential decay behavior [40].
This fact is expected because the optically active ions Mn**/Eu3* are settled into the perovskite
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structure at sites of K* and Na* (A-site) and Nb°* (B-site), respectively, inducing the crystal structure
distortion, and generating defects, which may be responsible for the implied dynamic de-excitation.
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Figure 6. Luminescence decay curves of red emission for La-Mn and Eu—Fe co-doped KNN ceramics.

Additionally, we have calculated the average lifetime for the transitions of 2E-*A, (Mn**) and
*Dy-"F4 (Eu3") at different compositions. In the case of Eu®*, the average lifetime was 0.57 ms
regardless of the concentration of Eu** and Fe®*. Similar results were obtained for the Mn%**:
the average lifetimes were 2.25 ms and 2.2 ms for the samples doped at 0.5% and 1%, respectively.
Large lifetime values may be related with ion transition, which is due to the parity and spin forbidden
transition 2E—*A, of Mn**.

It should be noted that the excitation and emission spectra presented above do not show
the presence of Mn?* like in EPR study, for that case another kind of study must be carried
out. The presence of Mn?* can be determined by exciting the characteristic wavelength of the
absorption edge (Figure 7a), which ensures the excitation of all the optical centers in the sample [36].
The absorption edge wavelengths for KNNLMO05 and KNNLM1 compounds are 360 nm and 340 nm,
respectively. These wavelengths were used to excite the compounds in order to obtain their emission
spectra, showed in Figure 7b, which prove the existence of Mn?* due to the presence of the band at
580 nm ascribed to the 4T;—°A; Mn?"* transition [13]. Therefore, the presence of Mn?2* from the weak
signal in Figure 7 matches with the results obtained in EPR. These results prove a mix of oxidation
states inherent in Mn co-doped compounds, which may induce a conduction behavior at sufficiently
high concentration by generation of lattice defects.
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Figure 7. Absorption edge (a) and emission spectra; (b) for KNNLMO05 and KNNLM1 compounds.



Materials 2016, 9, 805 8 of 14

2.3. Electric Characterization

The ferroelectric loops acquired are presented in Figure 8. Most samples have saturated
ferroelectric loops, except for the compounds KNNLM1 and KNNEFO05. In the case of KNNLMI,
the loop has a rounded shape, attributed to sample conductance. The conductance at room temperature
result from manganese mixed valence state, borne out by EPR studies. However, KNNEF05 shows a
subcoercive loop, thus, co-doping has caused an increase of the coercive field for this composition,
most probably by introducing defect dipoles that stabilize the ferroelectric domains.

204

KNNEF1

KNNEF05
—— KNNLM1
——KNNLMO05
——KNN

(]

P(uClem?) , _

204 E(kV/cm)

Figure 8. Ferroelectric loops of KNN and its solid solutions.

Table 3 shows the values of the remnant polarization (2Pr) and coercive field (2Ec) for all
compounds. Regarding to coercive field, the solid solutions show lower values than un-doped
KNN, whereas the value of remnant polarization increases and almost doubles the value observed
for KNN. This behavior is similar to previous studies doped solely with transition metals [10-12],
making these solid solutions soft ferroelectrics with a greater number of polarizable domains.

Table 3. Remnant polarization (2P;) and the coercive field (2E.) for sintered ceramics.

Composition 2P, (uC/cm?) 2E¢ (kV/cm)
KNN 6.2 0.9
KNNLMO05 12.45 1.05
KNNEF1 13.54 1.07

The exhibited temperature dependence of the dielectric permittivity, measured at 10 kHz for
sintered samples, given in Figure 9. The dielectric permittivity graphs show two phase transitions:
To-r at 180220 °C and Trc (Tcurie) at 390430 °C, depending on the compound used. For example,
KNN presents the transitions at 220 °C and 430 °C, respectively, while KNNLMO05 presents them
at 195 °C and close to 420 °C. On the other hand, KNNEF1 shows the transitions at 180 °C and
390 °C, respectively.

Figure 10 shows the dependence of dielectric losses (tan J) on the temperature measured at 10 kHz.
Losses are low except for undoped KNN, most probably due to defects caused by the alkaline volatility
that are avoided by co-doping [10-12].

The piezoelectric, elastic and dielectric parameters, obtained from the radial resonance of thickness
poled thin disks analyzed using an iterative automatic method to obtain material coefficients with
all losses [41], are shown in Table 4. The d3; value was also measured and dj, was calculated. It is
noticeable that k,, values were improved for KNNLMO05 composition, but if the dopant amount
increases, the piezoelectric properties decrease. However, the KNNEF1 compound shows improved
piezoelectric properties, but at higher dopant concentrations, values not shown here, the ferroelectric
properties are lost.
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Figure 9. Dielectric permittivity vs. temperature, measured at 10 kHz, of KNN and its solids solutions.
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Figure 10. Dielectric loss tangent vs. temperature of KNN and its solid solutions, measured at 10 kHz.

Table 4. Piezoelectric, elastic and dielectric coefficients including all losses and other relevant
parameters at the radial resonance of a thin disk, thickness poled, and measured at the ds3-meter of
KNN and its solid solutions.

Sample KNN KNNLMO05 KNNLM1 KNNEF05 KNNEF1
J (g/cm?) 434 44 427 4375 4415
R2 0.9973 0.9978 0.9992 0.9982 0.9809
Np (kHz-mm) 3357 2997 2353 2874 3378
kp (%) 34.1 26,7 16.8 239 319
ka1 (%) 20.0 13.7 12.0 14.2 18.7
Poisson’s ratio 0.311+0.00031  0.475 + 0.0001 i - 0.295 — 0.0001i  0.312 + 0.0001 i
ci1pE (1010 N-m~2) 11.43 +0.041 8.42 +0.021 7.03 +0.04 1 852 +0.041 11.76 + 0.16 i
s11F (10712 m2.N—1) 9.69 — 0.03 i 15.33 — 0.04 i 14.23 — 0.071i 12.85 — 0.05 i 9.42 —0.13i
s12F (10712 m2.N—1) —3.02+0.011 —7.28+0.021 - —3.79+0.021 —2.94+0.041
ds; (10712C-N71 —2899+027i —2555+0.19i —1920+036i —30.09+044i —40.13+1.56i
£337 (real) 244.86 257.38 203.14 395.23 552.15
tan & 0.015 0.012 0.030 0.021 0.037
seet (10712 m2.N—1) 25.41 — 0.09 i 4523 — 0.131i 27.72 — 0.14i 33.26 — 0.14 i 24.71 — 0.33 i
1pP (1019 N-m~—2) 12.41 + 0.04 i 8.90 + 0.03 i 713 +0.04 i 8.86 +0.04 i 12.64 + 0.15 i
(10712 m2.N-1) 9.30 — 0.03i 15.05 — 0.04 i 14.02 — 0.07i 1259 — 0.0520i  9.09 — 0.111i
s12P (10712 m2.N—1) —3.40 +0.011 —7.60 +0.021 - -4.04+0.021 —327+0.051
g31 (1073 m-V.N~1) —1337 —0.08i —1121—-006i —10.67 —0.14i —8.60—005i  —821+0.011i
dsz (10712 C/N) 98 120 94 105 116
d, 10712 C/N) 40 69 56 45 36
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Figure 11 shows an example of the planar resonance spectra used for the calculation of the
coefficients in Table 4. Instead of the usual plot of impedance modulus and phase the plot was made
using the resistance (R = real part of the impedance) and conductance (G = real part of the admittance)
peaks, since these are used in the calculation. It is noticeable the high agreement, also given by
the regression factor (R?) (see Table 4), of the reproduced spectra (doted lines) to the measured one
(symbols), which indicates the precision of the obtained materials parameters and the losses.

KNNLMO05
0.008 T T : T T 60000
ooo7{ " Exp.C u "
= Exp.R i H - 50000
Calculated G i
0.006 ... Calculated R g
I 40000
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Figure 11. Planar resonance spectra for KNNLMO5.

The best overall performances were obtained for KNNLMO05 and KNNEF1 compounds. The slight
decrease in some of the piezoelectric parameters (kp) for the compounds doped with manganese
compared with the undoped KNN can be explained by the mixed valence states found by EPR studies.
These mixed oxidation states produce a.c. conduction due to defects in the crystalline lattice of the
composition with higher co-doping that result in duplicated dielectric tan ¢ in KNNLM1 with respect
to undoped KNN. This effects are compensated with the better elastic properties of the co-doped
ceramics, resulting from a fine grain dense microstructure, revealed by the higher modulus of the
compliances (sijE'D) and lower the stiffness (CHPE'D), while keeping similarly low mechanical losses,
and ultimately in an improvement for some other parameters (dz3 and dy,).

However, in the compound co-doped with Eu-Fe the piezoelectric parameters decrease first in
KNNEF05 and increase again in agreement with the doping effect of Fe>* ions previously observed in
the literature [14] and similar effects than in KNNLM concerning the elastic properties.

The highest values in the co-doped ceramics for d33 (120 pC/N) and dy, (69 pC/N) were obtained
for KNNLMO5 and for ky, (31.1%) in KNNEF1 compounds, respectively. As it is well known, dy, is
typically the most important parameter for underwater sound transducers, commonly manufactured
using lead titanate ceramic material. Since KNNLMO05 and KNNLM1 show the best dy, values, it proves
to be suitable for sonar applications [42—44].

3. Materials and Methods

For the synthesis of KNN and the solid solutions (Ko 5Nag 5)1—(4x/5)Lax/5Nb1xMny 5, /503 and
(Ko5Nag 5)1—xEuxNb;_«FexO3 (with x = 0.005 and 0.01), the following raw materials were used: NbyOs
(99.9% Sigma-Aldrich, St. Louis, MO, USA), K;,COj3 (99.8% Mallinckrodt, Phillipsburg, KY, USA),
NayCO3 (99.8% J.T. Baker, Xalostoc, Mexico), La(OH)3 (99.9% Sigma-Aldrich), Fe,O3 (99.77% Fisher
Scientific, Fair Lawn, NJ, USA), EuyO3 (99.9% Sigma-Aldrich) and MnO, (98% Alfa Aesar, Ward Hill,
MA, USA).

First, the carbonates and oxides were dried at 200 °C during 4 h before weighting. Then,
stoichiometric amounts of the precursors were mixed in an agate mortar using acetone as dispersant.
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The mixture was calcined at 800 °C for 1 h, milled again in the agate mortar and heated at 950-1000 °C
during 2 h. The powder was milled in a planetary ball mill using zirconia balls at 200 RPM for 10 h
with ethanol as dispersant. Meanwhile, solid solutions with the highest dopant amount (solubility
limit) were synthetized at 1000 °C for 8 h.

The powders were pressed into pellets of 13 mm diameter and 2 mm thickness at 45 MPa.
The samples were conventionally sintered at temperatures between 1105 °C and 1150 °C for 2 h. Bulk
densities of sintered ceramics was measured by Archimedes method.

All samples were characterized by X-ray diffraction with Cu-Ka radiation (A = 0.15418 nm, Bruker
D8 Advance with a 0.0083 step size and 2 s integration time, Karlsruhe, Germany) and Rietveld
refinements were carried out to determine the composition influence in the structure using TOPAS
software (Bruker, Brisbane, Australia) [45]. The microstructures of sintered pellets were examined with
a Scanning Electron Microscope (SEM, JEOL 7600F, Tokyo, Japan). Electron Paramagnetic Resonance
(EPR) was carried out in an Electron Paramagnetic Resonance Spectrometer (JEOL JES-TE300, Tokyo,
Japan), using a cylindrical cavity with the TEp;; mode, operated at 100 kHz in X modulated band.
The measurements were performed at room temperature in quartz tubes to determine the valence of
paramagnetic centers in the obtained compounds.

The excitation and emission spectra of the sintered pellets were carried out in a spectrometer
(Edinburgh F900, Edinburg Instrument, Livingston, UK), whereas the absorption edge was
acquired only for the compounds co-doped with La-Mn, using a spectrophotometer (Cary 5000,
Agilent Technologies, San Jose, CA, USA).

For the luminescence decay curves of red emission. The average lifetime is defined as

T = jo‘” H(t) /j0°°1(t) 1)

where I(t) is the intensity as a function of the time. This can be a also written as

Ty = Lf};wtll((tt)) = ZBiTiZ/ ZBiTi

We here determined the lifetime by fitting the experimental curves to the first two terms in the
expression shown above.

In order to determine changes in dielectric and piezoelectric properties, sintered pellets were
polished down to 1 mm of thickness, silver paste was applied and then annealed at 100 °C for
3 h. Dielectric and piezoelectric properties were measured using a Precision Impedance Analyzer
(Agilent 4295A, San Jose, CA, USA).

The hysteresis loops (P-E) were acquired on a ferroelectric tester (Radiant RT66B work station,
Radiant Technologies Inc., Alpharetta, CA, USA, at 100 Hz using an external 4 kV power supply source).
For piezoelectric characterization, the samples were poled under 1-1.5 kV-mm ! dc electric field at
175 °C for 30 min in a silicon oil bath. All measurements were performed after 24 h of poling process.
The piezoelectric parameter ds3 was measured with a d33 piezometer system (PM300-PIEZOTEST).
The d3; parameter, as well as the electrochemical coupling factors kp and k31, and g3; parameter,
together with elastic constants and permittivity at the resonance frequency, were calculated using the
resonance method by an automatic iterative analysis method of the complex impedance at the radial
mode of thin disks, thickness poled [41].

4. Conclusions

(Ko5Nag5)1— 4x/5)Lax/5Nb1-xMny 51,503 and (Ko 5Nag 5)1-xEuxNb; _xFexO3 solid solutions
(with x = 0.005 and 0.01) were successfully synthesized by solid-state method and sintered to obtain
dense ceramics. Pure perovskite phase was achieved for all compositions as observed by X-ray
diffraction. The Rietveld refinements show shifts in lattice parameters and result in a change of crystal
symmetry, from orthorhombic to tetragonal, as the amount of co-doping increases.
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EPR and optical measurements confirm the oxidation state of the Mn ions: the wide band centered
at 720 nm, ascribed to the 2E-*A, transition of Mn** of the emission spectra, and the presence of the
band at 580 nm ascribed to the 4T;-°A; transition, due to the Mn?* from excitation at the absorption
edge. The mixed oxidation states of manganese explain the conductive behavior at high dopant
concentrations, resulting in leaky hysteresis loops and reduction of the piezoelectric coefficients.

EPR results and the #T;-°A; transition at 705 nm ascribed to Fe3* of the emission spectra; confirm
the oxidation state of the Fe3* ions. The change in the relative intensity of the transitions I (Fy)/1("F;)
of samples of the solid solution with Eu-Fe is an evidence of a higher distortion in the crystal structure
due to the dopant content, which is directly related with the dielectric, ferroelectric and piezoelectric
properties of the Eu-Fe solid solution.

Generation of optical properties, while piezoelectric properties are kept similar to pure KNN),
and higher for hydrostatic applications in KNNLM, were exhibited by the La-Mn co-doped
samples especially at 0.5% mol (KNNLMO05). Meanwhile for Eu-Fe co-doped samples, the best
electromechanical properties were obtained at 1 mol % (KNNEF1).
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