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Abstract: In order to develop original and efficient visible light response photocatalysts for
degrading organic pollutants in wastewater, new photocatalysts Bi2GaSbO7 and Bi2InSbO7 were
firstly synthesized by a solid-state reaction method and their chemical, physical and structural
properties were characterized. Bi2GaSbO7 and Bi2InSbO7 were crystallized with a pyrochlore-type
structure and the lattice parameter of Bi2GaSbO7 or Bi2InSbO7 was 10.356497 Å or 10.666031 Å.
The band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be 2.59 eV or 2.54 eV. Compared with
nitrogen doped TiO2, Bi2GaSbO7 and Bi2InSbO7, both showed excellent photocatalytic activities for
degrading methylene blue during visible light irradiation due to their narrower band gaps and higher
crystallization perfection. Bi2GaSbO7 showed higher catalytic activity compared with Bi2InSbO7.
The photocatalytic degradation of methylene blue followed by the first-order reaction kinetics and
the first-order rate constant was 0.01470 min−1, 0.00967 min−1 or 0.00259 min−1 with Bi2GaSbO7,
Bi2InSbO7 or nitrogen doped TiO2 as a catalyst. The evolution of CO2 and the removal of total
organic carbon were successfully measured and these results indicated continuous mineralization of
methylene blue during the photocatalytic process. The possible degradation scheme and pathway of
methylene blue was also analyzed. Bi2GaSbO7 and Bi2InSbO7 photocatalysts both had great potential
to purify textile industry wastewater.

Keywords: photocatalysts; Bi2GaSbO7; Bi2InSbO7; methylene blue; photocatalytic degradation;
visible light irradiation

1. Introduction

Dye contaminants from textile wastewater were difficult to treat for their high chroma, high
chemical oxygen demand content and complicated ingredients. Some conventional methods including
biodegradation [1–3], electrochemistry [3–6], adsorption [7–9], and flocculation−precipitation [10,11]
had been exploited to degrade those dye contaminates, but there still existed a serious of problems
with them. Methylene blue (MB), usually adopted as dyestuff, was one of the most common
dye contaminants.

Photocatalysis had gained great development since photocatalytic reaction was found in 1972 [12].
Photocatalytic degradation of the pollutants in wastewater entailed a chain of advantages including
conserving energy and little secondary pollution; it had therefore gradually attracted more and
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more attention in textile wastewater treatment. Metal oxides [13–24] and metal sulfides [21–33]
were the most common semiconductor photocatalysts. Among metal oxides, anatase TiO2 was
investigated most repeatedly owing to its non-toxic property, excellent stability and low cost. However,
with a wider band gap (3.2 eV), anatase TiO2 only efficiently absorbed ultraviolet light which occupied
only 5% of the solar energy, and thus failed to make good use of optical energy. In order to make
the best use of visible light which occupied 43% of sunlight, developing visible light responsive
photocatalysts was an inevitable tendency in the field of photocatalysis research, which could be
embodied from abundant endeavors of previous scholars in realizing the degradation of the pollutants
during visible light irradiation by the method of iron doping [34–36], forming heterojunction [37–42]
or photosensitization [43–48]. Several years ago, Zou and Arakawa [49,50] found that two types of
metal oxides, ABO4 and A2B2O7, had great potential for photocatalytic H2 production during visible
light irradiation. It was well known that minute changes in internal structure of the semiconductor
photocatalysts would presumably promote the separation of photogenerated electrons and holes
and thus improve photocatalytic activities. Zou et al. synthetized Bi2MNbO7 (M = Al, Ga, In, Y or
Fe) [51–53] which was one remarkable representative of the family of A2B2O7 compounds with the
A3+

2B4+
2O7 pyrochlore structure by substituting B4+ sites in A3+

2B4+
2O7 for M3+ (M3+ = Al3+, Ga3+,

In3+) and Nb5+. Similarly, previous studies had reported Bi2GaVO7 [54] and Bi2SbVO7 [55] by element
doping, which had realized visible-light photocatalytic degradation and H2 production. Previous
works indicated that the Ga3+ and In3+ ions could influence the band gap and the electronic structure of
the compound photocatalysts, which was expected to cause the different photocatalytic activity [56,57].

As an important element with higher electron drift velocity and mobility, antimony (Sb) has
been extensively studied as a good dopant candidate for enhancing the electron transfer rate of
semiconductors [58]. Omidi et al. [59] evaluated the photocatalytic activity of Sb-doped ZnO
nanostructures (0 ≤ mol fraction of Sb3+ ions ≤ 0.15) for the photodegradation of MB. In addition,
the acquired results showed that doping the ZnO nanostructures with 0.03 mol fraction of Sb3+ ions
increased the reaction rate by about three times, indicating that the decreasing recombination of charge
carriers could enhance the photocatalytic activity. Al-Hamdi et al. [60] reported that Sb-doped dioxide
(SnO2) nanoparticles with different Sb concentrations (at % = 0, 2, 4 and 6), which was prepared by
a sol–gel method, could degrade 12%, 45%, 71% and 97% of phenol in the mineralization process
under UV irradiation for 120 min, which showed higher photocatalytic activity than the undoped
SnO2 catalyst. These previous reports have shown that moderate Sb doped on the photocatalysts could
greatly enhance the photocatalytic activity.

In this paper, new photocatalysts, Bi2GaSbO7 and Bi2InSbO7, were synthetized by doping element
Ga or In with a solid-state reaction method. Meanwhile, the structural properties of Bi2GaSbO7 and
Bi2InSbO7 were also characterized and their photocatalytic activities were also examined in degrading
MB solution compared with N-doped TiO2, which had achieved the visible light response.

2. Materials and Methods

2.1. Synthesis of Bi2GaSbO7, Bi2InSbO7 and N-doped TiO2 Photocatalysts

New Bi2GaSbO7 and Bi2InSbO7 samples were firstly synthesized by a solid-state reaction method.
Firstly, for the sake of the synthesis of Bi2GaSbO7, Bi2O3, Ga2O3 and Sb2O5 with a purity of 99.99%
(Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China) were obtained by an atomic ratio of
2:1:1 to serve as raw materials. All powders were dried at 200 ◦C for 4 h before synthesis. In order
to synthesize Bi2GaSbO7, the precursors were fully mingled with each other, then pressed into small
columns and put into an alumina crucible (Shenyang Crucible Co., Ltd., Shenyang, China). Eventually,
calcination was performed at 1100 ◦C for 40 h in an electric furnace (KSL 1700X, Hefei Kejing Materials
Technology Co., Ltd., Hefei, China). Accordingly, Bi2O3, In2O3 and Sb2O5 with a purity of 99.99%
(Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China) were obtained by an atomic ratio
of 2:1:1 for the preparation of Bi2InSbO7. The synthesization procedure of Bi2InSbO7 was similar to
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that of Bi2GaSbO7, just the calcination was performed at 1070 ◦C for 30 h during mixed powder in the
alumina crucible. The preparation of N-doped TiO2 was by the sol–gel method which was mentioned
in our previous studies [61].

2.2. Characterization

In our paper, we adopted the X-ray diffraction method (XRD, D/MAX-RB, Rigaku Corporation,
Tokyo, Japan) with Cu Ka radiation (λ = 1.54056 angstrom) to confirm the crystal structures of
Bi2GaSbO7 and Bi2InSbO7. The patterns of Bi2GaSbO7 and Bi2InSbO7 were recorded at 295 K with
a step–scan procedure in the range of 2θ = 10◦–100◦ (for Bi2GaSbO7) or 10◦–95◦ (for Bi2InSbO7).
The step interval was 0.02◦ and the time per step was 1 s. The transmission electron microscopy
(TEM, Tecnal F20 S-Twin, FEI Corporation, Hillsboro, OR, USA) was used to observe the surface
state and structure of the photocatalysts. The Malvern’s mastersize-2000 particle size analyzer
(Malvern Instruments Ltd., Malvern, UK) was utilized to measure the particle size of the photocatalysts.
We also utilized X-ray photoelectron spectroscopy (XPS, ESCALABMK-2, VG Scientific Ltd., London,
UK) to determine the Bi3+ content, Ga3+ content, Sb5+ content, In3+ content and O2− content of
Bi2GaSbO7 and Bi2InSbO7. The chemical composition of Bi2GaSbO7 and Bi2InSbO7 was determined
by scanning the electron microscope-X-ray energy dispersion spectrum (SEM–EDS, LEO 1530VP, LEO
Corporation, Dresden, Germany). The surface areas of Bi2GaSbO7 and Bi2InSbO7 were measured by the
Brunauere–Emmette–Teller (BET) method (MS-21, Quantachrome Instruments Corporation, Boynton
Beach, FL, USA) with N2 adsorption at liquid nitrogen temperature. Their diffuse reflectance spectrums
were analyzed by a UV-visible spectrophotometer (Shimadzu UV-2550 UV-Visible spectrometer,
Kyoto, Japan).

2.3. Photocatalytic Properties Test

MB (C16H18ClN3S) (Tianjin Bodi Chemical Co., Ltd., Tianjin, China) served as our objective
pollutant. The whole photocatalytic activity process was as follows: firstly, we prepared 300 mL MB
aqueous solution in quartz tubes whose initial concentration was 0.025 mmol·L−1 and initial PH value
was 7.0. Then, 0.8 g photocatalyst powder of N-doped TiO2, Bi2GaSbO7 or Bi2InSbO7 was placed into
every quartz tube, respectively. In order to ensure the establishment of an adsorption/desorption
equilibrium among photocatalysts, the MB dye and atmospheric oxygen, above per solution was
magnetically stirred in the dark for 45 min. In our paper, we employed a 500 W Xenon lamp
(λ > 420 nm), which utilized a 420 nm cutoff filter as a visible-light source. The photoreaction was
carried out in a photochemical reaction apparatus (Nanjing Xujiang Machine Plant, Nanjing, China).
During visible light illumination, the MB dye pollution was stirred by a magnetic stirrer and the
photocatalyst powder was kept suspended in the solution. The filtrate was subsequently measured
by a Shimadzu UV-2450 UV-visible spectrometer (Kyoto, Japan) with the detecting wavelength at
665 nm. The identification of MB and the degradation intermediate products of MB were measured
by a liquid chromatograph-mass spectrometer (LC–MS, Thermo Quest LCQ Duo, Silicon Valley, CA,
USA, Beta Basic-C18 HPLC column: 150 × 2.1 mm2, ID of 5 µm, Finnigan, Thermo, Silicon Valley,
CA, USA). Here, post-photocatalysis solution (20 µL) was injected automatically into the LC–MS
system. The eluent contained 60% methanol and 40% water, and the flow rate was 0.2 mL·min−1.
MS conditions included an electrospray ionization interface, a capillary temperature of 27 ◦C with
a voltage of 19.00 V, a spray voltage of 5000 V and a constant sheath gas flow rate. The spectrum was
acquired in the negative ion scan mode, sweeping the m/z range from 50 to 600. Evolution of CO2 was
analyzed with an intersmat™ IGC120-MB gas chromatograph (6890 N, Agilent Technologies, Palo Alto,
CA, USA) equipped with a porapack Q column (3 m in length and with an inner diameter of 0.25 in.),
which was connected to a catharometer detector. The total organic carbon (TOC) concentration was
determined with a TOC analyzer (TOC-5000, Shimadzu Corporation, Kyoto, Japan). The photonic
efficiency was calculated according to the following equation [62,63]:
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ξ = R/I0 (1)

where ξ was the photonic efficiency (%), and R was the rate of MB degradation (mol·L−1·s−1), and I0

was the incident photon flux (Einstein·L−1·s−1). The incident photon flux I0 which was measured
by a radiometer (Model FZ-A, Photoelectric Instrument Factory Beijing Normal University, Beijing,
China) was determined to be 4.76 × 106 Einstein·L−1·s−1 under visible light irradiation (wavelength
range of 400–700 nm).

3. Results and Discussion

3.1. Characterization

Figure 1a,b shows the TEM images of Bi2GaSbO7 and Bi2InSbO7 with high magnification.
We could observe from the images of Bi2GaSbO7 and Bi2InSbO7 that their particles presented a similar
oblate spheroid appearance and that their distribution was relatively uniform. The average particle
size of Bi2GaSbO7 approached 190 nm, which was smaller than that of Bi2InSbO7, whose average
particle size approached 390 nm. We could observe from the BET results that the specific surface area
of Bi2GaSbO7 approached 2.36 m2/g, which was bigger than that of Bi2InSbO7, whose specific surface
area approached 1.82 m2/g. It was clear that the BET results were consistent with the TEM results,
indicating that the samples with small average particle size would have a higher specific surface
area. Figure 2a,b shows the SEM–EDS spectra taken from Bi2GaSbO7 and Bi2InSbO7. It could be seen
from Figure 2a,b that the superfluous peaks did not exist in the spectra of Bi2GaSbO7 and Bi2InSbO7,
meaning that Bi2GaSbO7 and Bi2InSbO7 crystals were both pure phase without impure elements.
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In this paper, X-ray photoelectron spectroscopy analysis techniques were utilized to reveal the
surface chemical compositions and the valence states of various elements in Bi2GaSbO7 and Bi2InSbO7.
The various elemental peaks which are corresponding to specific binding energies are given in Table 1.
Analysis results of the full XPS spectra were as follows: the prepared Bi2GaSbO7 sample contained Bi,
Ga, Sb and O elements. Similarly, the prepared Bi2InSbO7 sample contained Bi, In, Sb and O elements.
These results also uncovered that Bi2GaSbO7 crystal or Bi2InSbO7 crystal were both at a high pure



Materials 2016, 9, 801 5 of 18

phase. Moreover, the analysis results of the XPS spectra also manifested that the valence of Bi, Ga, Sb,
In or O from Bi2GaSbO7 and Bi2InSbO7 was +3, +3, +5, +3 or −2, respectively. Eventually, according
to our comprehensive XPS and SEM–EDS analyses, as for Bi2GaSbO7, the mean atomic ratio of Bi,
Ga, Sb and O was 2.00:0.98:1.02:6.98. As for Bi2InSbO7, the mean atomic ratio of Bi, In, Sb and O was
2.00:0.99:1.01:6.99.

Table 1. Binding energies (BE) for key elements of Bi2InSbO7 and Bi2GaSbO7.

Compound Bi4f7/2 BE (eV) Sb3d5/2 BE (eV) Ga3d5/2 BE (eV) In3d5/2 BE (eV) O1s BE (eV)

Bi2InSbO7 159.70 531.20 – 444.60 530.85
Bi2GaSbO7 159.60 531.40 20.60 – 531.10

Figure 3 presents the X-ray powder diffraction patterns of Bi2GaSbO7 and Bi2InSbO7, respectively.
We could judge from Figure 3 that Bi2GaSbO7 crystal or Bi2InSbO7 crystal was single phase. Figure 4a,b
shows the Pawley refinement results of XRD data for Bi2GaSbO7 and Bi2InSbO7. The refined outcomes
from Figure 4a,b displayed that the actual intensities of Bi2GaSbO7 or Bi2InSbO7 were both highly in
accordance with the intensities of the pyrochlore-type structure with a cubic crystal system and a space
group Fd3m (O atoms were included in the model), indicating that Bi2GaSbO7 and Bi2InSbO7 indeed
formed the same crystal structure. The atomic coordinates and structural parameters of Bi2GaSbO7 and
Bi2InSbO7 are listed in Tables 2 and 3, respectively. Above results showed that the lattice parameter a of
Bi2GaSbO7 was 10.356497 Å, which was slightly lower than that of Bi2InSbO7 whose lattice parameter
a was 10.666031 Å. From the SEM–EDS spectra and XPS spectra which were taken from Bi2GaSbO7 and
Bi2InSbO7, we had known that Bi2GaSbO7 crystal or Bi2InSbO7 crystal was both pure phase. Therefore,
excluding the effects of impurities, we could deduce that the difference between the lattice parameter a
for Bi2GaSbO7 and Bi2InSbO7 was perhaps concerned with M ionic radii which belonged to Bi2MSbO7.
The reason was that the ionic radii of Ga3+ (0.62 Å) was minutely lower than that of In3+ (0.92 Å).
Lastly, all the diffraction peaks (222), (400), (440), (622), (444), (800), (662), (840), (844) for Bi2GaSbO7

and Bi2InSbO7 were successfully indexed according to the lattice constant and above space group.
Figure 5 presents the diffuse reflection spectra of Bi2GaSbO7 and Bi2InSbO7, respectively.

Compared with N-doped TiO2 whose absorption edge was about 445 nm, the absorption spectrum
of newly prepared photocatalyst Bi2GaSbO7 or Bi2InSbO7 was estimated to be 480 nm or 490 nm,
respectively, implicating that they had sizable potential to realize visible light response. The maximum
absorption wavelength of MB was detected by an ultraviolet spectrophotometer, while the
diffuse reflection spectra of Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 was detected by ultraviolet
spectrophotometer with integrating sphere. In addition, the above two testing methods were totally
different. Furthermore, the absorbance was obtained from the reflectance data and scattering should
also be taken into consideration in data conversion from reflectance into absorbance, which was the
reason why the ordinate of the diffuse reflection spectra in Figure 5 was absorbance.
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We realized that absorbance could not be proportional to 1-transmission, thus the absorbance
was calculated using the Kubelka–Munk transformation method in our experiment. For a crystalline
semiconductor compound, the optical absorption near the band edge followed the equation [64,65]:

αhν = A × (hν − Eg)n (2)

Here, A, α, Eg and ν denoted proportional constant, absorption coefficient, band gap and light
frequency, respectively. In this equation, n determined the character of the transition in a semiconductor
compound. Eg and n could be calculated by the following steps: (i) plotting ln(αhν) versus ln(hν − Eg)
assuming an approximate value of Eg; (ii) deducing the value of n according to the slope in this graph;
(iii) refining the value of Eg by plotting (αhν)1/n versus hν and extrapolating the plot to (αhν)1/n = 0.
According to this method, we first estimated that the value of n for Bi2GaSbO7 or Bi2InSbO7 was
2, indicating that the optical transition for Bi2GaSbO7 or Bi2InSbO7 is indirectly allowed. Figure 6
presents the plot of (αhν)1/n versus hν for Bi2GaSbO7 and Bi2InSbO7. It could be found that the value
of Eg for Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 was calculated to be 2.59 eV, 2.54 eV or 2.78 eV.
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3.2. Photocatalytic Properties of Bi2GaSbO7 and Bi2InSbO7 Photocatalysts

From the UV-vis spectra of Bi2GaSbO7 and Bi2InSbO7, we had analyzed that both of the novel
photocatalysts sent a strong absorption signal in the visible light region. Therefore, we expected
that they could have the potential to degrade organic pollutants under visible light irradiation.
In order to evaluate their visible light photocatalytic degradation capabilities, we listed N-doped
TiO2 as a referential photocatalyst. Figure 7a presents the kinetics of MB degradation with Bi2GaSbO7,
Bi2InSbO7, N-doped TiO2 as well as in the absence of a photocatalyst under visible light irradiation
(>420 nm). Consistent with our expectations, as time went by, the color of the MB solution gradually
shallowed and the concentration of MB gradually declined in our measurements in the absence of
a photocatalyst. After visible light irradiation for 400 min, the removal rate of MB was estimated to
be 99.75%, 98.95%, 59.92% or 40.6% with Bi2GaSbO7, Bi2InSbO7, N-doped TiO2 as catalyst, as well as
in the absence of a photocatalyst, respectively. The sharp decrease in the concentration of MB under
visible light irradiation from 0 to 120 min was mainly due to the adsorption of MB on the surface of
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Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a photocatalyst [66]. In the meantime, the photocatalytic
degradation of MB with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst also played a significant
role compared with the absence of a photocatalyst under visible light irradiation in this sharp decrease.
In addition, the slower speed of MB degradation by using Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as
a photocatalyst during the later reaction process could be the result of as-prepared samples surface
blocking by adsorbed MB degradation byproducts [67]. Moreover, the photocatalytic degradation
rate of MB was 1.039 × 10−9 mol·L−1·s−1, 1.031 × 10−9 mol·L−1·s−1 or 0.624 × 10−9 mol·L−1·s−1

with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst during 400 min of visible light irradiation,
respectively. The self-degradation rate of MB was 0.422 × 10−9 mol·L−1·s−1 without a catalyst.
Furthermore, the photonic efficiency was estimated to be 0.0218% (λ = 420 nm), 0.0217% (λ = 420 nm)
or 0.0131% (λ = 420 nm) with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst, indicating that
the sufficient use of a large number of photons could lead to the production of a large number of
electron/hole pairs which were responsible for the photocatalytic degradation reaction directly and/or
indirectly [68]. According to above results, it was apparent that Bi2GaSbO7 and Bi2InSbO7 harvested
the highest photocatalytic degradation rate and photonic efficiency compared with N-doped TiO2

for degrading MB. The decolored MB solution and the decrease of MB concentration reflected from
Figure 7a might ascribe to the destruction of chromophore and the thorough degradation of the whole
MB molecular [69]. We have verified our conjecture by detecting the mount variation of TOC and CO2

during MB degradation.
Figure 7b presents the UV-vis spectral changes during the photodegradation of MB with

Bi2GaSbO7 as a photocatalyst. Noticeably, we could observe a subtle blue shift in the maximum
absorbance of MB in the spectral changes by using Bi2GaSbO7 as a photocatalyst under visible light
irradiation, indicating the rather facile cleavage of the whole conjugated chromophore structure [70].
This blue shift in the maximum absorbance of MB also proved the existence of some photodegradation
intermediate products of MB during the photocatalytic degradation of MB under visible light
irradiation in the presence of Bi2GaSbO7.

Figure 8 shows the change of TOC for the photocatalytic degradation of MB during visible light
irradiation with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a photocatalyst, which is consistent with
the tendency shown in Figure 7. The gradual decrease of TOC represented the gradual disappearance
of organic carbon when the MB solution which contained Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 was
exposed under visible light irradiation and the removal rate of TOC was 98.23%, 96.42% or 58.08%
with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst after visible light irradiation for 400 min.
In addition, the reactions stopped when the light was turned off in this experiment, which showed the
obvious light response, suggesting that MB had been converted to other kinds of byproducts and the
organic carbon in the MB had not been decomposed to CO2 [71].
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Figure 7. (a) Photocatalytic degradation of methylene blue under visible light irradiation in the presence
of Bi2GaSbO7, Bi2InSbO7, N-doped TiO2 as well as in the absence of a photocatalyst; (b) Temporal
UV-vis absorption spectral changes during the photocatalytic degradation of MB (0.025 mmol/L,
pH = 7) in aqueous Bi2GaSbO7 suspensions.
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Figure 8. Disappearance of the total organic carbon (TOC) during the photocatalytic degradation of
methylene blue with Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst under visible light irradiation.

Figure 9 shows the amount of variation of CO2 produced during the photocatalytic degradation of
MB by using Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a photocatalyst under visible light irradiation.
It could be distinctly seen from Figure 9 that the amount of CO2 gradually augmented along the light
irradiation time and increased less during the last 100 min when much TOC was eliminated according
to the results of Figure 8. In addition, after visible light irradiation of 400 min, the CO2 production
of 0.11711 mmol or 0.11512 mmol with Bi2GaSbO7 or Bi2InSbO7 as a catalyst was higher than that
of 0.06875 mmol with N-doped TiO2 as a catalyst. In addition, the amount of CO2 production was
nearly equivalent to that of the removed TOC; at the same time, the amount of CO2 production or
the removed TOC was slightly lower than the amount of reduced MB by using different catalysts
with respect to the C element equilibrium, which indicated that MB was mainly degraded into some
inorganic products including CO2 and eventually H2O.Materials 2016, 9, x 10 of 20 
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Figure 9. CO2 production kinetics during the photocatalytic degradation of methylene blue with
Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst under visible light irradiation.

Figure 10 presents the first order nature of the photocatalytic degradation kinetics with Bi2GaSbO7,
Bi2InSbO7 or N-doped TiO2 as a catalyst, which exhibits a linear correlation between ln(C/C0) or
ln(TOC/TOC0) and the irradiation time for the photocatalytic degradation of MB under visible light
irradiation by using the aforementioned catalysts. The pseudo-first-order kinetic curves of MB
photodegradation were plotted to quantitatively compare the degradation rate of MB [72]. In the above
expression, C and TOC represented the MB concentration and the total organic carbon concentration
at time t, respectively. Likewise, C0 and TOC0 represented the initial concentration of MB and the
initial total organic carbon concentration, respectively. By a linear fit for the relationship between
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ln(C/C0) and the irradiation time, the first-order rate constant kC was estimated to be 0.01470 min−1

with Bi2GaSbO7 as a catalyst, 0.00967 min−1 with Bi2InSbO7 as a catalyst or 0.00259 min−1 with
N-doped TiO2 as a catalyst, which distinctly showed that Bi2GaSbO7 and Bi2InSbO7, with the highest
and the second highest value of kC, respectively, exhibited more excellent visible light photocatalytic
activities for degrading MB compared with N-doped TiO2. Similarly, by a linear fit for the relationship
between ln(TOC/TOC0) and the irradiation time, the first-order rate constant kTOC was estimated
to be 0.00881 min−1 with Bi2GaSbO7 as a catalyst, 0.00745 min−1 with Bi2InSbO7 as a catalyst or
0.00239 min−1 with N-doped TiO2 as a catalyst. The difference between kC and kTOC reflected that
there might be some photodegradation intermediate products of MB which were produced during the
photocatalytic degradation of MB under visible light irradiation.
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Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a catalyst under visible light irradiation.

Figure 11 presents the photocatalytic degradation rate of phenol under visible light irradiation in
the presence of Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 as a photocatalyst with respect to time. It could
be seen from Figure 11 that improved activity was obtained when colorless phenol was selected as
a contaminant model with Bi2GaSbO7 or Bi2InSbO7 as a photocatalyst in comparison with the N-doped
TiO2. The photocatalytic degradation efficiency of phenol by using Bi2GaSbO7, Bi2InSbO7 or N-doped
TiO2 as a photocatalyst under visible light irradiation after 400 min was estimated to be 75.00%, 69.76%
or 47.08%, respectively, indicating that Bi2GaSbO7 or Bi2InSbO7 itself had photocatalytic activity and
that the photodegradation process of MB by using Bi2GaSbO7 or Bi2InSbO7 as a photocatalyst was not
mainly due to the photosensitive effect [73]. Moreover, we could observe that the photodegradation
efficiency or apparent rate constant of phenol or MB in the presence of Bi2GaSbO7 or Bi2InSbO7 was
much higher than that in the presence of N-doped TiO2, meaning that the visible-light photocatalytic
activity of Bi2GaSbO7 or Bi2InSbO7 was higher than that of N-doped TiO2.

The specific surface area of Bi2GaSbO7 or Bi2InSbO7 was measured to be 2.36 m2·g−1 or
1.82 m2·g−1, which was much smaller than that of N-doped TiO2, whose specific surface area was
45.53 m2·g−1. Generally speaking, a larger specific surface area would facilitate higher photocatalytic
activities at the same experimental condition [74,75]. However, according to preceding results and
discussions, Bi2GaSbO7 and Bi2InSbO7 showed higher activities than N-doped TiO2 for degrading MB
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during visible light irradiation, which sufficiently highlighted the excellent photocatalytic properties of
Bi2GaSbO7 and Bi2InSbO7, and the above results might ascribe to two explanations. Firstly, as already
mentioned, the calculated band gap for Bi2GaSbO7, Bi2InSbO7 or N-doped TiO2 was 2.59 eV, 2.54 eV
or 2.78 eV. Apparently, Bi2GaSbO7 or Bi2InSbO7 possessed a narrower band gap than N-doped
TiO2, meaning that Bi2GaSbO7 or Bi2InSbO7 could utilize more visible light energy than N-doped
TiO2 [76,77]. Secondly, according to the XRD results of Bi2GaSbO7 and Bi2InSbO7, we could find that
Bi2GaSbO7 and Bi2InSbO7 were both obtained with high crystallization perfection, which might more
efficiently inhibit the recombination of photoinduced electrons and holes than N-doped TiO2.
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Meanwhile, the photocatalytic degradation rate and photonic efficiency of Bi2GaSbO7 were
slightly higher than that of Bi2InSbO7. There were perhaps two probable reasons to explain it. As we
all know, the greater mobility of the photoinduced electrons and holes indicated the greater chance
that the photoinduced electrons and holes would reach the reactive sites of the catalyst surface, which
would bring higher photocatalytic activities. As we previously mentioned, the lattice parameter
α = 10.356497 Å for Bi2GaSbO7 was lower than the lattice parameter α = 10.666031 Å for Bi2InSbO7.
Generally speaking, the smaller the ionic radius was, the smaller the size of the particles could be;
and the lower the lattice parameter was, the larger the specific surface area could be, which could
increase more reactive sites on the photocatalyst surface and absorb more reactive species to improve
the photocatalytic activities [78]. In addition, according to previous luminescent studies, the closer the
M–O–M bond angle was to 180◦, the more delocalized the excited state was [79]. As a result, the charge
carriers could move easily in the matrix. In this experiment, for Bi2GaSbO7, the Ga–O–Ga bond angle
was 131.302◦; accordingly, for Bi2InSbO7, the In–O–In bond angle was 128.640◦. Obviously, the bond
angle of the Ga–O–Ga bond angle of Bi2GaSbO7 was larger than the bond angle of Bi2InSbO7, which
induced that Bi2GaSbO7 exhibited higher photocatalytic activity than Bi2InSbO7.

3.3. Photocatalytic Degradation Pathway of MB with Bi2GaSbO7 and Bi2InSbO7 as Photocatalysts

The photodegradation intermediate products of MB in our experiment were identified as
azure A, azure C, thionine, phenothiazine, leucomethylene blue, N,N-dimethyl-p-phenylenediamine,
benzenesulfonic acid, phenol and aniline. There generated holes h+, ·O2

− and ·OH radicals,
as oxidative agents in the photocatalytic reactions. According to previous studies [80,81],
the photodegradation of MB might occur by demethylation. Besides, there were also reports [82]
which pointed out that ·OH radicals would first attack C − S+ = C functional group bonds to open the
central aromatic ring which contained both heteroatoms S and N. Therefore, according to previous
studies and our test results, a possible photocatalytic degradation pathway for MB was proposed.
Figure 12 shows the suggested photocatalytic degradation pathway scheme for MB under visible
light irradiation with Bi2GaSbO7 or Bi2InSbO7 as a catalyst. The MB molecule was converted to small
organic species, which were subsequently mineralized into inorganic products such as SO4

2− ions,
NO3

− ions, CO2 and ultimately water.
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3.4. Photocatalytic Degradation Mechanism

Figure 13 presents the action spectra of MB degradation with Bi2GaSbO7 or Bi2InSbO7 as a catalyst
under visible light irradiation. A clear photonic efficiency (0.00964% for Bi2GaSbO7 and 0.00942% for
Bi2InSbO7 at their respective maximal point) at wavelengths which corresponded to sub-Eg energies
of the photocatalysts (λ from 480 to 700 nm for Bi2GaSbO7 and λ from 490 to 700 nm for Bi2InSbO7)
was observed. The existence of photonic efficiency at this region revealed that the photons were
not absorbed by the photocatalysts. Enlightened by the correlation between the low-energy action
spectrum and the absorption spectrum of MB, we speculated that any photodegradation which results
at wavelengths above 480 nm, should be attributed to photosensitization effect by the dye MB itself
(Scheme 1). According to the photosensitization scheme, MB which was adsorbed on Bi2GaSbO7 or
Bi2InSbO7 was excited by visible light irradiation. Subsequently, an electron was injected from the
excited MB to the conduction band of Bi2GaSbO7 or Bi2InSbO7 where the electron was scavenged by
molecular oxygen. This explained the results which were gained with Bi2GaSbO7 or Bi2InSbO7 as
a catalyst under visible light irradiation, where the catalyst could serve to reduce recombination of
photoinduced electrons and photoinduced holes by scavenging of electrons.
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The situation was different below 480 nm, where the photonic efficiency correlated well with the
absorption spectra of Bi2GaSbO7 or Bi2InSbO7. This result evidently indicated that the mechanism
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was the photodegradation of MB by the band gap excitation of Bi2GaSbO7 or Bi2InSbO7. As already
mentioned, holes of h+, ·O2

− and OH· radicals served as oxidative agents in the photocatalytic
reactions. Although the detailed experiments about the effect of oxygen and water on the degradation
mechanism of MB were not performed, it was sensible to assume that the mechanism in the first step
was similar to the observed mechanism for Bi2GaSbO7 or Bi2InSbO7 under supra-bandgap irradiation,
and the production scheme of oxidative radicals commonly was shown below (Scheme 2).
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Figure 14 shows the suggested band structures of Bi2GaSbO7 and Bi2InSbO7. The positions and
width of the conduction band (CB) and the valence band (VB) were studied by calculating the electronic
band structure of Bi2GaSbO7 or Bi2InSbO7 with the plane-wave-based density functional method.
The band structure calculations of Bi2GaSbO7 and Bi2InSbO7 were carried out with the program of
Cambridge serial total energy package (CASTEP) and first-principles simulation. It could be seen
from Figure 14 that the conduction band of Bi2GaSbO7 was composed of Ga 4p and Sb 5p orbital
component, meanwhile, the valence band of Bi2GaSbO7 was composed of a small dominant O 2p and
Bi 6s orbital component. Similarly, the conduction band of Bi2InSbO7 was composed of In 5p and Sb 5p
orbital component. In addition, the valence band of Bi2InSbO7 was composed of a small dominant
O 2p and Bi 6s orbital component. Direct absorption of photons by Bi2GaSbO7 or Bi2InSbO7 could
produce electron–hole pairs within the catalyst, indicating that the larger energy than the band gap of
Bi2GaSbO7 or Bi2InSbO7 was necessary for decomposing MB by the photocatalysis method.
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Figure 14. Suggested band structures of Bi2GaSbO7 and Bi2InSbO7.

4. Conclusions

New photocatalysts Bi2GaSbO7 and Bi2InSbO7 were firstly prepared by the solid-state reaction
method. The structural properties and optical absorption properties of Bi2GaSbO7 and Bi2InSbO7 were
characterized by some material characterization methods, the photocatalytic properties of Bi2GaSbO7

and Bi2InSbO7 were also verified in comparison with N-doped TiO2. XRD results indicated that
Bi2GaSbO7 and Bi2InSbO7 crystallized with the pyrochlore-type structure, cubic crystal system and
space group Fd3m. The lattice parameter a for Bi2GaSbO7 or Bi2InSbO7 was a = 10.356497 Å or
a = 10.666031 Å. According to the results from the UV-vis absorption spectra of Bi2GaSbO7 and
Bi2InSbO7, the band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be about 2.59 eV or 2.54 eV,
indicating that Bi2GaSbO7 and Bi2InSbO7 showed a strong optical absorption in the visible light region
(λ > 420 nm). Photocatalytic degradation of aqueous MB was realized under visible light irradiation in
the presence of Bi2GaSbO7 or Bi2InSbO7 accompanied with the formation of final products such as
CO2 and water. The complete removal of organic carbon from MB was obtained as indicated from TOC
and CO2 yield measurements with Bi2GaSbO7 or Bi2InSbO7 as a catalyst under visible light irradiation.
Compared with N-doped TiO2, Bi2GaSbO7 and Bi2InSbO7 exhibited higher photocatalytic activities
for MB degradation under visible light irradiation. Consequently, according to the above analyses,
Bi2GaSbO7 and Bi2InSbO7 both had great potential to degrade MB in textile industry wastewater.
In addition, Bi2GaSbO7 exhibited slightly higher photocatalytic activities for the degradation of MB
than Bi2InSbO7.
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