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Abstract: Nano-Hydroxyapatite (nHA) was isolated from salmon bone by alkaline
hydrolysis. The resulting nHA was characterized using several analytical tools, including
thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray
diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron
microscopy (TEM), to determine the purity of the nHA sample. The removal of organic
matter from the raw fish was confirmed by TGA. FT-IR confirmed the presence of a
carbonated group and the similarities to synthetic Sigma HA. XRD revealed that the
isolated nHA was amorphous. Microscopy demonstrated that the isolated nHA possessed a
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nanostructure with a size range of 6–37 nm. The obtained nHA interacted with mesenchymal
stem cells (MSCs) and was non-toxic. Increased mineralization was observed for nHA
treated MSCs compared to the control group. These results suggest that nHA derived from
salmon is a promising biomaterial in the field of bone tissue engineering.

Keywords: hydroxyapatite; salmon; fish; alkaline hydrolysis

1. Introduction

The increased need for organ replacement and repair is a worldwide human health challenge. The
treatment of damaged tissue is typically performed using autologous and allogenic grafts. These
methods are limited by insufficient donors and the high risk of disease transmission [1,2]. Significant
achievements in the field of tissue engineering include artificial prostheses that can treat loss or failure
or that can regenerate tissues and/or organs [3]. These advances would not have been realized without
the contributions of biomaterials in the form of scaffolds that meet the requirements for optimal tissue
formation [4]. Currently, natural biomaterials play pivotal roles in the design and production of
biocompatible prostheses, biomimetics, elucidating specific cell functions, allowing cell-cell interactions
and the formation of organized matrices for tissue regeneration [5].

Biomaterials with properties similar to bone tissue have been continuously studied for use in bone
tissue engineering [6–10]. The use of composites consisting of calcium phosphates and type I collagen
is one favorable approach to mimic the extracellular matrix of bone tissue [11]. Hydroxyapatite ceramics
(HA, Ca10(PO4)6(OH)2) are biocompatible, and their bioactivity can strengthen bone-bond formation
with other tissues through an osteoconductive mechanism [12]. Nano-Hydroxyapatite (nHA) can be
produced in different ways from synthetic and natural sources. Synthetic methods used to fabricate
nHA include precipitation [13,14], radio frequency thermal plasma [15], reverse micro emulsion [16],
an emulsion liquid membrane system [17], the sol gel method [14] and hydrothermal methods [18].
However, the synthetic production of nHA often requires the use of hazardous chemicals, ageing
processes and an imbalanced stoichiometric ratio. HA can also be isolated from bovine sources [19–25],
fish scales [26–28], fish bone [29–37], Lates calcarifer [28], cuttlefish bone [38], cat fish bone [38,39]
and cod fish bone [40]. Bovine and pork origins are often associated with disease transmission and
religious sentiments [41]. Fish sources are presumably much safer, and the wide evolutionary gap
between fish and humans suggests a low risk of disease transmission [11]. Additionally, fish byproducts
are abundant, and an application for these byproducts suitable for biomedical application would reduce
environmental pollution and the threats of biohazards to humans. Mesenchymal stem cells (MSCs)
have the capacity to differentiate into osteoblasts, chondrocytes, adipocytes, muscle cells and nerve
cells in vitro and in vivo. They are also studied as a common cell source for bone tissue engineering
applications [42,43].

We developed nHA from salmon fish bone through alkaline hydrolysis to mimic the extracellular
matrix of bone. Thus, we have isolated nHA from salmon fish bone. Carbonated nHA was produced
using the alkaline hydrolysis method. Characterization of the isolated nHA revealed that it is amorphous
with nanoparticle sizes that range from 6–37 nm. We investigated the interaction between MSCs and
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nHA from salmon bone. The results demonstrated an increased biomineralization, possibly induced by
the nHA, thus elucidating the differentiation capacity of MSCs into osteoblasts producing cells. This
work suggests that nHA from salmon fish bone is an excellent biomaterial candidate for bone tissue
engineering applications.

2. Results and Discussion

2.1. General Observations

Salmon fish are abundant in South Korea and are widely used as a food source. Salmon waste (scales,
skin and bones) is discarded by local fish markets and industrial companies. This waste is hazardous to
the ecosystem and represents an environmental and health risk. To avert this risk, we employed a cost
efficient method of producing nHA from salmon bones for commercial and biomedical applications.
Initially, raw salmon bone is covered by fish tissue and stored in a freezer. Crushed salmon bone is
yellow in color. After alkali treatment, a light yellow color was observed. This color change indicates
the removal of organic matter from the crushed bone.

2.2. Thermogravimetric Results

The thermogravimetric analyses (50–700 ˝C) of raw bone, crushed bone and nHA-salmon are
depicted in Figure 1. Two different points of weight loss (350 and 463 ˝C) were observed in the
TGA spectrum of raw bone and crushed bone. These temperatures correspond to the organic moieties.
Alkaline treated crushed bone demonstrates only one deflection at 465 ˝C, which may be attributed to
the small amount of organic moieties present in the HA salmon bone.
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Figure 1. Thermogravimetric analysis of (A) raw salmon bone, (B) crushed salmon bone 

and (C) Nano-Hydroxyapatite (nHA) salmon bone after alkaline treatment.  

2.3. FT-IR Spectra Results 
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Figure 1. Thermogravimetric analysis of (A) raw salmon bone, (B) crushed salmon bone
and (C) Nano-Hydroxyapatite (nHA) salmon bone after alkaline treatment.

2.3. FT-IR Spectra Results

Fourier transform infrared spectroscopy (FT-IR) is a reliable reference technique to study the
intra- and intermolecular interactions of a material. FT-IR was performed to identity the functional group
of the isolated nHA. Figure 2A depicts the FT-IR spectrum of raw bone, crushed bone, nHA-salmon
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and synthetic HA from Sigma. The characteristic bands of raw bone were observed at 566, 601, 717,
1038, 1102, 1159, 1458, 1551, 1649, 1745, 2857, 2926, 3008 and 3431 cm´1. These bands indicate
calcium phosphate and collagen moieties. A strong band was observed at 1000–1100 cm´1, indicating
the stretching mode of PO4 vibration. A band at 567 cm´1 corresponds to the n4 symmetric P–O
stretching vibration of a PO4 group. The band at approximately 3400 cm´1 corresponds to the O–H
stretching of nHA [27]. Figure 2B depicts the crushed bone IR spectra. The 1745 cm´1 band was
reduced, suggesting the removal of organic matter. However, the organic matter remains, as indicated by
bands at 1450, 1569, 1646 and 1742 cm´1. These bands correspond to collagen. Figure 2C represents
the alkaline hydrolysis derived nHA. Significant differences were observed for the stretching frequencies
of nHA salmon compared to those of raw bone and crushed bone. Several bands that were present in
crushed bone were absent in nHA salmon, indicating the removal of organic matter from the crushed
bone. The characteristic bands of nHA salmon are 567, 605, 874, 1036, 1109, 1421, 1456, 1560, 2857,
2827, 3411 and 3564 cm´1. The bands of the carbonated group (A and B type) are 1560, 1421 and
1456 cm´1. Figure 2D depicts the infrared spectrum of HA from Sigma-Aldrich (St. Louis, MO, USA).
The characteristic bands are 566, 605, 870, 1036, 1100, 1643, 3433 and 3559 cm´1. Differences were
observed between HA Sigma and nHA salmon. Carbonated groups are absent in the HA Sigma.
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Figure 2. The fourier transform infrared spectroscopy (FT-IR) spectra of (A) raw salmon
bone; (B) crushed salmon bone; (C) nHA salmon bone after alkaline treatment and
(D) HA Sigma.
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2.4. X-Ray Diffraction Results

A broad single peak was observed in the X-Ray diffraction spectrum of raw bone at 32.7, confirming
that the nHA is amorphous. In Figure 3B,C, two peaks were observed at 32.1 (211) and 26.3 (002)
for crushed bone; 31.9 (211) and 26.1 (002) for nHA salmon bone. The intensities of the peaks were
higher in crushed and HA salmon bone compared to raw bone. The highest intensity of the peaks of
nHA (31.9) is similar to that of the standard JCPDS 090432 (31.7). X-ray diffraction analysis (XRD)
analysis suggests that the purity of the nHA salmon is higher than that of crushed bone.
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Figure 3. X-ray diffraction spectra of (A) raw salmon bone, (B) crushed salmon bone and
(C) nHA salmon bone after alkaline treatment and (D) JCPDS 090432.

2.5. Microscopy Results

Figure 4 depicts the FE-SEM images of nHA salmon at different magnifications: (A) ˆ500,
(B,C) ˆ1000 and (D) ˆ2500. Agglomeration of the nHA particles was observed. Figure 5 depicts
the transmission electron microscopy images of nHA salmon for different scale bars, (A) 200 nm,
(B) 100 nm and (C) 50 nm, and (D) selective area image diffraction. TEM analysis demonstrated that
the crystal sizes were 6–37 nm with a nanorod shape. The nHA salmon particles were also analyzed
using selective area diffraction analysis. The selective area diffraction results were consistent with the
XRD results with the planes (002) and (211). These studies also confirmed that the alkaline treatment
did not affect the crystal size of HA salmon.



Materials 2015, 8 5431
Materials 2015, 8 6 

 

 

 
(A) (B) 

 
(C) (D) 

Figure 4. Field emission-scanning microscopy images of nHA salmon at different 

magnifications. (A) ×500, (B,C) ×1000 and (D) ×2500. 

 
(A) (B) 

 
(C) (D) 

Figure 5. High Resolution Transmission Electron Microscopy (HR-TEM) micrographs 

demonstrating the appearance of the obtained nHA crystals at different scale bars:  

(A) 200 nm, (B) 100 nm and (C) 50 nm from fish bones after alkali treatment.  

(D) The corresponding selective area diffraction data of nHA. 

Figure 4. Field emission-scanning microscopy images of nHA salmon at different
magnifications. (A) ˆ500; (B,C) ˆ1000 and (D) ˆ2500.

Materials 2015, 8 6 

 

 

 
(A) (B) 

 
(C) (D) 

Figure 4. Field emission-scanning microscopy images of nHA salmon at different 

magnifications. (A) ×500, (B,C) ×1000 and (D) ×2500. 

 
(A) (B) 

 
(C) (D) 

Figure 5. High Resolution Transmission Electron Microscopy (HR-TEM) micrographs 

demonstrating the appearance of the obtained nHA crystals at different scale bars:  

(A) 200 nm, (B) 100 nm and (C) 50 nm from fish bones after alkali treatment.  

(D) The corresponding selective area diffraction data of nHA. 

Figure 5. High Resolution Transmission Electron Microscopy (HR-TEM) micrographs
demonstrating the appearance of the obtained nHA crystals at different scale bars:
(A) 200 nm; (B) 100 nm and (C) 50 nm from fish bones after alkali treatment; (D) The
corresponding selective area diffraction data of nHA.
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2.6. Cell Culture Results

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the
cytotoxicity of nHA salmon crystals to MSCs. Figure 6 reports the cytotoxicity results of nHA with
MSCs at different concentrations (10, 50, 100 and 250 µg/mL). The results suggest that nHA crystals are
not toxic to cells at 100 µg/mL. The cell morphology of nHA treated MSCs was determined using optical
microscopy. The results indicated a slight inhibition of cells at concentrations higher than 250 µg/mL.
However, the cells proliferated without any toxic effect at lower concentrations. The cell growth of the
control was similar to that of the individually seeded lower concentrations of nHA.
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Figure 7. Phase contrast optical microscopy images of mesenchymal stem cells (MSCs) 

with nHA concentrations of (A) blank, (B) 50 μg/mL, (C) 100 μg/mL and (D) 250 μg/mL. 

Figure 6. Cytotoxicity of nHA salmon crystals to mesenchymal stem cells at different
concentrations. *: p ď 0.05; **: p ď 0.01.

2.7. Morphological Results and Optical Microscopy

The morphology of the MSCs with nHA treatment was studied using optical microscopy (Figure 7).
We observed no change in the morphologies of the MSCs with nHA.
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Materials 2015, 8 5433

2.8. Mineralization Results

Studying mineralization is an important aspect in the development of advanced materials for
use in organ regeneration. It also allows an understanding of how minerals can be produced by
tissues [44]. The extracellular matrix is a highly organized nanocomposite that models cell function
and biochemical processes. Tissue engineers use a nanotechnological approach to mimic this important
matrix [45]. Binding sites exists in the form of nano-scaled fibers for cell adhesion. Nano-scaled protein
fibers provide elasticity and strength [46]. The most stable form of calcium phosphate is nHA. It
forms 70% of the dynamic and highly vascularized bone tissue. Figure 8 depicts the mineralization
effect of nHA with MSCs for (A) Dulbecco’s Modified Eagle’s Medium (DMEM), (B) osteogenic
differentiation medium (ODM) and (C,D) 100 µg/mL nHA salmon treated with ODM media. These
results demonstrate the production of minerals by MSCs induced by the nHA salmon. Quantification
of the minerals produced by the control, ODM and HA treatments showed relative mineralization
percentage of 100%, 104% and 118.26%, respectively. This result implies that the HA salmon crystals
induce mineralization.
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Figure 8. Alizarin red S stained images after 14 days of MSCs with nHA at 100 µg/mL for
(A) Dulbecco’s Modified Eagle’s Medium (DMEM); (B) osteogenic differentiation medium
and (C,D) 100 µg/mL nHA.

3. Experimental Section

3.1. Preparation of Salmon Fish Bone

Salmon fish bones were supplied from a local fish market, Busan, South Korea. Bones were cut into
smaller pieces using a wooden hammer and a bladed cutter. Bones were boiled with 2 L H2O at 200 ˝C
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for 3 h to remove the flesh. 1 L H2O was further added and boiled for 4 h to remove all tissue remnants.
Washed bones were collected and further boiled with 10 mL of acetone and 2% NaOH (10 g/500 mL of
H2O) for 1 h to remove the remaining tissue. The solution was continually flushed with H2O to ensure
tissue removal and was oven dried at 100 ˝C for 3 h to remove moisture. The bones were crushed with a
mortar and pestle.

3.2. Isolation of Hydroxyapatite from Salmon Bone

nHA was isolated from salmon bone using alkaline hydrolysis [35]. Crushed bone (10 g) was heated
with 2 M NaOH (Junsei Chemical Co., Ltd., Tokyo, Japan) for 1 h at 200 ˝C. This process was repeated
until all traces of organic and collagenous material were removed. nHA was collected into conical tubes,
centrifuged (Combi-514R, Hanil Science Industrial Co., Ltd., Incheon, Korea) at 1000 rpm for 5 min,
washed with H2O until it reached neutral pH and dried in an oven at 100 ˝C.

3.3. Chemical Characterization Methods

3.3.1. Thermogravimetric Analysis

Thermogravimetric analyses of nHA were performed using a Pyris 1 TGA analyzer (Perkin-Elmer
TGA-7, Waltham, MA, USA) with a scan range from 50 to 700 ˝C and a constant heating rate of
10 ˝C¨min´1 under continuous nitrogen.

3.3.2. Fourier Transform Infrared Spectroscopy

Infrared spectrum resolution frequencies of the nHA were determined by Fourier transform infrared
spectroscopy (JASCO FT/IR-4100, JASCO, Tokyo, Japan) and a spectra manager (Serial number:
C251761016) with a range of 400 to 4000 cm´1.

3.3.3. X-Ray Diffraction Analysis

The atomic and molecular structure of the nHA crystals were analyzed using an X-ray diffractometer
(PHILIPS X’pert MPD, PANalytical, Almelo, The Netherland); Cu-Kα radiation (1.5405 Å) over a
range of 5˝ to 80˝, a step size of 0.02 and a scan speed of 4˝¨min´1 at 40 kV and 30 mA were used.

3.3.4. Microscopic Analyses

The morphology of the nHA crystals was characterized by field-emission scanning electron
microscopy (FESEM, JSM-6700F, JEOL, Tokyo, Japan) and transmission electron microscopy
(HITACHIH-7500, Hitachi, Ltd., Tokyo, Japan).

3.3.5. Cell Culture Studies

MSCs were purchased from ATCC (American Tissue Culture Collection, Manassas, VA, USA) and
were cultured in Dulbecco’s Modified Eagle’s Medium (BioWhittaker®, Madison, WI, USA) containing
10% Fetal bovine serum (FBS) (Serana®, Bunbury, Australia) and 10 mL Penicillin-Streptomycin
(BioWhittaker®) in a 37 ˝C humidified atmosphere of 5% CO2.
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3.3.6. Cytotoxicity Assessment

MSCs were cultured in a cell culture dish 100 ˆ 200 mm (SPL life sciences, Gyeonggi-do, Korea) in
a humidified incubator (SANYO CO2 Incubator-MCO-15AC, SANYO Electric Co., Ltd., Osaka, Japan)
of 5% CO2 at 37 ˝C containing 10% FBS and 10 mL antibodies (Penicillin-Streptomycin). Cells were
harvested when confluent and then seeded in a 24-well plate containing 1 mL medium at a final density
of 1 ˆ 105 cells/mL. Concentrations (250, 100, 50, 10 and 0 µg/mL (blank)) of isolated nHA were
added to each plate. Cells were incubated for 24 h. The media were removed, and 1 mL of MTT
(0.0125 mg/25 mL) was added to each well and incubated for 4 h at 37 ˝C. The MTT was removed,
and formazan crystals were stabilized by the addition of Dimethyl sulfoxide (DMSO) (1 mL/well). The
MTT assay was quantified using a GENios® microplate reader (Tecan Austria GmBH, Grödig, Austria)
at an absorbance of 570 nm.

3.3.7. Optical Microscopy

To examine the interaction of nHA and MSCs, cells were fixed with 2.5% glutaraldehyde
(Sigma-Aldrich). Cells were examined using an optical microscope (CTR 600; Leica,
Wetzlar, Germany).

3.3.8. Mineralization Assay

The amount of mineralization produced was quantified by Alizarin Red-S (ARS) stain. DMEM
medium, ODM media and nHA treated MSCs were incubated for 14 days. Cells were washed and treated
with Alizarin Red-S (Sigma-Aldrich) (0.2 g/20 mL of H2O). The cells were fixed with 70% ethanol at
room temperature for 1 h. The ethanol was removed, and 1 mL of Alizarin Red S (pH 4.2) was added
for 15 min. Cells were washed with H2O, and the optical microscopy (CTR 6000; Leica, Wetzlar,
Germany) images were taken. To quantify the minerals, 1 g of cetylpyridinium chloride (Wako Pure
Chemical Industries Ltd., Osaka, Japan) was prepared with (0.2 g/20 mL of H2O) sodium phosphate
(Sigma-Aldrich). Each well was treated with 1 mL of the prepared concentration for 15 min. The optical
density was determined by a microplate reader (Tecan Austria GmBH, Grödig, Austria) at 562 nm.

3.3.9. Statistical Analyses

Statistical analyses were performed by Graphpad Prism 5. All experiments were run in triplicate, and
the data were presented as the mean value ˘ standard deviation (SD) of each group.

4. Conclusions

We have isolated pure nHA from salmon fish bone using the alkaline hydrolysis method. This is a
cost efficient method for the isolation of nHA. FT-IR results confirmed the presence of a carbonated
group (preferable for biomedical applications). XRD results determined that the crystals are amorphous.
Scanning electron and transmission electron microscopy results revealed that the crystals exhibit a
nanostructure with a size range of 6–37 nm. Cytotoxicity analysis of isolated nHA and MSCs suggests
that the nHA is nontoxic and biocompatible. The nHA induced higher mineralization in the MSCs, which
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is important for bone tissue engineering applications. The successful isolation and characterization
of this important nano-material will be useful in biomedical applications, especially in bone tissue
engineering through its development. This material may reduce the environmental effect of byproducts
from the salmon industry while efficiently safeguarding industrial pollution and waste management.
This research suggests that nHA salmon is an alternative biomaterial with potential for biomedical
applications in the field of bone tissue engineering.
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